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ABSTRACT

The aim of the present study was to determine the evolution of resistance to

pitting corrosion and changes in the mechanical properties of ultrafine-grained

aluminium during annealing. In contrast to the numerous papers devoted to the

topic of the corrosion resistance of severely deformed aluminium alloys, a

unique approach has been taken in this study. The size and distribution of the

primary intermetallic particles, which are crucial in terms of corrosion resis-

tance, remain constant during annealing. Therefore, the influence of other

microstructural features could be investigated and compare with the results of

mechanical properties. It was shown that the ultrafine-grained structure of

commercially pure aluminium was stable up to 200 �C. Higher annealing tem-

peratures caused significant grain growth and a reduction in dislocation density,

which resulted in a drop in mechanical strength. Also, the corrosion resistance

slightly decreased, since with an increase in annealing temperature a decrease in

the corrosion potential, pit size, and the area damaged by corrosion attack were

noted. The best combination of mechanical strength and resistance to pitting

corrosion has been achieved for as-deformed state.

Introduction

The unique properties of ultrafine-grained (UFG)

materials, which arise from their refined microstruc-

tures, make them of great interest [1]. The major

improvement in UFG materials, in comparison with

coarse-grained (CG) ones, is enhanced mechanical

strength caused by grain boundary- and dislocation

strengthening mechanisms [2]. However, due to the

elevated amount of structural defects and strain

accumulated during plastic deformation, such
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materials have low thermal stability [3, 4]. UFG

materials have a large amount of stored energy after

severe plastic deformation (SPD) processing [5],

which reduces the necessary energy for grain growth

activation. Annealing at elevated temperatures leads

to grain growth, which can be very rapid, depending

on the temperature. Therefore, every benefit that

comes from a small grain size, mainly mechanical

strength, decreases. The rate of the changes depends

on the material, e.g. the purity level and microstruc-

ture, but also the temperature and annealing time.

In contrast to the mechanical strength, the corre-

lation between grain size and corrosion resistance is

still not clearly defined. It was shown in a review

paper covering a wide range of metals and their

alloys [6] that grain refinement, which causes chan-

ges in the reactivity of a material’s surface, influences

the corrosion response. The particular combination of

corrosion environment, processing, and material will

determine whether the increased surface reactivity

will lead to either enhanced dissolution or faster

passivation, so each material should be considered

separately. It was shown [6] that grain refinement

appears to increase the corrosion resistance of Mg

and Ti alloys. However, for other material systems

reviewed in that paper, the influence was not as clear

cut, appearing to cause both increased and decreased

corrosion susceptibility, depending on other factors,

such as material processing and the corrosion

environment.

In UFG materials, an improvement in passivation

behaviour has been claimed to be due to the

increased number of grain boundaries and disloca-

tions, which act as active sites for passive film

nucleation [7–10]. The multiplication of these sites

enhanced the passivation ability of the material

[9, 11, 12]. Therefore, a number of papers, e.g. [13, 14],

show that UFG microstructure caused the formation

of a denser and more uniform passive layer, thereby

enhancing corrosion-protective properties. Never-

theless, corrosion processes are complex, and not

only grain size, but also other microstructural factors,

such as grain size distribution [15], grain boundary

character [16], and strain localization [17, 18], con-

tribute to the corrosion properties. Therefore,

depending on the investigated material and its

microstructural features, SPD processing can also

have a negligible or negative impact on corrosion

resistance [19] or change the corrosion response [20].

Additionally, the presence of a second phase or

intermetallic particles significantly influences the

corrosion resistance by the formation of galvanic

couplings between the particles and the matrix due to

changes in electrochemical potential. Therefore, the

vicinities of such particles are sites of pitting corro-

sion initiation [21]. In age-hardenable Al alloys, SPD

processing causes a fragmentation or a more uniform

distribution of intermetallic and second-phase parti-

cles [22]. Commercially pure aluminium also contains

particles; in this case they are called primary inter-

metallic particles, and they are mainly rich in Si [23]

or arise from the ternary Al–Fe–Si system [24]. The

fragmentation of intermetallic particles during SPD

processing can contribute to an improvement in

corrosion resistance [25], due to the formation of a

more stable passive film and a reduction in micro-

galvanic currents [23, 26]. On the other hand, an

increased number of particles due to SPD processing

may result in an increase in the corrosion rate due to

the elevated number of pit initiation sites, as was

shown for commercially pure aluminium after equal

channel angular pressing (ECAP) [26] or AA6061

after cold drawing [27], both of which were examined

in NaCl solution.

The aim of the present study was to investigate the

changes in microstructure of severely deformed

commercially pure aluminium with subsequent

annealing and correlate them with changes in

mechanical properties and resistance to pitting cor-

rosion. The material was initially severely deformed

in order to refine the microstructure, but in contrast

to other studies, the influence of grain size on cor-

rosion resistance was investigated through annealing.

Because of this procedure, as the size and distribution

of the primary intermetallic particles remained con-

stant, the influence of other microstructural features

could be investigated. In the majority of studies, SPD

processing led to the fragmentation of such particles,

which have a more significant influence on corrosion

resistance than does grain size. In the present study,

the methodology used allowed a focus on other

microstructural factors, as the impact from inter-

metallic particles was constant. The objectives of this

study were to investigate and optimize the correla-

tions between microstructure, mechanical properties,

and corrosion resistance.
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Materials and methods

Materials

The investigated material was commercially pure

aluminium AA1070 aluminium (min. 99.70 wt% of

Al). As an SPD method, multi-turn equal channel

angular pressing (mtECAP) with two parallel chan-

nels [28] was chosen. The starting material, in the

form of a bar with a diameter of ø38 mm, was sub-

jected to machining, as a result of which mtECAP

billets were obtained. The billets with dimension of

26 9 26 9 130 mm were subjected to a chemical

process consisting of cleaning, degreasing, pickling,

conversion coating and putting a lubricant layer

(soap). The detailed procedure has been described in

[29]. This scheme was repeated after each pass. A

channel with 2 9 90� angular angles was used [30].

The modified BC deformation path was used, i.e. the

billet was rotated between two successive passes by

90�. During one pass, when passing between angular

channels, the billet was rotated by 180� in the die,

which is equivalent to deformation path C [31]. Thus,

the final deformation path was C ? BC. The

scheme of the process together with a chosen defor-

mation route is illustrated in Fig. 1. Four passes were

performed, which corresponded to an accumulative

deformation strain e = 9.2.

Samples were investigated in the initial (deformed)

state and after annealing. Annealing was performed

at four temperatures: 100 �C, 200 �C, 300 �C, and

400 �C. In each case the annealing time was 1 h. This

process allowed samples to be obtained that varied in

their microstructure, mainly with regard to grain

size, dislocation density, and fraction of low- and

high-angle grain boundaries (LAGBs and HAGBs,

respectively). Samples were investigated in terms of

their mechanical properties, corrosion resistance, and

the dependence of these properties on the

microstructural changes caused by the annealing. All

examinations were performed on plane Y (the flow

plane) according to ECAP notation [32].

Microstructure characterization

Microstructure observations were performed using a

Hitachi SU-70 scanning electron microscope (SEM).

Observations were made in secondary electron mode

along with an analysis of the chemical composition of

the particles of the primary intermetallic phases

using an EDX detector. In addition, analyses were

performed using an electron backscatter diffraction

(EBSD) detector, which allowed the average grain

size (d), expressed as equivalent diameter (diameter

of a circle having the same area as the examined

grain), to be determined; both LAGBs (misorientation

angle 3� B u B 15�) and HAGBs (misorientation

angle u[ 15�) were taken into account for this mea-

surement, and the fraction of high-angle grain

boundaries (%HAGBs) was determined. Also, SV
factor has been determined, which describes the ratio

between the area covered by grain boundaries and

unit volume. Furthermore, in order to examine

microtexture the inverse pole figures (IPF) have been

determined and analysed. Observations were con-

ducted on samples in the form of thin foil. Samples

were initially ground with SiC abrasive paper, with

subsequent electropolishing on a Struers TenuPol5

electropolisher at a temperature of 5 �C and a voltage

of 35 V in a solution made up of ethanol, perchloric

acid, butyl glycol, and distilled water. EBSD maps

were constructed with a 150-nm step size for each

sample, choosing representative areas for presenta-

tion. For detailed microstructure investigation,

observations were carried out using a JEOL JEM-1200

transmission electron microscope, with thin foil being

prepared as for the EBSD measurements.

Measurements of the dislocation densities before

and after annealing were performed by X-ray

diffraction (XRD) at room temperature using a Bru-

ker D8 Advance diffractometer with filtered CuKa
(k = 0.154056 nm) radiation. The conditions were as

follows: voltage = 40 kV, current = 40 mA, angular

range of 2h from 30 to 110�, step D2h = 0.025�, and
Figure 1 The scheme of applied mtECAP process with rotating

the batch by 90� between passes.
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counting time per step = 4 s. Finally, the dislocation

density q was calculated from XRD peak broadening

using the modified Williamson-Hall plot [33]:

q ¼ 14:4 � e2=b2

where b is the Burgers vector (b = 0.286 nm for alu-

minium) and e is the lattice strain.

Mechanical testing

The mechanical properties were tested by micro-

hardness measurements and tensile tests. Micro-

hardness measurements were taken on prepared

metallographic specimens on a Falcon 500 hardness

tester. The Vickers method was applied, with a load

of 200 g. For each sample, a minimum of five mea-

surements were taken. Static tensile tests were per-

formed on flat mini-samples with a cross section of

0.6 9 0.8 mm and a gauge length of 5 mm [34]. The

strain rate was 10–3 s-1. Digital image correlation

(DIC) was used for contactless determination of

strain. From tensile tests, the ultimate tensile strength

(UTS), yield stress (YS), and the elongation to failure

(E) were calculated. Three measurements were taken

for each set of conditions, and the results presented

were the average values obtained from the tests.

Fractures present after the tensile tests were observed

on a Hitachi SU-70 scanning electron microscope.

Electrochemical testing

Electrochemical tests were preceded by the prepara-

tion of samples by mechanical grinding using SiC

abrasive paper in gradations of up to #4000. Samples

were then degreased in an ultrasonic washer in

ethanol. Corrosion resistance was estimated based on

potentiodynamic polarization (PP) tests carried out in

3.5 wt% NaCl at ambient temperature (21 �C) in a

Faraday cage, which allowed electromagnetic noise

from the environment to be cut out. Electrochemical

measurements were carried out on an Autolab

PGSTAT 32 N device with a three-electrode system.

The tested material was the working electrode, a

platinum wire was the counter electrode, and a silver

chloride (Ag|AgCl|Cl-) electrode was the reference

electrode. The PP tests were carried out with a scan

rate of 1 mV/s. The scans were repeated for each

sample at least five times to ensure the repro-

ducibility of the results. Example curves are

presented for each state. After the potentiodynamic

polarization tests, samples were rinsed with ethanol,

and then their surface was observed using SEM in

order to analyse its post-corrosion morphology. Two

quantitative parameters of corrosion attack were

calculated—dp [lm], which is the average size of the

pit, and AA [%], which is the surface area attacked by

corrosion in relation to the unit surface area.

Results

Microstructure

Grain size, grain boundaries orientation, and dislocation

density

The orientation maps (OIMs) from the EBSD analysis

are presented in Fig. 2, while the average values of

grain size and the fraction of HAGBs are listed in

Table 1. After the mtECAP process, the microstruc-

ture consisted of grains with an average size of

1.3 lm and a fraction of HAGBs close to 60%.

Annealing up to a temperature of 200 �C only caused

a minor change in the microstructure, as the average

grain size increased slightly (from 1.3 to 1.5 lm), and

the differences between the samples were within the

error limits. However, there was a continuous

increase in the fraction of HAGBs. Annealing at

300 �C caused a significant increase in the average

grain size to a value of approx. 10 lm, while

increasing the annealing temperature to 400 �C
caused a further increase in this parameter up to

14 lm. For the temperatures of 300 �C and 400 �C
there was a significant spread in the results, which

indicated selective grain growth during annealing.

As the annealing temperature increased, the fraction

of grain boundaries with a high misorientation angle

also increased. In order to comprehensively describe

the microstructure, the SV factor was evaluated for all

grain boundaries, as well as for LAGB and HAGB

separately. The results are shown in Fig. 3. The total

value of SV increased slightly for annealing at 100 �C
and then decreased for 200 �C to a value of 0.7 lm-1.

For higher temperatures, the decrease was signifi-

cant, reaching a value of 0.1 lm-1. This decrease

indicated that the surface covered by grain bound-

aries was seven times smaller after annealing at

300 �C and 400 �C in comparison with the as-de-

formed sample. Regarding the grain boundaries’
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misorientation angle, the SV factor for LAGB

decreased continuously, with a more significant

decrease between 200 and 300 �C. For HAGB the

value of SV increased initially, and an abrupt drop

before 300 �C was observed.

IPFs are shown in Fig. 4, where changes in grains

orientation during annealing can be observed. For

initial samples, grains have\ 122[ orientation.

However, it has to be noted that texture intensity is

not significant. Annealing process causes the change

in preferred orientations. For 200 �C, the grains are

oriented in\ 101[direction. The most distinguish-

able change in grains orientation has been observed

between temperature 200 and 300 �C. For the latter

Figure 2 OIMs of sample

after the mtECAP process and

subsequent annealing.
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one, the grains have\ 112[ orientation and it

remains preserved for 400 �C. What is also noticeable

is the constant increase in the intensity of texture with

increasing the annealing temperature.

For detailed microstructure characterization, TEM

observations were conducted, and examples of

micrographs are shown in Fig. 5. The initial

microstructure (Fig. 5a) was typical for Al after SPD

processing. Grain refinement occurred by the exten-

sion and compression of grain boundaries with strain

(successive mtECAP passes), combined with grains

being subdivided by new HAGBs being formed dis-

continuously, on a finer and finer scale, until ulti-

mately a limit was reached where the HAGB spacing

converged with the subgrain size [35]. In addition,

deformed grains with a size below 1 lm and with

well-defined HAGBs, along with dislocation bound-

aries, could be observed. The achieved average grain

size was above 1 lm, despite the large applied strain.

The relatively high grain size was caused partly by the

purity level of the aluminium, but also by its low

homologous temperature and the low content of other

elements, such as Mg, which could lower stacking

fault energy and inhibit recovery [36]. Numerous

dislocation lines and tangles could be observed (ex-

amples marked bywhite arrows). Annealing at 100 �C

and 200 �C did not significantly influence the average

grain size; however, for 200 �C (Fig. 5c) a considerable

decrease in dislocation density could be observed in

comparison with the initial sample and that annealed

at 100 �C. Annealing at 300 �C caused significant

grain growth. Nevertheless, this growth was selective,

as some grains remained with a size of 1–2 lm.

Annealing at 400 �C caused further grain growth.

The density of the dislocations was determined

from XRD measurements. The results are presented

as a graph in Fig. 6. For the initial material after the

mtECAP process, a high density was observed

(4.7 9 1013 cm-2). After annealing, this value

decreased in an almost logarithmic manner, which

was indicated by the highest drop being at the very

beginning, for 100 �C, while the subsequent decrease

was less abrupt. After annealing at 400 �C, the dis-

location density equaled 9.2 9 1012 cm-2.

Intermetallic particles

The SEM micrographs showing the microstructure of

the sample after mtECAP and with subsequent

annealing at 400 �C are shown in Fig. 7. The size,

distribution, and composition of the primary particles

of the intermetallic phase (seen as white dots and

indicated by arrows) did not change as a result of

annealing. The results of the chemical composition of

EDX analysis for an exemplary particle marked by a

red arrow are shown in Fig. 7c. The results reveal that

the particle is rich in Al, Fe, and Si. The great majority

of present particles were a-AlFeSi; however, there

were also some Al3Fe phases, which is commonly

observed in commercially pure aluminium. Their size

did not exceed 4 lm, and their arrangement was

random, without any preferred locations. In the

deformed materials, deformed areas could be

observed in the vicinity of such particles and this

arrangement has been investigated in the literature,

e.g. for cold-rolled commercially pure aluminium

[37]. The contribution to the mechanical strength of

such particles is negligibly small and will not be

considered in the present study. However, such par-

ticles play a considerable role in corrosion resistance.

Table 1 The results of the

average grain size (d) and

fraction HAGBs for AA 1070

after the mtECAP process and

subsequent annealing

mtECAP 100 �C 200 �C 300 �C 400 �C

d [lm] 1.30 ± 0.64 1.28 ± 0.74 1.47 ± 0.74 10.43 ± 3.33 14.31 ± 5.55

HAGB [%] 59.4 65.0 68.7 71.8 72.9

Figure 3 Graph of the dependence of the coefficient SV on

annealing temperature.
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Figure 4 IPF of samples after: a mtECAP process and subsequent annealing for 1 h at b 100 �C, c 200 �C, d 300 �C, and e 400 �C, with
distinguished maximum intensity.

Figure 5 TEM micrographs of sample after a mtECAP and with subsequent annealing at b 100 �C, c 200 �C, d 300 �C, e 400 �C; arrows
indicate dislocations.
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Mechanical properties

The graph presenting the results for the dependence

of microhardness on annealing temperature is shown

in Fig. 8. The microhardness of annealed commer-

cially pure aluminium, depending on the purity

level, is estimated to be about 20–25 HV0.2. After the

mtECAP process, the microhardness equaled about

46 HV0.2, which is almost a twofold increase. It can

be seen that annealing up to 200 �C did not cause any

significant changes in the microhardness, and the

observed differences were within the error limit. At a

temperature of 300 �C, there was a sharp drop to

approximately 25 HV0.2. Higher annealing tempera-

ture resulted in a further decrease in microhardness:

after annealing at 400 �C, the microhardness

decreased to about 22 HV0.2.

Representative curves obtained from the tensile

tests are shown in Fig. 9a, while a graph presenting

the dependence of the average values of YS, UTS, and

E on annealing temperature is shown in Fig. 9b. The

tensile curves for the sample after the mtECAP pro-

cess and for those that underwent a subsequent

annealing at 100 �C or 200 �C were similar—the

stress quickly achieved a maximum value and then

decreased. These were typical curves for cold-worked

metals. For samples annealed at higher temperatures,

the stress increased gradually and as a result, much

higher elongations at break values were achieved.
Figure 6 The dependence of dislocation density on annealing

temperature.

Figure 7 Microstructure of sample after a mtECAP, b mtECAP with subsequent annealing at 400 �C, and c result of EDX analysis of

exemplary primary intermetallic particles (marked by red arrow) together with table showing its composition.
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Figure 8 Graph showing the dependence of microhardness on the

annealing temperature of the sample after mtECAP.

Figure 9 Graphs showing a representative tensile curves and b the relationship between the yield strength (YS), ultimate tensile strength

(UTS), elongation at break (E), and annealing temperature.

Figure 10 Fractures after static tensile testing for samples after a mtECAP process and b subsequent annealing at 400 �C.

Figure 11 Cyclic potentiodynamic polarization curves for

deformed sample and after subsequent annealing.
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The average values of the YS and UTS showed the

same trend. At 100 �C and 200 �C, even a slight

increase in the strength parameters was obtained.

The results for the analysis of fractures indicated

their ductile type. Typical images for the two samples

with the most significant differences in microstruc-

ture, i.e. after the mtECAP process and after subse-

quent annealing at a temperature of 400 �C, are

presented in Fig. 10. Characteristic features for duc-

tile fractures were visible, such as numerous dimples,

which have previously been observed for materials

after plastic deformation, e.g. for pure copper after

ECAP with subsequent cold rolling [38]. The size of

the dimples for sample after mtECAP is smaller than

for the sample with additional annealing. It can be

correlated with the grain size and dislocation density,

as these are the preferred locations for the nucleation

of microcracks. Hence, there were differences in the

size and number of these wells between the samples.

The larger dimples were formed as a result of the

decohesive mechanism and the smaller ones by the

dislocation mechanism. As a result, enhanced dislo-

cation density resulted in a higher number of dim-

ples, as they acted as nuclei for cavity initiation.

Therefore, their size was connected with the number

of dislocations: with more pronounced grain refine-

ment, the number of dimples increased, as was

shown for copper after equal channel angular extru-

sion [39], where with an increasing number of passes,

the number of small dimples increased, while their

size decreased.

Corrosion resistance

Potentiodynamic polarization curves recorded in

3.5% NaCl are shown in Fig. 11. The average values

of corrosion potential (Ecorr), pitting potential (Epit),

repassivation potential (Erep), and passive current

density (ipass) at - 0.7 V(Ag/AgCl) obtained from at

least five curves are plotted in Fig. 12, as a function of

SV parameter.

The general shape of all the curves was similar. The

most noble Ecorr was observed for the mtECAP

sample, and with increasing annealing temperature,

it was shifted towards less noble values. The samples

were passive upon exposure to the test solution. The

lowest ipass in the passive domain was recorded for

the mtECAP sample, and it increased with increasing

annealing temperature. The breakdown of the pas-

sive film, displayed as an abrupt increase in current

density, occurred at potentials higher than

- 0.7 V(Ag/AgCl). Generally, the hysteresis loops in

the reverse scan were very similar in shape; however,

they differed in area. The largest area was noted for

the mtECAP sample, while the smallest one was

found for the sample annealed at 400 �C, which

might indicate that there was a difference in repas-

sivation, and consequently in the morphology of the

localized attack, between the samples [19, 20].

Therefore, the shift of Ecorr towards less noble values

and the increase in ipass with increasing annealing

temperature indicated that the susceptibility to

localized attack increased after annealing.

When the electrochemical parameters are dis-

cussed in terms of the SV factor (see Fig. 12a), it can

Figure 12 Electrochemical parameters for sample after mtECAP process with subsequent annealing: a corrosion potential (Ecorr), pitting

potential (Epit), repassivation potential (Erep), and b passive current density (ipass) at 0.7 V(Ag/AgCl).
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be noticed that in general the differences are not

significant. However, there is an increase in the Epit

and Ecorr values with the increase in SV parameter.

The most stable and reproducible parameter was

repassivation potential (Erep). A slight shift to more

noble values was observed for the samples after

annealing (lower SV). In the case of passive current

density measured at 0.7 V(Ag/AgCl),the differences are

more pronounced. The highest value is observed for

the sample with the smallest number of grain

boundaries (annealed at 400 �C) and then an abrupt

drop is observed. With further increase in SV, the

passive current density further decreases.

Figure 13 Sample surfaces after potentiodynamic polarization for samples after a mtECAP process and with a subsequent annealing at

b 100 �C, c 200 �C, d 300 �C, and e 400 �C.
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The surfaces of the samples after polarization tests

are shown in Fig. 13. The observed type of corrosion

for all the samples was pitting. The initiation of the

pitting has been observed in the vicinity of the

intermetallic particles, as seen in Fig. 14. There were

visible differences in the number of the pits and the

area they occupied. These are presented quantita-

tively in Fig. 15 by graphs showing firstly the

dependence of the surface occupied by the pitting in

relation to the total area (AA) on the annealing tem-

perature, and secondly the dependence of the aver-

age size of the pit (dp) on the annealing temperature.

It can be seen that both parameters increased with

increasing annealing temperature. In the case of

medium-sized pits, there was a significant scattering,

shown by the size of error bars on the graph. How-

ever, the trend was maintained, and it can be con-

cluded that as the average grain size increased, the

corrosion resistance of the material decreased.

Images taken at higher magnification from the

surface samples are presented in Fig. 16, showing the

crystallographic morphology of the pits. The differ-

ences in the dissolution path can be observed as it

changed with the annealing temperature. As noted

with the mechanical properties, annealing up to

200 �C did not change the morphology of the pits;

however, for 300 �C a clear difference could be noted.

For the sample after the mtECAP process with sub-

sequent annealing at 300 �C or 400 �C (Fig. 16d, e),

crystallographic types of pits can be observed with

{100} facets and linked cavities, similar to those

described in other studies where the corrosion

behaviour of aluminium and its alloys was investi-

gated [40, 41]. In the case of the sample after the

mtECAP process and those with annealing at lower

temperatures (Fig. 16a–c), the dissolution of the

material seemed to be more diverse.

Discussion

Effect of annealing on microstructure

Annealing ensures the condition for the occurrence of

restoration phenomena by releasing the residual

stresses and stored energy of deformed structures.

During the annealing of cold-worked metals, theFigure 14 Initiation of pitting corrosion in the vicinity of the

intermetallic particles.

Figure 15 Graphs of the dependence of a the surface occupied by pitting in relation to the unit area (AA) and b average pit size (d) for

samples after the mtECAP process and subsequent annealing temperature.
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following processes take place: recovery, recrystal-

lization, and normal/abnormal grain growth [42],

which are responsible for a reduction in internal

energy. Annealing at lower temperatures causes the

rearrangement of dislocations. It can be assumed in

the present study that recrystallization was complete

before 300 �C, as annealing at this temperature

caused selective grain growth (Fig. 5d). This result is

in line with results for Al and its alloys in the liter-

ature. For 6082 aluminium alloy after cryorolling,

recovery occurred between 110 and 250 �C, recrys-
tallization between 250 and 300 �C, and beyond that

Figure 16 Pit morphology after potentiodynamic tests on a surface of samples after a mtECAP process and with a subsequent annealing at

b 100 �C, c 200 �C, d 300 �C, and e 400 �C.
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grain growth started [43]. For Al–Mn–Si after con-

strained groove pressing, annealing at 150 �C and

250 �C did not cause any noticeable differences

between the obtained microstructures or between the

grain sizes. However, annealing at 350 �C caused

recrystallization [44]. The observed inhomogeneous

and directional grain growth was explained by a

strain-induced grain boundary migration phe-

nomenon. This migration was caused by the accu-

mulated strain energy, which was a reason for the

formation of new dislocation-free grains. Restoration

during annealing at 150 �C promoted residual stress

release via dislocation annihilation and subgrain

boundary rearrangement caused by crystallite

growth. In the present study, the grain growth can be

assumed to be homogeneous, since with deformed

subgrain structures coarsening occurs through sub-

grain or grain growth [45].

With the increase in the annealing temperature,

most of the stresses inside the deformed material

were eliminated, and the dislocations inside the

grains moved to the grain boundaries. As a result, the

cell structures could be transformed into subgrain

boundaries. At an even higher annealing tempera-

ture, the grain boundaries became almost free of

dislocations and became clear, because the disloca-

tions in the grains rapidly migrated to the small-an-

gle grain boundaries at higher temperatures,

rearranged them into dislocation cells, and formed

subgrain boundaries by minimizing strain energy.

Such changes in microstructure are commonly

observed during the annealing of deformed struc-

tures and can be clearly observed in the mtECAP

samples annealed at 200 �C and 300 �C (Fig. 5c, d).

Similar observations were carried out for Al–Mg–

Mn–Sc–Zr alloy after cold rolling and annealing up to

400 �C. However, in the case of precipitation-hard-

enable alloys, second-phase particles may inhibit

grain growth [46].

Effect of annealing on mechanical
properties

For severely deformed commercially pure aluminium

after the ECAP process, annealing at low temperature

caused an increase in strength and a decrease in

elongation, which was attributed to the recovery of

dislocations [47]. In [48], a similar increase in yield

strength was observed after annealing at 150–200 �C
and was attributed to additional strengthening from

the higher amount of HAGBs, which had a

stable structure and could act as more effective bar-

riers to moving dislocations. For the material inves-

tigated in the present study, an increase in the

fraction of HAGBs was obtained with annealing at

low temperatures, while the grain size changes were

within the error limit (Table 1). These results are

similar to those noted in study [49], where in pure

aluminium after HPT an anomalous increase in

microhardness after annealing was observed,

explained by annihilations of the mobile dislocations

in the HAGBs, which led to the activation of new

dislocation sources during deformation. Also, similar

findings were presented for commercially pure alu-

minium during annealing after cryoECAP processing

[50]. Annealing at low temperatures caused an

improvement in strength by 20% in commercially

pure aluminium initially deformed through the

ECAP process [51]. The recovery of dislocations was

assumed to be the main cause of annealing

strengthening and can also explain an increase in

UTS and YS in the present study for samples

annealed at 100 �C and 200 �C.
Ultrafine-grained microstructure is not stable at

higher temperatures. It has been shown for alu-

minium and its alloys that thermal stability is pre-

served up to temperatures of about 200 �C [3].

Annealing at this temperature causes a recovery.

When a deformed structure is annealed at a tem-

perature that does not cause recrystallization, typical

effects include a coarsening of boundary spacing, a

recovery of low angle boundaries, and a reduction in

the dislocation density in the grain interior, at grain

boundaries, and at triple junctions. In conventional

materials with medium to large grain sizes, these

changes cause softening by a reduction in dislocation

hardening and grain boundary strengthening. How-

ever, the changes in the dislocation structure occur-

ring in a nanostructured metal may play a distinct

and different role. As a hypothesis, it is suggested

that having many dislocation sinks available in the

form of closely spaced high-angle boundaries will

reduce the number of dislocation sources during

annealing. This may lead to an increase in the yield

stress in order to activate new dislocation sources

during straining. Furthermore, the decrease in the

density of interior dislocations that can carry the

strain may efficiently reduce the elongation [52].

The softening of metals (e.g. a reduction in micro-

hardness) during recovery is slow and mild. On the
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other hand, recrystallization and grain growth are

characterized by a faster, more distinct decrease in

mechanical properties, as has been shown for Al–Mn

alloy [53]. Annealing at 300 �C and 400 �C caused a

significant decrease in YS and UTS, which was

caused by considerable grain growth, in line with the

Hall–Petch equation, which describes the relationship

between grain size and strength [54, 55]. It has pre-

viously been observed for Al alloys that recrystal-

lization caused a considerable drop in

microhardness, as for AA6082 alloy after cryorolling,

where annealing at 300 �C led to an abrupt drop in

mechanical properties [43].

Effect of annealing on pitting corrosion

A decrease in the corrosion resistance of mtECAP-

produced AA1070 aluminium alloy was observed

with increasing annealing temperature. Corrosion

resistance depends on microstructural features such

as grain size, grain boundary distribution, the frac-

tion of HAGBs, dislocation density, and primary

intermetallic particles. SPD processing led to signifi-

cant changes in microstructural features; however,

subsequent annealing caused the reorganization of

the microstructure and a constant decrease in the

number of grain boundaries due to grain coarsening

and dislocation annihilation. It is important to note

that the annealing did not affect the intermetallics.

The intermetallic particles did not undergo any

changes during annealing in the present study;

therefore, their number was constant for all samples.

It was presumed that the initiation of the pitting

occurred at the interface between these particles and

the Al matrix, as a result of galvanic coupling [56].

Since their number was constant, the number of ini-

tiation sites did not change; consequently, other

microstructural features affected the resistance to

pitting corrosion.

Grain boundaries, triple junctions, and dislocations

are the preferred sites of oxidation, and numerous

papers show a positive effect of an elevated number

of structural defects on corrosion resistance in com-

mercially pure aluminium [57–59]. The multiplication

of defects in UFG microstructure accelerates the

growth of more compact and stable passive film,

which may result in a lower passive current density

[14, 60]. The increasing annealing temperature results

in the decrease in number of defects, and as a

consequence, the number of nucleation sites for pas-

sive film is lower which delays the growth of passive

film.

The small changes in Ecorr, Erep, and Epit indicated

that the decrease in defect density had a minor effect

on these electrochemical parameters. The most sig-

nificant difference was the shift of Ecorr to less noble

values after annealing. Similar observations were

noted for ECAP-processed AA 1050 when compared

with the annealed materials [61]. The pitting corro-

sion resistance showed improvements in Epit average

values obtained in potentiodynamic polarization

tests; however, the difference in improvement of the

mean Epit value between the samples was negligible

and was not sequential with each ECAP pass (neither

were the intensity and extent of localized corrosive

attack). In addition, the corrosion attack was more

pronounced for materials with a greater average

grain size. Moreover, it was observed that the mor-

phology of corrosion attack changed with increasing

annealing temperature, and dissolution occurred

along different crystallographic planes. Differences in

the dissolution of Al with regard to different planes

were also investigated in [62]. It was found that the

susceptibility of single crystals to the onset of pitting

attack in chloride solution varied in the order

{111}[ {110}[ {100}. This trend was evident from

the pitting potential and induction time data, where

the most noble pitting potential values and the

longest induction periods were recorded for the {100}

surface. The resistance of this surface was explained

by the differences in the surface energy of the par-

ticular planes. Therefore, pit walls are commonly

composed of {100} planes, as these planes are slow-

dissolving in comparison with the other two planes.

However, when the corrosion front reaches a grain

boundary, the crystallographic dissolution can be

interrupted if fast-dissolving planes are absent from

the other side of the grain boundary in the direction

of propagation. Such processes can be an explanation

for the different morphology of pits for samples after

mtECAP, where dissolution occurred more diversely

in comparison with samples annealed at 300 �C and

400 �C. More uniform dissolution with no preferred

plane was observed for AA2024 alloy during

immersion in 3.5 wt% NaCl [63], but the reason for a

similar dissolution rates for all three planes was

copper enrichment along the pit walls.
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Conclusions

In present study, the evolution of pitting corrosion

and mechanical properties during annealing of

severely deformed commercially pure aluminium

has been investigated. Due to applied approach, the

influence of primary intermetallic particles, which

have a crucial impact on pitting corrosion, has been

omitted as their size and distribution did not change

during annealing. Based on that other microstruc-

tural factors could be investigated. After mtECAP,

the AA1070 revealed average grain size of 1.3 lm and

a fraction of HAGBs close to 60%. The grain size was

stable up to 200 �C, and changes in microstructure

consisted of decrease in dislocations density and

increase in fraction of HAGBs, which resulted in a

slight improvement in mechanical strength. Signifi-

cant grain growth has been observed for 300 �C and

400 �C, where the average grain size was about

10 lm and 14 lm, respectively. It caused an abrupt

decrease in mechanical strength. In the case of elec-

trochemical parameters, it can be concluded that

annealing had an impact on corrosion resistance;

however, the differences are not significant. Increase

in length of grain boundaries and dislocation density

resulted in an increase in corrosion and pitting

potential, while a decrease in passive current density.

The most pronounced changes between samples have

been observed in the corrosion attack, as with an

increase in the annealing temperature, the size of pits

and the surface area damaged increased. Changes in

the microstructure due to annealing also changed the

morphology of the corrosion attack.
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