#### Review



# Strategies to improve WO<sub>3</sub>-based photocatalysts for wastewater treatment: a review

Meiju Liao<sup>1</sup>, Long Su<sup>1</sup>, Yaocheng Deng<sup>1,\*</sup> , Sheng Xiong<sup>1</sup>, Rongdi Tang<sup>1</sup>, Zhibin Wu<sup>1</sup>, Chunxia Ding<sup>2</sup>, Lihua Yang<sup>1</sup>, and Daoxin Gong<sup>1</sup>

<sup>1</sup> College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China <sup>2</sup> School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China

Received: 27 November 2020 Accepted: 21 May 2021 Published online: 9 June 2021

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

#### ABSTRACT

 $WO_3$ , a visible light reaction catalyst, absorbs light at a wavelength of 470 nm and has many advantages, such as strong stability, long life, non-toxicity, low cost, and suitable band edges. In this review, the photocatalytic mechanism of  $WO_3$  in water pollution treatment is introduced, as well as a systematic summary, and some main strategies for improving the photocatalytic activity of  $WO_3$  in water pollution treatment are introduced, for example surface and morphology control, synthetic heterojunctions, and doping element. Finally, the main conclusions and prospects of  $WO_3$ -based photocatalysts are pointed out. It can be expected that this review can provide guidance for designing low-cost, high-efficiency new  $WO_3$ -based photocatalysts in the process of water pollution treatment and can meet the application prospects of efficient utilization of solar degradation in the field of environmental purification.

Handling Editor: Mark Bissett.

Meiju Liao and Long Su contributed equally to this work.

Address correspondence to E-mail: dengyaocheng@hunau.edu.cn

#### **GRAPHICAL ABSTRACT**



#### Abbreviations

| ROS    | Reactive oxygen species |
|--------|-------------------------|
| VB     | Valence band            |
| CB     | Conduction band         |
| RhB    | Rhodamine B             |
| MB     | Methylene blue          |
| MO     | Methyl orange           |
| ER     | Eosin red               |
| CR     | Congo red               |
| GR     | Graphene                |
| GO     | Graphene oxide          |
| RGO    | Reduced graphene oxide  |
| RhB 6G | Rhodamine B 6G          |
| TC     | Tetracycline            |

| BF              | Basic fuchsin        |
|-----------------|----------------------|
| IC              | Indigo carmine       |
| SMX             | Sulfamethoxazole     |
| CV              | Crystal violet       |
| AO <sub>7</sub> | Acid orange 7        |
| TOC             | Total organic carbon |
| SAM             | Sulfanilamide        |
|                 |                      |

#### Introduction

With the rapid development of modern society and the industrialization process, water environmental pollution has become the focus of attention. It is imperative to find a suitable and effective treatment





Figure 1 a The Number of Journal Citation Reports (JCR) articles per year, as reported by Web of Science (http://apps.webofknowl edge.com) from 2006 and updated to December 2019 retrieved via

the keywords "WO<sub>3</sub>" and "photocatalysis" in the topic of papers. **b** The mechanism of WO<sub>3</sub> and strategies for enhancing the photocatalytic activity of WO<sub>3</sub> photocatalysts in wastewater.

method. In the past few decades, the application of photocatalysis has attracted attention because it can be widely used in many fields, especially in the environment and energy fields [1, 2]. Photocatalysis is an effective treatment method for degradation of persistent organic trace pollutants because the photocatalyst is stimulated by effective light to generate photo-generated electrons and holes, thereby causing  $O_2$  and  $H_2O$  to generate active oxygen species (ROS, such as  $\cdot OH$ ,  $\cdot O_2^- / \cdot HO_2$ ,  $H_2O_{2,1}O_2$ ) to degrade the pollutants [3]. Part of the research on reactive oxygen species can also inactivate some microorganisms.

Among many photocatalysts,  $TiO_2$  has been the most widely studied due to its non-toxicity, availability, and low price [4]. Since the water was first demonstrated to decompose into H<sub>2</sub> on TiO<sub>2</sub> photoanode [5], it is one of the most widely used photocatalysts at present due to the overall superior properties of TiO<sub>2</sub>, including availability, long-term stability, and non-toxicity [6]. However, TiO<sub>2</sub> only can respond to about 4% of solar ultraviolet radiation with large band-gap energy (~ 3.2 eV) [7]. Also, the fast electron-hole recombination inherent in conventional TiO<sub>2</sub> photocatalysts is an important factor affecting its low photocatalytic efficiency.

Recently, tungsten trioxide (WO<sub>3</sub>) has attracted attention due to its strong ability to degrade organic pollutants, high stability, long life, non-toxicity, low

⁄ Springer

cost, and suitable band edges. Since it was first reported in 1976, extensive research has been conducted on the photocatalytic performance of WO<sub>3</sub>. Especially in the past ten years, a great deal of research has focused on WO<sub>3</sub> and improving WO<sub>3</sub> photocatalytic performance. In Fig. 1a, the rising trend indicates that the application of WO<sub>3</sub> photocatalyst in the field of photocatalysis is increasing.

Over the past several decades, photocatalysis has been the best procedure for wastewater treatment because of the ability of this method to perfectly mineralize the contaminants. In 1976, Butler et al. already reported that *n*-type tungsten trioxides were a great photocatalyst for water oxidation [8]. Because of the narrow band-gap (2.6–2.8 eV), nontoxicity, and strong adaptability of WO<sub>3</sub>, it has considered as a photocatalyst that can effectively degrade pollutants [9]. The valence band (VB) of WO<sub>3</sub> was about 3.1 eV [10], which made WO<sub>3</sub> have a strong oxidizing property. The mechanism of WO<sub>3</sub> is shown in Fig. 1b.

The large specific surface area of WO<sub>3</sub> nanostructure can increase the effective surface area of photocatalytic reaction. However, there are also materials with larger surface areas showing lower photocatalytic activity. For example, some scholars have pointed out that 500 nm WO<sub>3</sub> nanoparticles obtained at 800 °C can induce more O<sub>2</sub> precipitation than 30 nm nanoparticles obtained at 500 °C [11], which is attributed to the fact that larger particles have better crystallinity (resulting in smaller Eg), and thus counteracting the effect of small specific surface area [12]. In addition to the above effects, the range of photo-response values and the recombination speed of photogenerated carriers will affect the WO<sub>3</sub> photocatalytic performance. Therefore, some strategies which can change the WO<sub>3</sub> photo-response value and photogenerated carriers recombination efficiency are adopted to enhance the photocatalytic activity of WO<sub>3</sub>. So far, strategies for improving the photocatalytic performance of WO<sub>3</sub> for contaminants, i.e., surface modification and control of morphology size, synthetic heterojunction, element doping, are being reported. We need a review to summarize the improvement of photocatalysts based on WO3 in wastewater treatment. In this review, the photocatalytic mechanism of WO3 and three aspects to enhance the photocatalytic activity of WO<sub>3</sub> in water pollution are introduced. Finally, the research status and application challenges of WO3-based photocatalysts are briefly summarized.

### Advantages and limitations of pure WO<sub>3</sub> in photocatalysis

As a photocatalytic material, it is impossible to oxidize  $H_2/H_2O$  (relative to NHE (common hydrogen electrode)) and reduce  $H_2O/O_2$  due to the positions of the conduction band (CB) and valence band (VB) of the WO<sub>3</sub> semiconductor. These allow WO<sub>3</sub> to effectively degrade many organic compounds, such as textile dyes and antibiotics [12–14], which can also inactivate some microorganisms [15]. Besides, WO<sub>3</sub> has significant stability in acidic environments and is an excellent material for treating organic acid contaminated water [16]. And some advantages are mentioned in the previous section, such as high stability, long life, non-toxicity, low cost, suitable band edges, and so on.

The photocatalyst absorbs energy from optical radiation to generate hole and electron pairs. Then, holes and electrons directly react with pollutants or generate free radicals and degrade pollutants through oxidation and reduction reactions. Therefore, the position of the energy level between VB and CB and the band-gap of  $WO_3$  play a decisive role in



Figure 2 Mechanism of WO<sub>3</sub> degradation of pollutants.

the ability to oxidize and reduce pollutants. Figure 2 shows the photocatalytic mechanism of the  $WO_3$  semiconductor. The reactions are as follows:

| Photocatalyst + hv $\rightarrow$ e <sup>-</sup> + h <sup>+</sup> (1) | ) | ) |
|----------------------------------------------------------------------|---|---|
|----------------------------------------------------------------------|---|---|

$$H_2 O \to H^+ + O H^- \tag{2}$$

$$e^- + O_2 \to O_2^- \tag{3}$$

$$h^+ + OH^- \to OH \tag{4}$$

$$\cdot OH/h^+ + R \text{ (pollutant)} \rightarrow R * \text{(oxidized)}$$
 (5)

$$\cdot O_2^- + R \to O_2 + R * * (reduced)$$
(6)

 $\begin{array}{l} R*(oxidized) \ or \ R**(reduced) \rightarrow \left(final \ products\right) \\ \rightarrow CO_2 + \ H_2O \end{array}$ 

The free radicals generated are the key to the degradation of organic pollutants. However, four important effects limit the photocatalytic performance of tungsten trioxides for wastewater treatment: first of all, low visible light response ability ( $\lambda < 470$  nm); secondly, low specific surface area; thirdly, fast recombination rate of photogenerated electron–hole pairs [17]; fourthly, many reactions in photocatalysts cannot happen due to the low CB position (low than -0.1 V vs NHE, PH = 7), for example single-electron reduction of O<sub>2</sub> (O<sub>2</sub> + e<sup>--</sup>  $\rightarrow$  O<sub>2</sub><sup>--</sup>(aq), -0.33 V) and reduction of H<sup>+</sup> to H<sub>2</sub> (2H<sup>+</sup> + 2e<sup>-</sup>  $\rightarrow$  H<sub>2</sub>, -0.41 V) [18]. Therefore, for the WO<sub>3</sub> semiconductor without any improvement, its photocatalytic activity is relatively low. In the recent

| Material                                                 | Pollutant      | Concentration of pollutant | Method                                       | Light source                           | Bandgap<br>value | Results                                           | Ref                 |
|----------------------------------------------------------|----------------|----------------------------|----------------------------------------------|----------------------------------------|------------------|---------------------------------------------------|---------------------|
| 1-D and 2-D struct                                       | ures           |                            |                                              |                                        |                  |                                                   |                     |
| Nanoparticles                                            | MB             | -                          | Inverse microemulsion                        | visible-light                          | 2.88 eV          | 75% in 90 min                                     | [47]                |
| Nanorods                                                 | MB<br>ER<br>CP | 10 ppm<br>10 ppm           | Hydrothermal method                          | 800 W Xe lamp                          | 2.75 eV          | 93.1% in 70 min<br>86% in 70 min<br>87% in 80 min | [22]                |
| Nanofibers                                               | MB             | 20 ppm                     | Simple electrospup method                    | wigible light                          |                  | 50% in 120 min                                    | [24]                |
| Nanosheets                                               | MB             | 20 ppm                     | The means of thermal deposition              | visible-light                          | _                | MB adsorption capacity<br>can reach 600 mg/g      | [24]                |
| Nanoplates                                               | MB             | 10 ppm                     | PABA-assisted<br>hydrothermal method         | Xe lamp at 400 nm                      | _                | ~98.12% in 60 min                                 | -                   |
|                                                          | RhB            | 5 ppm                      | Hydrothermal method                          | Xe lamp at 400 nm                      | 2.63 eV          | 100% in 150 min                                   | [48]                |
| Films                                                    | RhB            | 47.9 ppm                   | Simple chemical spray<br>pyrolysis technique | Solar radiation                        | 2.64 eV          | 12% in 160 min                                    | [30]                |
| Special morphology                                       | у              |                            |                                              |                                        |                  |                                                   |                     |
| WO <sub>3</sub> hollow<br>microspheres                   | RhB            | 4.79 ppm                   | Hydrothermal method                          | Visible-light                          | 2.7 eV           | _                                                 | [36]                |
| WO <sub>3</sub> flower-like                              | MB             | 10 ppm                     | Straightforward<br>hydrothermal method       | 300 W Xe lamp                          | 2.55 eV          | 94.7% in 60 min                                   | [37]                |
| WO <sub>3</sub> cylindrical<br>stacks                    | MB             | 10 ppm                     | Straightforward<br>hydrothermal method       | 300 W Xe lamp                          | 2.58 eV          | 90.3% in 60 min                                   | [37]                |
| Flower-like<br>WO3·0.33H2O                               | RhB            | 10 ppm                     | Hydrothermal method                          | 500 W high-pressure<br>UV mercury lamp |                  | $\approx$ 78% in 60 min                           | [ <mark>38</mark> ] |
| Hierarchical                                             | MB             | 10 ppm                     | A facile and surfactant-free                 | 800 W Xe lamp                          |                  | 92% in 110 min                                    | [42]                |
| WO <sub>3</sub>                                          | ER             | 10 ppm                     | hydrothermal method                          | 1                                      |                  | 81% in 110 min                                    |                     |
| structures                                               | CR             | 10 ppm                     | 2                                            |                                        |                  | 75% in 110 min                                    |                     |
| 3D hierarchical<br>WO <sub>3</sub> ·0.33H <sub>2</sub> O | RhB            | 10 ppm                     | One-pot solvothermal<br>method               | 300 W Xe lamp                          |                  | 92% in 50 min                                     | [ <mark>40</mark> ] |
| Hierarchical<br>WO <sub>3</sub> core-<br>shell           | RhB            | 10 ppm                     | Template-free precipitation method           | Visible light                          |                  | 75% in 120 min                                    | [41]                |

Table 1 Modification for enhancing the photocatalytic activity by using various shapes WO<sub>3</sub> photocatalyst

years, many strategies have been proposed, which can improve the activity of  $WO_3$  photocatalyst. Therefore, in Sect. 3, we will elaborate on the following points, such as surface modification and morphological size control, the formation of heterojunctions and the modification of other elements.

### Strategies for improving photocatalytic activity of WO<sub>3</sub> for wastewater treatment

## Surface modification and control of morphology size of WO<sub>3</sub> for wastewater treatment

Surface modification and morphology control of photocatalysts are generally regarded as effective strategies to enhance the activity of photocatalysts because the crystal surface and morphology can be changed. Besides, the shape of the material will affect the photocatalytic activity of  $WO_3$  nanostructures to a certain extent [19]. Therefore, surface modification and morphology control of  $WO_3$  nanostructures are

very important for efficient photocatalytic degradation of water pollutants.

### WO<sub>3</sub> one-dimensional structures and two-dimensional structures

One-dimensional (1-D) semiconductor structures can provide a direct path for photo-generated charges transfer, have small grain boundaries and thus own excellent charge transport properties. Since the scattering of free electrons is suppressed, the photocatalytic activity of one-dimensional nanomaterials can be improved compared to nanoparticles [20]. In the recent years, various one-dimensional WO<sub>3</sub> nanostructures have been developed, such as nanorods [21-23], nanofibers [24], nanotubes [25], and nanowires [26]. Table 1 shows the effects of various WO<sub>3</sub> one-dimensional structures and two-dimensional shapes on wastewater treatment. For example, nanofibers have excellent porosity, excellent mechanical and ideal chemistry property, which can improve the photocatalytic activity of WO<sub>3</sub>. It has



Figure 3 a and b SEM images with WO<sub>3</sub> NTs. c Plots of initial decomposition rates versus Pt-loading concentration (adapted with permission from reference [27]. Copyright (2008) Wiley–VCH). d and e SEM images with different magnification of 2D-WO<sub>3</sub>. f

Change of MO normalization concentration versus the exposure time under irradiation with the different photocatalysts (adapted with permission from reference [33], Copyright (2019) Elsevier).

been reported that WO<sub>3</sub> nanofibers were prepared by electro-spinning, which degraded methylene blue twice as efficiently as WO<sub>3</sub> particles [24]. Compared with nanofibers, nanotubes can provide higher surface area and more effective sites to degrade pollutants, so that pollutant molecules can be diffused quickly and effectively in nanotube structures. For example, Zhao et al. successfully synthesized WO<sub>3</sub> nanotubes through template-free WCl<sub>6</sub> urea-assisted alcoholysis and the SEM images are shown in Fig. 3a-b [27]. These WO<sub>3</sub> NTs are monodisperse, with a diameter of about 300-1000 nm and a length of about 2–20 mm. They are composed of a single WO<sub>3</sub> nanoparticle linear arrangement, and many selfsupporting pores are formed due to incomplete aggregation of the nanoparticles. Experiment results show that the BET value of these WO<sub>3</sub> NTs (25  $m^2g^{-1}$ ) is increased by 5.7 times, compared with the BET value of commercial WO<sub>3</sub> particles (4.4  $m^2g^{-1}$ ), and that WO<sub>3</sub> NTs can generate electron-holes in visible light with a wavelength greater than 400 nm. Compared with commercial WO<sub>3</sub> particles, the prepared nanotubes have higher RhB degradation efficiency and better photocatalytic performance. The relationship between the initial decomposition rate of the two materials and the Pt loading concentration is shown in Fig. 3c. Because the tubular structure has larger effective surface area, higher charge carrier mobility, and wider light response range, the degradation activity of the nanotube is enhanced. Different shapes of the one-dimensional WO<sub>3</sub> structure have their own advantages, and can be selected according to the purpose in order to degrade the pollutants efficiently and cheaply.

Unlike one-dimensional materials, two-dimensional materials are nano-flaky materials with flat surfaces and high aspect ratios, with an extremely small thickness and strong adhesion to substrates. Nanosheets [28], nanoplates [29] and films [30, 31] have been developed. Research has shown that by using WO<sub>3</sub> nanosheet as the adsorbent, the saturated adsorption amount can reach MB 600 mg/g, higher than the normally activated carbon powder [32]. Due to the high adsorption capacity, the photocatalytic performance of the nanosheets is improved. Compared with ordinary two-dimensional nanosheets, ultrathin nanosheets have the advantages of greater specific surface area and richer active sites, which make WO3 ultrathin nanosheets present better catalytic performance. For example, Liang et al.

synthesized a two-dimensional (2D) ultrathin WO<sub>3</sub> nanosheet dominated by {002} crystal plan through a simple surfactant-induced self-assembly method and the SEM images of 2D-WO<sub>3</sub> are shown in Fig. 3d-e [33]. The SEM diagram shows the ultra-thin nanosheet structure with a lateral dimension of hundreds of nanometers and a thickness of about 4.9 nm. The experimental results show that the degradation rate constant of MO by 2D-WO<sub>3</sub> is 6.5 times higher than that of WO<sub>3</sub> nanoparticles, showing strong degradation activity (Fig. 3f). The improvement in properties can be owned to the 2D-WO<sub>3</sub> with unique structure, such as high reactivity {002} crystal surface percentage, high specific surface area, wide photo-response range, and high photogenerated electron-hole separation rate. It can be seen that WO<sub>3</sub> two-dimensional materials show superiority in degrading pollutants.

Based on the synthesized one-dimensional and two-dimensional WO<sub>3</sub> nanomaterials, the degradation efficiency of the photocatalyst can be further improved by other methods. Here, we only give a brief example by adding oxygen vacancies on the surface of the materials. For example, Wang and his colleagues synthesized uniformly distributed oxygen vacancies on the surface of WO<sub>3</sub> nanorods through the hydrothermal method [21]. The performance of WO<sub>3</sub> nanorods photocatalyst was demonstrated by comparing with the efficiency of alcohol oxidation to the corresponding ketone. The experimental results show that the activity of WO<sub>3</sub> nanorods prepared by this method is greatly improved, through the adsorption of alcohol molecules with higher specific surface area, the rapid transfer of photogenerated electrons with smaller crystal size, and the surface oxygen vacancies as traps to capture photoelectrons, thus reducing the recombination of photoelectrons and holes. The author believes that the combined effect of the above three points improves the photocatalytic performance of WO<sub>3</sub>. Also, Wu et al. successfully synthesized WO<sub>3</sub> ultra-thin nanosheets with oxygen vacancies on the surface [34]. The improvement of the material in photocatalysis is similar to the nanorods appealed. Some studies call the addition of oxygen vacancies as self-doped, which means the dope of oxygen vacancies on the surface of the material. For example, Wang and his colleagues used electrochemical methods to add oxygen holes to the surface of WO<sub>3</sub>/TiO<sub>2</sub> heterojunction to improve the degradation of exhaust gas [35].

Compared with pure WO<sub>3</sub>, the photocatalytic activity of different shapes of WO<sub>3</sub> has been improved to some extent, but the comparison between different shapes is not clear. In 2014, Farhadian et al. have prepared and characterized one-dimensional WO3 nanostructures and two-dimensional WO<sub>3</sub> nanosheets, i.e., nanorods, nanosphere, and nanoplates, to study the photocatalytic performance of the shape on the degradation of RhB dye, as displayed in Fig. 4 [19]. In this experiment, the authors found that tetrahedral and cubic nanostructures (nanorods and nanoplates) had higher catalvtic than spherical nanostructures activity (nanosphere) because they had more atoms at the edges and corners and these atoms showed higher catalytic activity. Therefore, nanoplates and nanorods had a stronger adsorption capacity than nanosphere. However, the band-gap of WO<sub>3</sub> nanorods in this experiment was the same as the band-gap of TiO<sub>2</sub>, so it has a very low light response range in visible light. The results show that nanoplates have the highest degradation performance among the three shapes. Similarly, R. Narayanan et al. studied the effect of different shaped materials on photocatalytic activity in 2004, which was consistent with this conclusion. So we can see that different shapes of WO<sub>3</sub> materials can affect the band-gap, specific surface area, and adsorption capacity. Through this experiment, it can be seen that different shapes of WO<sub>3</sub> materials can also affect the activity of atoms.

#### Special morphology

Other different shapes can increase the photocatalytic activity of pure WO<sub>3</sub> in water pollution treatment through measures such as increasing specific surface area, improving separation efficiency, and enhancing light response. Some scholars have reported that other shapes have been synthesized but mainly composed of WO<sub>3</sub> nanoparticles, nanorods, and nanosheets. Hollow particles (Fig. 5a) [36] and flowers (Fig. 5b) [37] are composed of nanoparticles. The nanorods can form cylindrical stacks (Fig. 5c) [37] and a flower shape (Fig. 5d) [38]. A flower-like structure is formed by most nanosheets stacked closely together (Fig. 5e) [39], and a WO<sub>3</sub>·0.33H<sub>2</sub>O microsphere structure is formed by nanosheets stacked (Fig. 5f) [40]. The core layer is a dense structure composed of aggregated nanoparticles, and the shell layer is a layered structure composed of





Low adsorption with high absorbance of visible light **\equiv** low photocatalytic activity



Figure 4 Schematic illustration of the shape effect on the photocatalytic activity of the WO<sub>3</sub> nanostructures (adapted with permission

from reference [19], Copyright (2015) Elsevier).

 $WO_3$  ultra-fine nanoplates [41]. Table 1 shows the effects of various  $WO_3$  special morphology shapes on wastewater treatment.

For example, Xu and his colleagues successfully synthesized three-dimensional flower-like and

wheel-like structures based on one-dimensional WO<sub>3</sub> nanorods (Fig. 5d) [38]. Due to the high charge separation efficiency of wheel-shaped and flower-shaped WO<sub>3</sub>, the degradation activity of RhB was improved.



Figure 5 SEM images of a WO<sub>3</sub> hollow particles (adapted with permission from reference [36], Copyright (2008) Elsevier); **b** WO<sub>3</sub> flower-like and **c** WO<sub>3</sub> cylindrical stacks (adapted with permission from reference [37], adapted with permission from reference); **d** flower-like WO<sub>3</sub> $\cdot$ 0.33H<sub>2</sub>O (adapted with permission

from reference [38], Copyright (2014) American Chemical Society); **e** hierarchical WO<sub>3</sub> structures (adapted with permission from reference [42], Copyright (2016) Elsevier) and **f** 3D hierarchical WO<sub>3</sub> $\cdot$ 0.33H<sub>2</sub>O (adapted with permission from reference [40], Copyright (2017) Elsevier).

Because after irradiation with appropriate wavelength, the generated holes migrate to the surface along the potential slope generated by the bending of the band, and are captured by the H<sub>2</sub>O molecules adsorbed on the surface of WO3.0.33H2O, thereby generating hydroxyl radicals ·OH and reducing the photogenerated electron-hole recombination. The larger photo-response range and longer photo-carriers existing time make the material have better photocatalytic performance. Another example is the WO<sub>3</sub> layered structure composed of WO<sub>3</sub> nanosheets; Yao et al. synthesized WO<sub>3</sub> nanosheets by a simple and surfactant-free hydrothermal method and combined them into  $WO_3$  layered structure (Fig. 5f) [42]. The effect of this material on the degradation of MB, ER and CR harmful organic dyes was studied under simulated sunlight. The results show that the layered WO<sub>3</sub> nanostructures have more excellent water pollutant degradation efficiency. Besides, by changing different raw materials, different WO<sub>3</sub> shapes can be obtained, thereby enhancing the degradation of pollutants by WO<sub>3</sub>. For example, the calcined acid-treated PbWO<sub>4</sub> (sacrifice template) can obtain dendritic and spherical morphology, while SrWO<sub>4</sub> can observe dumbbells [43].

In general, the larger specific surface area will have the greater the number of reaction sites. The synthesized spheres and flowers have a higher specific surface area, so the photocatalytic performance of pure WO<sub>3</sub> is improved to a certain extent. The research and control of different morphologies show that the morphology of photocatalysts is very important in the development of its increased activity. Because these reactions are usually completed on the surface, it depends to a large extent on the morphology of the surface. Compared with general commercial  $WO_{3}$ , the material composed of tiny single crystals has a larger surface area, higher light transmittance, and more active sites, and thus has higher photocatalytic activity. This provides an idea for the preparation of WO<sub>3</sub> structures with stronger photocatalytic degradation ability in the future.

#### WO<sub>3</sub> high-surface-energy facets

In some studies, the engineering of crystal planes of semiconductors has become an important strategy for improving the performance of photocatalysts by finetuning the properties of materials. The arrangement and coordination of surface atoms essentially determine the adsorption, desorption, and carrier transfer



Figure 6 FETEM images of M-100 (a), M-002 (d) and H-100 (g). SAED images of M-100 (b), M-002 (e) and H-100 (h). HRTEM images of M-100 (c), M-002 (f) and H-100 (i). Degradation of OA (j) and mineralization of cephalexin (k) in

photocatalysis, ozonation and photocatalytic ozonation; and band structures of the prepared M-100, M-002 and H-100 (I) (adapted with permission from reference [45], Copyright (2018) Elsevier).

efficiency of the pollutants from the surface to the adsorbed molecules. As a result, the atomic structure on the surface of the photocatalyst has a great effect on the degradation of pollutants. The atomic arrangement and coordination on the catalyst surface change with the crystal plane changing in different directions [44]. From this, we can conclude that the crystal has a great influence on the photocatalyst. In the recent years, some scholars have synthesized WO<sub>3</sub> materials with different crystal planes and studied their properties to compare the different crystals planes on the photocatalytic performance of WO<sub>3</sub>.

For example, Yang et al. synthesized three different WO<sub>3</sub> materials and studied the degradation performance of sewage under ozone, namely monoclinic

 $WO_3$  mainly exposed to {100}, {002} monoclinic  $WO_3$ and hexagonal WO<sub>3</sub> mainly exposed to {100} surface, which is called M-100 (Fig. 6a-c), M-002 (Fig. 6d-f), H-100 (Fig. 6g–i) [45]. In general, a larger surface area is beneficial for photocatalytic processes. However, in this report, M-100 has a relatively low surface area, but it owns the highest catalytic degradation performance (Fig. 6j-k), which means that the high-surfaceenergy facets would influence the photocatalytic performance of the photocatalysts greatly. Because M-100 has the highest CB position, it is thermodynamically conducive to the electron capture of dissolved O<sub>3</sub>. Additionally, this study also shows that monoclinic crystals with the same crystal plane are more active than hexagonal crystals. For the same crystal, the {100} crystal plane can change the position



of the CB, compared to the {002} crystal plane, leading to the enhancement of degradation activity. Similarly, in another report, the authors also showed that the electronic structure effect of the crystal face was caused by the different atomic structure configurations on the {002}, {020} and {200} planes, which lead to the shift of the CB position (Fig. 61) [18]. In summary, the engineering of the crystal facet is to cause the CB edge to shift upwards and then optimize the degradation activity of WO<sub>3</sub> on pollutants.

Some scholars have also compared WO<sub>3</sub> with different crystal phases [46]. Cubic WO<sub>3</sub> (c-WO<sub>3</sub>) had strong adsorption on MB and increased with increasing temperature, reaching a maximum adsorption capacity of 35.95 mg/g. Monoclinic WO<sub>3</sub> (m-WO<sub>3</sub>) had strong photocatalytic degradation of MB, and the degradation efficiency of MB was 100%, through the generation of photoinduced holes and hydroxyl (·OH) under 120 min of visible light irradiation. In future research, we can combine the changes of crystal plane and crystal phase to select the corresponding WO<sub>3</sub> for different water quality to achieve different treatment requirements and purposes.

#### WO<sub>3</sub>-based heterojunction for wastewater treatment

In this section, we introduce the effect of changing the synthesis of heterojunctions based on WO<sub>3</sub> on the degradation of pollutants. Some scholars believe that the photocatalytic performance of one-component photocatalyst is still affected by the high recombination rate of photogenerated electron-hole pairs [49]. Therefore, the formation of heterojunctions by combining binary or ternary semiconductors with a suitable band-gap has been considered to be an effective strategy to improve the performance of photocatalysts because they can simultaneously expand the absorption range of light and promote charge separation [50]. Here, this section describes the application of WO<sub>3</sub> to wastewater treatment based on the synthesis of heterojunctions from different materials.

#### Preparing binary composites

Many studies have proved that synthetic heterojunction composites can reduce the photogenerated electron–hole recombination rate and improve the utilization of electrons and holes [51]. There are many

reports on the synthesis of binary heterojunctions with WO<sub>3</sub> to enhance the photocatalytic activity on wastewater, such as WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> [10, 50, 52, 53],  $WO_3/TiO_2$  [54],  $WO_3/BiO_4$  [55],  $WO_3/grapheme$ [9, 13, 20, 56, 57], etc. In particular, WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composites have been studied in detail by changing the formation of methods and conditions.  $WO_3/g$ -C<sub>3</sub>N<sub>4</sub> composite photocatalysts with different photocatalytic mechanisms have been successfully pretype-II pared, such as traditional and Z-scheme heterojunctions. So far, most researches on forming heterojunction composites with WO<sub>3</sub>-based have been carried out in p-n heterojunctions, conventional heterojunctions, direct Z-scheme heterojunctions, and S-scheme heterojunctions. In addition to the above heterostructures, there are some special heterojunctions formed by the combination of graphene and semiconductors. The systematic improvement effect of the above mechanisms will be described below.

The p-n heterojunction is composed of n-type WO<sub>3</sub> semiconductors and *p*-type semiconductor [58, 59]. In the p-n-type heterostructure, a WO<sub>3</sub>/BiOI heterojunction photocatalyst is taken as an example. Luo et al. proposed the photocatalytic mechanism of the WO<sub>3</sub>/BiOI heterojunction catalyst, as shown in Fig. 7 [60]. BiOI is a *p*-type semiconductor with Fermi level  $(E_{f-p})$  near VB, while WO<sub>3</sub> is an *n*-type semiconductor with Fermi level ( $E_{f-p}$ ) near CB (Fig. 7a). After the *pn*-type WO<sub>3</sub>/BiOI heterojunction is formed, electrons will be transferred from WO<sub>3</sub> to BiOI, while holes will be transferred from BiOI to WO<sub>3</sub>. When the Fermi levels of the two reached equilibrium, the internal electric field was established at the interface due to the transfer of electrons. The internal electric field can also greatly promote the migration of photogenerated carriers and effectively reduce the recombination rate of photogenerated electron-hole pairs, thereby improving the performance of photocatalyst. As shown in Fig. 7b, the Fermi level  $(E_{f-p})$  of BiOI moves upward along the interface, and the Fermi level  $(E_{f-n})$  of WO<sub>3</sub> moves upward along the interface so the migration of charge causes adjacent energy bands to occur bending. It can be found that the p-n structure greatly inhibits and slows down the recombination of photogenerated electrons and holes with the migration of charges and holes and the internal electric field, which can improve the photodegradation.



**Before contact** 

After contact

**Light irradiation** 

◄ Figure 7 a Schematic diagrams for energy bands of p-type BiOI and *n*-type WO<sub>3</sub> before contact. **b** The formation of a p-n junction and its energy band diagram at equilibrium and transfer of photoinduced electrons from p-type BiOI to n-type WO<sub>3</sub> under visible-light irradiation (adapted with permission from reference [60], Copyright (2015) Elsevier). c Proposed mechanism for the photodegradation of MB on WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composites (adapted with permission from reference [52], Copyright (2015) The Royal Society of Chemistry). d Schematic diagram of Z-scheme photocatalytic mechanism of WO<sub>3</sub> NS/g-C<sub>3</sub>N<sub>4</sub> NS composite photocatalyst (adapted with permission from reference [10], Copyright (2019) Springer). e The work functions of g-C<sub>3</sub>N<sub>4</sub> and WO<sub>3</sub> before contact. f The internal electric field and band edge bending at the interface of  $WO_3/g-C_3N_4$  after contact. g The S-scheme charge transfer mechanism between WO<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub> under light irradiation (adapted with permission from reference [63], Copyright (2019) Elsevier).

When two *n*-type semiconductors synthesize a heterojunction photocatalyst, and the two semiconductors have suitable energy bands. This mechanism is called the traditional type-II, where the electrons and holes generated by the semiconductor are transferred to the CB of semiconductor I and the VB of semiconductor II, and no electric field is generated inside. Currently reported WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions, WO<sub>3</sub>/BiVO<sub>4</sub> heterojunctions [55], WO<sub>3</sub>/Ag<sub>3-</sub> VO<sub>4</sub> heterojunctions [59] and so on are all traditional type-II. In this type, we take  $WO_3/g-C_3N_4$  heterojunction photocatalyst as an example. Huang and his partners synthesized a WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction through a simple calcination process in 2013 to degrade pollutants under visible light [52]. Figure 7c shows the mechanism of the WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction. Since the potential of CB and VB of WO<sub>3</sub> is higher than the potential of CB and VB of  $g-C_3N_4$ , the electrons generated on g-C3N4 are transferred to the CB of WO<sub>3</sub>, and the photogenerated holes on VB of  $WO_3$  are transferred to VB of  $g-C_3N_4$ . The formed electrons gather on the side of WO<sub>3</sub>, and the holes gather on the side of  $g-C_3N_4$ , which can reduce the electron-hole recombination, thereby promoting the photocatalytic degradation of MB by the material. This mechanism is similar to the p-n-type heterojunction, but no electric field is generated. Therefore, the  $WO_3/g-C_3N_4$  heterojunction showed higher photocatalytic degradation performance when compared to single component of pure WO<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub> photocatalysts.

The traditional type-II heterojunction can improve the catalytic performance of the catalyst to a certain extent, but the reducibility of photo-generated electrons and the oxidizability of photo-generated holes will be reduced as the charge transfer between the semiconductors. If the semiconductor A and B are closely combined to form a heterojunction, which generates an intermediate electric field, so the heterojunction is called a Z-scheme heterojunction. This mechanism can significantly increase the space between electrons and holes, and retain its ability to redox [61]. Deng et al. successfully synthesized nanocomposite of Z-scheme WO<sub>3</sub> nanosheet/g- $C_3N_4$ nanosheet by calcination methods, and studied its photocatalytic performance [10]. Results showed that in the WO<sub>3</sub> NS/g-C<sub>3</sub>N<sub>4</sub> NS composites with 20 wt% WO<sub>3</sub> NS present best photocatalytic performance, and the main reason for the improvement of degradation performance is the participation of  $\cdot O_{2'}^{-1}$ ,  $\cdot OH_{2'}$ and  $h^+$  in the reaction. Figure 7d shows the catalytic mechanism of Z-scheme WO3 NS/g-C3N4 NS composite photocatalyst, with photogenerated electrons migrating from WO<sub>3</sub> NS to g-C<sub>3</sub>N<sub>4</sub> NS, and photogenerated holes migrating to WO<sub>3</sub> NS. Therefore, a reduction reaction occurs on g-C<sub>3</sub>N<sub>4</sub> with a higher reduction potential to generate  $\cdot O_{2}^{-}$ , and an oxidation reaction occurs in WO<sub>3</sub> with a higher oxidation potential to generate ·OH. The production of free radicals  $\cdot O_2^-$  and  $\cdot OH$  optimizes the oxidation ability and the transmission efficiency of photogenerated electrons of Z-scheme WO<sub>3</sub> NS/g-C<sub>3</sub>N<sub>4</sub> NS. At present, various forms of WO<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub> have been successfully synthesized to form Z-scheme heterojunction photocatalysts, such as WO<sub>3</sub> nanorods/g- $C_3N_4$  nanosheets [62], WO<sub>3</sub> nanosheets/g- $C_3N_4$ nanosheet composites [10]. These complexes differently improved the photocatalytic activity of WO<sub>3</sub>/g- $C_3N_4$  in the degradation of water pollutants.

Based on p-n heterojunctions, conventional type II heterojunctions, and Z-scheme heterojunctions, related scholars have proposed a new concept of stepped heterojunctions (S-scheme) [64, 65]. The S-scheme heterojunction photocatalyst consists of ntype oxidation photocatalysts and *n*-type reduction photocatalysts. After the equilibrium is reached, the Fermi levels of the two semiconductors are at the same level, while the photogenerated electrons will be transferred to the oxidation photocatalysts and holes will be transferred to the reduction photocatalysts, and an internal electric field will be generated.

Unlike other heterojunctions, as the S-scheme heterojunction, the electrons of CB in the oxidized photocatalytic with relatively useless and holes of VB in the reduced photocatalyst with relatively useless will recombine under the action of the internal electric field and eliminate, thereby retaining useful electrons and holes. Some scholars believe that the charge transfer path of the S-scheme heterojunction is similar to the "step" type, which has a strong redox capacity of space separation and photo-generated charge carriers [66]. Due to its unique structure and internal electric field, the S-scheme heterojunction can generate a large number of active materials to enhance the degradation efficiency of pollutants. In 2019, Fu et al. composite constructed а photocatalyst of S-scheme 2D/2D  $WO_3/g-C_3N_4$ heterojunction through electrostatic self-assembly methods [63]. Figure 7e-g shows the mechanism of the S-scheme WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction. Generally, g- $C_3N_4$  is a reduction type photocatalyst with a small work function (4.18 eV) and a higher Fermi level. In contrast, WO<sub>3</sub> is an oxidation-type photocatalyst with a large work function (6.23 eV) and a lower Fermi level (Fig. 6e). When  $g-C_3N_4$  and  $WO_3$  are in close contact until the Fermi level is the same (Fig. 6f), g-C<sub>3</sub>N<sub>4</sub> loses electrons and becomes positively charged, while WO<sub>3</sub> gets electrons and becomes negatively charged at the interface. As a result, an internal electric field is generated at the interface and the band edges are bent of the two semiconductors, which can make some electrons from WO<sub>3</sub> CB combine with holes from  $g-C_3N_4$  VB. But this way can prevent electrons from g-C<sub>3</sub>N<sub>4</sub> CB from combining with holes from WO<sub>3</sub> VB, shown in Fig. 6g. In general, this heterojunction mechanism can recombine the relatively useless electrons and holes in the two semiconductors, while the useful electrons and holes are retained. It is because of this unique transfer process of electrons and holes that the  $2D/2D WO_3/$  $g-C_3N_4$  composites have strong oxidation and reduction ability, thereby improving the photocatalytic performance of composites. The mechanism has been shown to exhibit strong photocatalytic activity against water decomposition. Unfortunately, no research has been done on S-scheme WO<sub>3</sub>-based binary composite heterojunctions for wastewater. However, this mechanism shows great potential in terms of photocatalysis, and this photocatalytic mechanism will show greater potential in water pollution treatment in the future.

Within ordinary heterojunctions, Z-scheme and S-scheme heterojunctions, there are special heterojunctions formed by the combination of graphene (GR) and semiconductors. Graphene is a two-dimensional single-layer SP<sup>2</sup> hybrid carbon atom with excellent charge transfer performance, high thermal conductivity, high surface area and hexagonal filled structure [67]. The ultra-high electrical conductivity and low conduction band potential (-0.08 V vs. SHE, pH = 0) of graphene allow photo-generated electrons to flow from the semiconductor to its surface, thereby reducing the compound photo-generated electronsholes. In 2010, Zhang et al. first proposed the application of graphene in photocatalysis and they proved that the addition of graphene improved the degradation efficiency of MB in the composites [68]. Based on graphene, people also synthesize GO and RGO to synthesize composite materials with semiconductors. So far, many scholars have successfully prepared composite photocatalysts composed of WO<sub>3</sub> and graphene with different morphological structures, such as  $WO_3$  nanoparticles [69], one-dimensional nanostructures [20, 70], two-dimensional nanosheets [13, 71] and so on, and all have proved the synthesized composites materials can significantly enhance the ability to degrade water pollution. Guo et al. synthesized WO<sub>3</sub> nanoparticles on the graphene sheets by the sonochemical method [72]. Studies have shown that the amount of O<sub>2</sub> precipitated from the water of WO3@GR composites with 40 wt% GR inside was twice that of pure WO<sub>3</sub>. The improvement in photocatalyst performance was the result of the joint action of WO<sub>3</sub> nanoparticles and GR sheets, through enlarging the absorption range of visible light, enhancing the electron transport and promoting the separation of photogenerated charge carriers. The mechanism diagram is shown in Fig. 8a. As we all know, the application of one-dimensional singlecrystal nanomaterials in photocatalysis is very important. Compared with nanoparticles, one-dimensional materials have smaller grain boundaries, which provide the path for photo-generated charges and inhibit free electron scattering, thereby having higher photocatalytic activity. For example, in 2012, An et al. synthesized WO<sub>3</sub> nanorods on the surface of graphene through the hydrothermal method, and the mechanism shown in Fig. 8b [20]. Studies have shown that the degradation efficiency of rhodamine B 6G (RhB 6G) by WO<sub>3</sub>/graphene composites containing 3.5wt% graphene was 2.2 times than that of pure





Figure 8 a The procedure of photocatalytic oxidation for the  $WO_3@GR$  composite (adapted with permission from reference [72], Copyright (2012) The Royal Society of Chemistry). b



Proposed photodegradation mechanism of RhB 6G over WO<sub>3</sub> nanorods/graphene composites (adapted with permission from reference [20], Copyright (2012) The Royal Society of Chemistry).

 $WO_3$  nanorods. They believe that the interaction between dyes and negatively charged groups in graphene can result in higher adsorption capacity of RhB 6G for  $WO_3$ /graphene and improve migration of photo-generated carriers are important factors to improve the photocatalytic performance of  $WO_3$ /graphene.

#### Preparing ternary composites

To date, many binary composites based on  $WO_3$  have been synthesized. However, studies have shown that ternary nanocomposites generally have wider visible light response range, lower recombination rate and higher interfacial charge transfer than binary nanocomposites [73–76]. Among the ternary composites of  $WO_3$ -based, there are two kinds of semiconductors combined with electronic mediators to synthesis composite materials, and there are three kinds of semiconductors, which we will discuss separately.

In ternary Z-scheme heterojunctions, electron mediators are usually used as conductive materials to improve electron transfer, such as Ag [77–79], Au [80], carbon nanodots [81] and RGO [82]. Because the Fermi level of the electron mediator is between two semiconductors, the electron mediator and the two semiconductor materials form a Z-scheme photocatalytic mechanism. Here, take redox graphene (RGO) and metallic Ag nanoparticles as examples. For example, in 2018, Lu et al. successfully prepared

Z-scheme  $WO_3/RGO/g-C_3N_4$  composite materials, in which RGO is an electron mediator [83]. The degradation mechanism is shown in Fig. 9a. RGO, as an electron mediator, changes the charge transfer pathway of the composite, which is different from the binary Z-scheme heterojunction. In the ternary Z-scheme WO<sub>3</sub>/RGO/g-C<sub>3</sub>N<sub>4</sub> composite, the photogenerated electrons on CB of WO<sub>3</sub> combined with the holes on VB of  $g-C_3N_4$  through RGO in the interface between RGO and g-C<sub>3</sub>N<sub>4</sub>. Thus, useful electrons and holes are retained for generating the radicals  $\cdot O_2^-$  and  $\cdot OH$ . Free radicals can participate in the oxidation reaction, thereby improving the performance of  $WO_3/RGO/g-C_3N_4$  photocatalyst. Also in 2019, Chen et al. successfully synthesized WO<sub>3</sub> nanoplate/Ag/g-C<sub>3</sub>N<sub>4</sub> nanosheet compound materials by solvent evaporation and in situ calcination [77]. The study showed that  $WO_3/Ag/g-C_3N_4$  can degrade RhB about 96.2% in 40 min, while the degradation efficiency of RhB by WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> is 58.2% under the same conditions. The synergistic effect of g-C<sub>3</sub>N<sub>4</sub> nanosheets and WO<sub>3</sub> nanoplates beneficial to enhance photocatalytic performance can provide conditions for the rapid transfer of photogenerated electrons and holes, and the electron mediator Ag nanoparticles are conducive to the charge transfer (Fig. 9b). Moreover, the Z-scheme heterostructure allows the composite to retain high redox capacity. Excellent photocatalytic activity, easy design and easy manufacturing are all



Figure 9 a Schematic illustration of the separation and transfer of photogenerated charges and the reactive species in the degradation process of Z-scheme photocatalyst g–C<sub>3</sub>N<sub>4</sub>/RGO/WO<sub>3</sub> (left) and heterojunctio*n*-type photocatalyst g–C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> (right) (adapted with permission from reference [83], Copyright (2018) Elsevier).
b Photocatalytic mechanism for WO<sub>3</sub>/Ag/CN composite under visible light irradiation (adapted with permission from reference [77], Copyright (2018) Elsevier). c Schematic diagram for the possible charge separation of Z-scheme WO<sub>3</sub>/g–C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> (adapted with permission from reference [17], Copyright (2018) Elsevier). (d) Schematic diagram for the possible charge separation of flower-like BiOBr-WO<sub>3</sub>–Bi<sub>2</sub>WO<sub>6</sub> ternary hybrid (adapted with permission from reference [88], Copyright (2015) Elsevier).

advantages of binary Z-scheme composite photocatalyst. However, the composite materials have the disadvantages, such as low surface area, small response range of visible light, poor adsorption performance, and weak redox capacity. The electron mediator usually provides a close contact area between WO<sub>3</sub> and other semiconductors, so that the electrons are better transferred, the photogenerated electron-hole pairs recombination is reduced, and the degradation efficiency is improved. This mechanism is similar to the S-scheme mechanism through the combination of relatively useless electrons and holes to leave useful electrons and holes, which use useful electrons and holes to generate free radicals to improve photocatalytic activity. At present, some scholars have proposed to form ternary S-scheme heterojunctions by doping electron mediators. For example, Pan et al. doped C in S-scheme 2D/2D WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> and studied the photocatalytic ability to degrade MB [64]. The degradation of MB can reach 92.4% in 60 min. When C as electron mediator, the heterojunction has high redox capacity, short charge transfer distance, and wide response range of visible light, which greatly improves photocatalytic ability.

The Z-scheme composites coupled with three kinds of semiconductors can produce more electrons and holes to improve the photocatalytic performance of the composites. Recently, scholars have successfully synthesized ternary Z-scheme complexes based on WO<sub>3</sub>, such as WO<sub>3</sub>/MoS<sub>2</sub>/g–C<sub>3</sub>N<sub>4</sub> and WO<sub>3</sub>/g– C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> 84] presenting much better photocatalytic abilities than binary Z-scheme photocatalytic systems. For example, Jiang and his partners have synthesized the Z-scheme WO<sub>3</sub>/g–C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> composite through a one-step co-calcination strategy and proved that the material has excellent photocatalytic performance [17]. The migration of electrons along the interface leads to accumulating in the CB of g–C<sub>3</sub>N<sub>4</sub>, while holes accumulate in the VB of WO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> shown in Fig. 9c. Therefore, the electrons in the CB of g–C<sub>3</sub>N<sub>4</sub> can be captured by O<sub>2</sub> to generate  $\cdot$ O<sup>-</sup><sub>2</sub>, while the holes in VB of WO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> can oxidatively degrade TC or oxidize H<sub>2</sub>O to form  $\cdot$ OH radicals. Active free radicals then participated in the degradation of pollutants, which increased the degradation rate of TC by the composites.

In addition to ternary semiconductors coupled into Z-scheme composites, ternary semiconductors are coupled into cascade structures, in which electrons and holes migrate through the interface potential gradient in the ternary mixed-valence band.  $WO_3/$ WO<sub>3</sub>/TiO<sub>2</sub>/CdS,  $Bi_2WO_6/BiOBr$ ,  $WO_3/Cu_2O/$ BiVO<sub>4</sub>, and WO<sub>3</sub>/BiVO<sub>4</sub>/BiOCl have been reported [85–87]. For example, Zhu et al. successfully prepared flower-like WO<sub>3</sub>-BiOBr-Bi<sub>2</sub>WO<sub>6</sub> ternary composites, in 2015 [88]. The experimental results showed that the composite material showed higher photocatalytic activity compared with the WO<sub>3</sub>-Bi<sub>2</sub>WO<sub>6</sub> binary composite, and the degradation mechanism of RhB by this material is proposed (Fig. 9d). In Fig. 9d, it can be seen that the CB edge of BiOBr is located between Bi<sub>2</sub>WO<sub>6</sub> and WO<sub>3</sub>. Therefore, the ternary composite can form a cascade structure, similar to the traditional type-II heterojunction. For the WO<sub>3</sub>-BiOBr-Bi<sub>2</sub>WO<sub>6</sub> material, the electrons are accumulated in the CB of WO<sub>3</sub> and the holes are accumulated in Bi<sub>2</sub>WO<sub>6</sub> by the migration of charge carriers. So the electrons on the surface of WO<sub>3</sub> and the hydroxyl radicals generated by the holes on the surface of Bi<sub>2</sub>WO<sub>6</sub> can directly participate in the reaction to degrade organic pollutants. WO<sub>3</sub>-BiOBr-Bi<sub>2</sub>WO<sub>6</sub> cascade structure has improved RhB degradation efficiency by high surface area, close interfacial contact, and differences in energy band positions. Besides, the cascade CB positioning of the ternary semiconductor will generate a built-in potential gradient, which can better promote the separation of photo-generated electrons and holes, thereby promoting electron transfer within the junction structure. This conclusion has been proved in other reports [86, 87].

From this, in the process of degradation of sewage with  $WO_3$  photocatalyst, Z-scheme ternary composites, and ternary cascade composites can enhance the

degradation of organic compounds. In the recent years, many scholars have proposed that heterojunction composites have great potential in the degradation of water pollution. Therefore, the formation of Z-scheme (or S-scheme) heterojunctions can obtain the best performance by increasing the absorption range of visible light, increasing the specific surface area, promoting effective charge separation, strengthening interface contact and generating free radicals (Table 2).

### Element modification of WO<sub>3</sub> for wastewater treatment

At present, some scholars have used non-metal and metal to modify semiconductors for improving the photocatalytic degradation performance of WO<sub>3</sub> on sewage. Because the modification of elements in photocatalyst can enhance the photocatalytic activity of photocatalysts by enhancing the separation rate of photogenerated electron-hole pairs and increasing the photo-response range of visible light. So far, Fe, Ni, Cu, Zn, Co, and other metal ion-doped WO<sub>3</sub> composite materials and N, S, C, P, I, F and other non-metal ion-doped composite materials have been successfully synthesized. Co-doping of elements can promote the separation of photogenerated electrons and holes faster, which means that the co-doping of elements WO<sub>3</sub> is more conducive to the improvement of photocatalytic performance. In this section, the photocatalytic degradation properties of transition metals, precious metals, rare earth metals, non-metals, and multi-element co-doped materials are studied. The results are summarized in Table 3.

#### Metal element doping

Co, Zn, Ni, Cu, and Fe transition metals have been studied to dope WO<sub>3</sub> to widen the visible light response range of WO<sub>3</sub> for improving the photocatalytic activity of WO<sub>3</sub>. Hameed and his colleagues studied the effect of Co, Zn, Ni, Cu-doped WO<sub>3</sub> on photocatalysis [100]. Studies have shown that among transition metals, the doping of Ni has the greatest effect on the catalytic hydrogen production of WO<sub>3</sub>. When doped with 1.0% and 10.0% Ni, the photocatalytic oxygen generation efficiency of WO<sub>3</sub> was 4 times and 19 times of the original. However, oxygen production and hydrogen production are different. By doping pure WO<sub>3</sub> with 10% Fe, WO<sub>3</sub> had the highest hydrogen production capacity, in which the hydrogen production was 7 times that of the original. The effect of doping different concentrations of Fe on the degradation of RhB by WO<sub>3</sub> was also reported [101]. When Fe was doped at 5.25%, WO<sub>3</sub> had the highest photocatalytic efficiency under visible light. About 93% of phenol was reduced in 240 min, and about 92% of RhB was degraded in 120 min by 5.25%Fe-doped WO<sub>3</sub>. When 5% Fe-doped WO<sub>3</sub> showed the best photocatalytic performance in MB degradation, it could degrade about 95% of MB in 120 min under visible light irradiation [102]. Thereby, the transition metal-doped WO<sub>3</sub> shows higher photocatalytic degradation ability when treating organic compounds in wastewater.

The rare earth metals in the periodic table include 17 elements, which can be used as dopants for WO<sub>3</sub> semiconductors to degrade organic pollutants. In the recent years, some scholars have proposed that doping rare earth metals into WO<sub>3</sub> can promote the concept of charge separation. Because the 4f orbit of the rare earth metal is not completely occupied, and the 5d orbit is empty, it can effectively capture electrons, which can effectively promote the separation of the photogenerated carrier, thereby playing an important role in doping for improving the performance of photocatalysis [103]. The effects of doping rare earth metals such as Gd 104], Dy [105], La [106], Eu [107], and Yb [108] on the photo-activity and photo-stability of WO<sub>3</sub> have been studied. In the case of Dy-WO<sub>3</sub>,  $Dy^{3+}$  can provide electrons to the adsorbed oxygen and then convert it to  $Dy^{4+}$ , thereby promoting the generation of superoxide radicals. Besides,  $Dy^{4+}$  can trap electrons in  $WO_3$  CB and inhibit photo-generated electron-hole recombination. WO<sub>3</sub> may be partially consumed in aqueous solution, and Dy<sup>3+</sup> doping will hinder this deactivation process [109]. Tahi et al. used a hydrothermal method to synthesize rare metal-modified WO3 composites [104]. Studies have shown that the doping of rare metals affects the grain size and specific surface area of the photocatalyst so that WO<sub>3</sub> exhibits excellent photocatalytic performance during the degradation of harmful dyes. Among them, doping 2% Gd showed the most effective degradation performance of WO<sub>3</sub>, and the degradation efficiency of various pollutants could reach about 98%. Although doped rare earth metals are very expensive, they have great potential for improving the WO<sub>3</sub> degradation of pollutants.



| pho      |
|----------|
| ised     |
| 3-b2     |
| MO       |
| using    |
| by       |
| activity |
| ıtalytic |
| photoca  |
| the      |
| ncing    |
| enhai    |
| for      |
| ation    |
| lodific  |
| Σ        |
| е<br>2   |
| abl      |

| Table 2 Modi                  | ification for enh                                                                   | ancing the | photocatalytic act            | ivity by using WO <sub>3</sub> -based photocatalyst |                                                        |                                   |                           |      |
|-------------------------------|-------------------------------------------------------------------------------------|------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------|---------------------------|------|
| Photocatalyst                 |                                                                                     | Pollutant  | Concentration<br>of pollutant | Method                                              | Light source                                           | Mass ratio                        | Results                   | Ref  |
| Binary composit<br><i>p-n</i> | tes<br>WO <sub>3</sub> /BiOI                                                        | МО         | 10 ppm                        | Hydrothermal method                                 | 500 W Xe-arc lamp                                      | WO <sub>3</sub> :BiOI = 1:99      | 67% in                    | [60] |
|                               | WO <sub>3</sub> /                                                                   | RhB        | 30 ppm                        | Hydrothermal method                                 | $(\lambda > 420 \text{ nm})$ 350 W Xe lamp             | $WO_3:Ag_2CO_3 = 4:1$             | 100 min<br>99% in         | [59] |
| Traditional                   | Ag <sub>2</sub> CO <sub>3</sub><br>WO <sub>3</sub> /g-C <sub>3</sub> N <sub>4</sub> | MB         | 10 ppm                        | Calcination method                                  | 300 W Xe lamp at                                       | $WO_3$ :g- $C_3N_4 = 1.9.41$      | 18 min<br>97% in          | [52] |
| type-II                       | $WO_3/$                                                                             | TC         | 10 ppm                        | Hydrothermal method and precipitation method        | 400 nm<br>300 W Xe lamp<br>0 > 420)                    | $WO_3:Ag_3VO_4 = 1:9$             | 120 min<br>71.2% in       | [89] |
|                               | $MO_3/U_4$<br>$WO_3/U_4$                                                            | RhB        | 20 ppm                        | Electrospinning-calcination-solvothermal method     | $(\lambda > 420 \text{ mm})$<br>300 W Xe lamp          | $WO_3:Bi_2MoO_6 = 1:6.58$         | 100% in                   | [06] |
|                               | B12M0U6<br>WO3/                                                                     | RhB        | 47.9 ppm                      | Co-precipitation and hydrothermal methods           | $(\lambda > 400 \text{ nm})$<br>250 W tungsten halogen | $WO_3$ :BiFe $WO_6 = 99$ :1       | 90 min<br>83% in          | [91] |
| Z-scheme                      | BiFeWO <sub>6</sub><br>WO <sub>3</sub> /g-C <sub>3</sub> N <sub>4</sub>             | MB         | 3.35 ppm                      | Ball milling and heat treatment methods             | lamps<br>500 W Xe lamp at                              | $WO_3$ :g- $C_3N_4 = 1$ :19       | 60 min<br>87.9% in        | [92] |
|                               |                                                                                     | BF         | 3.65 ppm                      |                                                     | 400-470 1111                                           |                                   | 00 mm<br>75.6% in         |      |
|                               | WO <sub>3</sub> NS/                                                                 | RB5        | 20 ppm                        | Ultrasonic method                                   | solar light irradiation                                | $WO_3$ :g- $C_3N_4 = 1:3$         | 60 min<br>93% in          | [93] |
|                               | g-C <sub>3</sub> N <sub>4</sub> NP                                                  | RhB        | 10 ppm                        | Solvent evaporation and in situ calcination method  | XG500 Xe long-arc                                      | $WO_3$ :g- $C_3N_4 = 1.5$         | 90 min<br>58.2% in        | [77] |
|                               | WO <sub>3</sub> NS/                                                                 | RhB        | 14.37 ppm                     | Calcination method                                  | lamp (∧ > 420 nm)<br>1000 W Xe lamp                    | $WO_3$ :g- $C_3N_4 = 1:4$         | 40 min<br>78.6% in        | [10] |
|                               | g-C3N4 ND                                                                           | МО         | 10 ppm                        | Direct precipitation method                         | LED-light illumination                                 | $WO_3$ :g- $C_3N_4 = 1.85$ :1     | 96.8% in                  | [53] |
|                               | WO <sub>3</sub> /                                                                   | TC         | 20 ppm                        | Surfactant-free hydrothermal method                 | at 410 nm<br>300 W Xe lamp                             | $WO_3:Ag_3PO_4 = 1:1$             | 120 min<br>96% in         | [94] |
|                               | Ag3FU4                                                                              | MB         | 20 ppm                        | Hydrothermal method                                 | $(\lambda > 420 \text{ nm})$<br>300 W Xe               | $WO_3:Ag_3PO_4=1:1.8$             | 20 min<br>95% in          | [95] |
|                               |                                                                                     | MO         | 20 ppm                        |                                                     | lanip(<br>> 420 mm)                                    |                                   | 90% in                    |      |
|                               | $WO_3 @SnS_2$                                                                       | RhB        | 20 ppm                        | Two-step hydrothermal method                        | 5 W white light LED                                    | $WO_3:SnS_2 = 11.76:1$            | 94.1%                     | [96] |
|                               | WO <sub>3</sub> /<br>HTiNbO <sub>5</sub><br>NS                                      | RhB        | 10 ppm                        | Hydrothermal method                                 | 300 W Xe lamp                                          | $WO_3$ :HTiNbO <sub>5</sub> = 1:9 | $\approx 90\%$<br>100 min | [76] |

| Table 2 contin            | nued                                                            |           |                            |                                                    |                                                                  |                                                       |                             |      |
|---------------------------|-----------------------------------------------------------------|-----------|----------------------------|----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|------|
| Photocatalyst             |                                                                 | Pollutant | Concentration of pollutant | Method                                             | Light source                                                     | Mass ratio                                            | Results                     | Ref  |
| WO <sub>3</sub> /graphene | WO <sub>3</sub> /GR                                             | MB        | 10 ppm                     | Hydrothermal method                                | 500 W tungsten halogen                                           | $WO_3:GR = 93:7$                                      | 94% in 8 h                  | [70] |
|                           | WO <sub>3</sub> /GO                                             | MB        | 20 ppm                     | Ultrasonication method                             | sunlight                                                         | $WO_3:GO = 1:3$                                       | 97.03% in                   | [57] |
|                           |                                                                 | IC        | 20 ppm                     |                                                    |                                                                  |                                                       | 95.43% in                   |      |
|                           | WO <sub>3</sub> /RGO                                            | p-cresol  | 20 ppm                     | Hydrothermal method                                | 250 W lamp                                                       | $WXO_3:rGO = 30:1$                                    | 57.3% in                    | [56] |
|                           |                                                                 | Cr(VI)    | 20 ppm                     |                                                    |                                                                  |                                                       | 95.2% in                    |      |
| Ternary commodit          | WO <sub>3</sub> NP/<br>RGO                                      | SMX       | 20 ppm                     | Step hydrothermal method                           | 200 W Xe arc lamp at<br>420-630 nm                               | $WO_3:RGO = 40.1$                                     | 98% in<br>180 min           | [71] |
| Z-scheme                  | WO <sub>3</sub> /Ag/                                            | RhB       | 20 ppm                     | Facile deposition and photochemical reduction      | 300 W Xe                                                         | 20wt% WO <sub>3</sub>                                 | 99.13% in                   | [78] |
|                           | A82003                                                          | МО        | 10 ppm                     | Incluon                                            | (1111) 07+ ~ V)(1111)                                            |                                                       | 96.15% in<br>90 min         |      |
|                           | WO <sub>3</sub> /Ag/g-                                          | RhB       | 10 ppm                     | Solvent evaporation and in situ calcination method | XG500 Xe long-arc $\frac{1}{10000000000000000000000000000000000$ | $WO_3:Ag:g-C_3N_4 = 3.7:1:18.5$                       | 96.2% in<br>40 min          | [77] |
|                           | WO <sub>3</sub> /GO/                                            | MB        | 20 ppm                     | I                                                  | 300  W solar simulator                                           | $WO_3:GO:Fe_2O_3 = 4.8:1:3.3$                         | 95% in                      | [98] |
|                           | re <sub>2</sub> O <sub>3</sub>                                  | CV        | 20 ppm                     | 1                                                  |                                                                  |                                                       | 60 min<br>95% in            |      |
|                           | WO <sub>3</sub> /rGO/                                           | Cr(VI)    | I                          | Combined protocol of the in situ precipitation     | 300 W Xe lamp                                                    | $WO_3$ :RGO:SnIn <sub>4</sub> S <sub>8</sub> = 4:1:20 | 93.5% in                    | [66] |
|                           | SnIn <sub>4</sub> S <sub>8</sub>                                | RhB       | I                          | method with hydrothermal method                    | $(\lambda > 420 \text{ nm})$                                     | $WO_3$ :RGO:SnIn <sub>4</sub> S <sub>8</sub> = 2:1:20 | 30 min<br>100% in           |      |
|                           | WO <sub>3</sub> /MoS <sub>2</sub> /                             | RhB       | 50 ppm                     | Co-calcination, hydrothermal method                | 300 W Xe arc                                                     | 1                                                     | 00 min<br>99% in            | [84] |
|                           | g-C3N4                                                          | MB        | 20 ppm                     |                                                    | $\operatorname{lamp}(\lambda > 420 \text{ nm})$                  |                                                       | 10 min<br>83.4% in          |      |
|                           |                                                                 | МО        | 20 ppm                     |                                                    |                                                                  |                                                       | 60 min<br>91.8% in          |      |
|                           |                                                                 | $AO_7$    | 20 ppm                     |                                                    |                                                                  |                                                       | 00 mm<br>94.2% in<br>60 min |      |
|                           | WO <sub>3</sub> /g-<br>C3N <sub>4</sub> /                       | TC        | 10 ppm                     | Co-calcination method                              | 300 W Xe<br>lamp(λ > 420 mm)                                     | I                                                     | 80.2% in<br>60 min          | [17] |
| S-scheme                  | D12O3<br>WO <sub>3</sub> /C/g-                                  | TC        | 20 ppm                     | One step co-calcination method                     | 300 W Xe<br><sup>1amn(3</sup> ~ 420 nm)                          | Ι                                                     | 90.54% in<br>60 min         | [64] |
| Cascade                   | WO <sub>3</sub> /BiVO <sub>4</sub> /<br>BiOCI                   | RhB       | 10 ppm                     | Two-step synthetic method                          | 300 W Xe lamp                                                    | 1                                                     | 69.5% in                    | [85] |
|                           | WO <sub>3</sub> /<br>Bi <sub>2</sub> WO <sub>6</sub> /<br>BiOBr | RhB       | 10 ppm                     | Effective two-step method                          | 500  W Xe<br>lamp( $\lambda > 420 \text{ nm}$ )                  | $WO_3$ :Bi <sub>2</sub> $WO_6$ :BiOBr = 1:2.6:15      | 90 mix2n                    | [88] |

Deringer

14436

| Table 3 Eleme                                  | ent modification for enhanci | ng the photocatalytic activity of WO3 photocatalyst                                                                                      |                                                         |                   |                                                              |       |
|------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|--------------------------------------------------------------|-------|
| Photocatalyst                                  | Pollutant                    | Method                                                                                                                                   | Light source                                            | Optimum<br>doping | Results                                                      | Ref   |
| Transition met                                 | al doping                    |                                                                                                                                          |                                                         | č                 |                                                              |       |
| C0-WU <sub>3</sub><br>nanoplates               | Methyl red                   | Chemical co-precipitation memod                                                                                                          | $(\lambda > 400 \text{ nm})$                            | 0%0               | 90% m 120 min                                                | 071   |
| Ni-WO <sub>3</sub>                             | Methyl red                   | Chemical co-precipitation method                                                                                                         | visible light                                           | 5%                | 96% in 120 min                                               | [127] |
| nanoplates                                     |                              |                                                                                                                                          |                                                         |                   |                                                              |       |
| Fe-WO <sub>3</sub>                             | Phenol<br>RhB                | Template method                                                                                                                          | 300 W Xe lamp                                           | 5.25%             | 93% in 240 min<br>92% in 120 min                             | [101] |
| Ir-WO <sub>3</sub>                             | MB<br>CV                     | Single step hydrothermal method                                                                                                          | Visible light                                           | 3%                | 97% in 60 min<br>99% in 60 min                               | [128] |
| Rare earth met                                 | als doping                   |                                                                                                                                          |                                                         |                   |                                                              |       |
| Gd-WO <sub>3</sub>                             | MB                           | Hydrothermal method                                                                                                                      | 400 W metal halide lamp( $\lambda \ge 400 \text{ nm}$ ) | 2%                | 98% in 90 min                                                | [104] |
| La-WO <sub>3</sub><br>NPs                      | RhB                          | Crystallization precipitation method                                                                                                     | 1000 W Xe lamp $(\lambda > 400 \text{ nm})$             | 2.4 mmol          | $\approx 90\%$ in 10 h                                       | [106] |
| Dy-WO <sub>3</sub><br>NPs                      | RhB                          | Precipitation method                                                                                                                     | 250 W Hg lamp at 290–450 nm                             | 0.25 M            | 91.2% in 180 min                                             | [105] |
| Eu-WO <sub>3</sub><br>NPs                      | RhB                          | Pechini's method                                                                                                                         | UV                                                      | I                 | $\approx 100\%$ in 60 min                                    | [107] |
| Yb-WO <sub>3</sub><br>Non-Metal don            | MO<br>ning                   | Pray pyrolysis technique                                                                                                                 | UV lamp at 365 nm                                       | 3 at%             | 96% in 320 min                                               | [108] |
| S-WO3                                          | MB                           | Hydrothermal method                                                                                                                      | 300 W Xe lamp                                           | 5%                | 78.7% 2.5 h                                                  | [110] |
| S-WO <sub>3</sub>                              | MO                           | Hydrothermal method                                                                                                                      | visible light at                                        | 3%                | Remove 97% in 3 h                                            | [112] |
| nanowires                                      |                              |                                                                                                                                          | 420 nm                                                  |                   |                                                              |       |
| N-WO <sub>3</sub>                              | МО                           | Annealing anodic oxide layers                                                                                                            | 500 W Xe lamp $(\lambda \ge 400 \text{ nm})$            | I                 | Remove 25% in 60 min                                         | [113] |
| C-WO <sub>3-x</sub><br>ultrathin<br>nanosheets | N-t-butylbenzylamine         | Acid-assisted one-pot method                                                                                                             | 500 W Xe lamp $(\lambda > 400 \text{ nm})$              | D                 | Oxidation 50% in 14 h                                        | [114] |
| I-WO <sub>3</sub>                              | local dyeing wastewater      | One-step green synthesis of WO <sub>3</sub> based on the interaction<br>of ammonium para tungstate and Spondias mombin<br>leaves extract | natural sunlight                                        | I                 | 88.19% and 89.14% for TOC<br>and COD reduction in<br>240 min | [118] |
| P-WO <sub>3</sub>                              |                              |                                                                                                                                          |                                                         |                   | 86.8% and 86.63% for TOC<br>and COD reduction in<br>240 min  |       |

🙆 Springer

| 2      |
|--------|
| tin    |
| con    |
| ŝ      |
| le     |
| ab     |
| able 3 |

| Table 3 conti                    | inued                               |                                                                                                                                          |                                     |                   |                                                              |       |
|----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--------------------------------------------------------------|-------|
| Photocatalyst                    | Pollutant                           | Method                                                                                                                                   | Light source                        | Optimum<br>doping | Results                                                      | Ref   |
| Co-doping                        |                                     |                                                                                                                                          | -                                   | Č                 |                                                              |       |
| I-P-WO <sub>3</sub>              | local dyeing wastewater             | One-step green synthesis of WO <sub>3</sub> based on the interaction<br>of ammonium para tungstate and Spondias mombin<br>leaves extract | natural sunlight                    | 2%                | 93.40% and 95.14% for IOC<br>and COD reduction in<br>240 min | [0]   |
| DD                               | gentamicin antibiotic               | Precipitation and co-precipitation methods                                                                                               | 125 W UV lamp at 365 nm             | Q                 | $\approx 90\%$ in 90 min                                     | [77]  |
| Noble metal d                    | leposited                           |                                                                                                                                          |                                     |                   |                                                              |       |
| Pt-WO <sub>3</sub>               | 2,4-                                | Photochemical impregnation method                                                                                                        | 230 W tungsten-                     | 1%                | 80% in 30 min                                                | [124] |
|                                  | Dichlorophenoxyacetic<br>acid       |                                                                                                                                          | halogen lamp at<br>230 nm           |                   |                                                              |       |
| Pt-WO <sub>3</sub>               | MB                                  | The sol-gel method                                                                                                                       | 250 W visible lamp<br>at 400–700 nm | 0.5 wt.%          | 90% in 70 min                                                | [129] |
| Pd-WO <sub>3</sub>               | E. coli microorganism<br>from water | Impregnation method                                                                                                                      | UV laser radiation at 355 nm        | 10wt%             | 100% eliminated in 8 min                                     | [119] |
| Ag-WO <sub>3</sub><br>nanonlates | SAM                                 | Hydrothermal method and photo-reduction method                                                                                           | 200 W Xe arc lamp<br>at 420–630 nm  |                   | 96.2% in 5 h and 100%<br>removal Escherichia Coli            | [125] |
|                                  |                                     |                                                                                                                                          |                                     |                   | and Bacillus subtilis in 2 h                                 |       |
|                                  |                                     |                                                                                                                                          |                                     |                   |                                                              |       |

#### Non-metal element doping

The above-mentioned that the performance of the catalyst can be enhanced through doping metals, but some researchers have found that metal-doped semiconductors are not heat-resistant and may cause photoelectron-hole pair recombination [110]. Therefore, it is proposed that doping non-metals can also improve the wide band-gap and promote the separation of photogenerated carriers [111]. Some researchers have demonstrated that doping nonmetals can enhance the performance of WO<sub>3</sub> photocatalyst [110, 112–114]. For example, Chen et al. synthesized S-doped WO<sub>3</sub> samples by the hydrothermal method [110]. Experimental results showed that compared with undoped WO<sub>3</sub>, S-WO<sub>3</sub> samples had better photo-degradability, and the maximum MB removal efficiency of 5% S-WO<sub>3</sub> samples was 78.7%. It is attributed to the lower bandgap energy, more oxygen vacancies in the surface lattice and the heterojunction formed by WS<sub>2</sub> and WO<sub>3</sub>. Because the CB position of WS<sub>2</sub> was higher than the CB position of WO<sub>3</sub>, which caused the generated electrons to be injected into the CB of  $WO_{3}$ , resulting in effective charge separation. Therefore, non-metal-doped WO<sub>3</sub> shows higher photocatalytic degradation ability than undoped WO<sub>3</sub> when treating organic compounds in wastewater treatment.

#### Elements co-doping

In addition to single-element doping, multi-element co-doping has also been used to increase the efficiency of WO<sub>3</sub> photocatalysts [115]. Multi-element codoped WO<sub>3</sub> composites have been successfully synthesized and proved to have good photocatalytic properties, such as Zn-Cu co-doped WO<sub>3</sub> [116], Nb-F co-doped WO<sub>3</sub> [117], and so on. Here, we take I-P codoped  $WO_3$  as an example. Tijani et al. prepared the I-P elements co-doped WO<sub>3</sub> nanoparticles and studied the photocatalytic performance of the material to degrade the local wastewater contaminated with dyes [118]. The found that spherical WO<sub>3</sub> nanoparticles can be completely transformed into rods and bamboo bundles with different doping percent of I and P elements, and the relative images are shown in Fig. 10. For I-P co-doped  $WO_3$ , it can be observed that the relative morphology can be transferred from spherical symmetry into rod-like structure by adjusting the doping content of different I and P

element. The reasons may refer to the fact that the nature of the dopant vis-a-vis atomic weight and ionic size can make great influence on the morphology of the target materials. Compared with the undoped WO<sub>3</sub> with spherical and cubic structure, both I<sup>-</sup> and P<sup>+3</sup> dopants can be treated as the structure directing agents for the formation of a less compacted rod and hexagonal nanostructures. The detail morphology adjustment mechanism can be explained as follows: the formation of the nanorods liked WO<sub>3</sub> with 10% iodine or phosphorus mainly originated from the side-by-side alignment, which caused by the high lateral capillary forces; the formation of bamboo-like or nanorods bundles liked I-P co-doped WO<sub>3</sub> refers to the oriented attachment, which caused by the reduction of the surface energy due to the synergetic effect between I and P element [118]. As for the photocatalytic performance, I-P codoped WO<sub>3</sub> nanocomposites can degrade 93.4% TOC and 95.14% COD, and show the highest photocatalytic activity compared with single-doped and undoped WO<sub>3</sub>.  $I^-$  and  $P^{+3}$  occupied the oxygen vacancies in WO<sub>3</sub> nanoparticles, but through the synergy between the two dopants, the crystal size was reduced and the surface area was increased. As a result, some I and P diffused on the surface of WO<sub>3</sub>, which may cause surface defects, thereby improving the degradation of printing and dyeing wastewater. Also, local internal electric field determined by both I and P can make the rapid separation of photogenerated carriers to improve the degradation efficiency. In general, this material had many advantages, such as higher specific surface area, smaller band-gap energy, good crystallinity, wider visible light response range, and lower photo-generated electron-hole recombination rate. It can be obtained that the presence of codopants can further improve the photocatalytic degradation ability of WO<sub>3</sub> doped with a single element on wastewater.

#### Deposition of noble metal

At present, the research on the deposit of WO<sub>3</sub>, such as Au, Pt, Ag, Pd and so on, shows that the degradation performance of WO<sub>3</sub> can be improved by improving charge transfer, increasing electron traps and reducing band-gap energy. It has been reported that noble metal-deposited WO<sub>3</sub> nanoparticles improve photocatalytic activity by adjusting the Fermi level balance between noble metal and WO<sub>3</sub>



Figure 10 HR-SEM images for a undoped WO<sub>3</sub>, b 2% I-doped WO<sub>3</sub>, c 2% P-doped WO<sub>3</sub> and d 2% P and I co-doped WO<sub>3</sub> (adapted with permission from reference [118], Copyright (2019) Elsevier).

photocatalyst to reduce band-gap energy [119], and suppress electron-hole recombination [120]. As early as 2010, scholars reported that the deposition of Pt can improve the performance of WO<sub>3</sub> photocatalyst [121]. The effect of WO<sub>3</sub> with different shapes of Pt deposited on ethylene under visible light was also studied. Studies have shown that the order of photoactivity is Pt/nanocubes > Pt/nanoparticles > Pt/nanobundles [122]. WO<sub>3</sub> nanocube had the best photo-degradability due to its unique geometry. The presence of Pt deposits improved the photo-activity of nanoparticles and nanocubes, which was attributed to the ability of Pt deposits to promote the multi-electron reduction of  $O_2$ . Also, some scholars have compared the photocatalytic performance of Pt loaded with different shapes of WO<sub>3</sub> [123]. According to the photocatalytic evaluation results of Pt-loaded samples, the sequence of the most active sample was not significantly different from that of the unloaded sample. This meant that the morphological structure of WO<sub>3</sub> on the photocatalytic degradation ability was greater than that of the supported co-catalyst. At the same time, the size of noble metal particles also affects the performance of WO<sub>3</sub>. The deposition of Au nanoparticles was not conducive to improving the activity of WO<sub>3</sub> to degrade pollutants. Because the size of Au nanoparticles was too large, and most of the surface of WO<sub>3</sub> was covered by gold particles, which prevented the incident light from reaching the surface and made this part of the catalyst in an inactive state during the reaction [124]. The effect of different concentrations of deposited Ag on the degradation efficiency of sulfanilamide (SAM) was also studied [125]. Within a certain range, the degradation efficiency increased with the increase in Ag concentration. Ag nanoparticles as electron capture centers during WO<sub>3</sub> degradation SAM process can improve the separation of photogenerated electrons. Moreover, WO<sub>3</sub>/Ag composites could also deactivate Escherichia Coli and Bacillus subtilis under visible light. The antibacterial effect can be attributed to synergistic effect among Ag, Ag<sup>+</sup>, and antibacterial of WO<sub>3</sub>/Ag composite. Therefore, the photocatalytic degradation ability of noble metal-deposited WO<sub>3</sub> is higher than that of WO<sub>3</sub> without noble metal deposition when treating organic compounds in wastewater. And it has great potential in treating wastewater contaminated by pathogens.

#### **Conclusions and future prospective**

Many studies have shown that WO<sub>3</sub> is a promising photocatalyst for water pollution treatment by responding to visible light because of its highly adjustable performance and excellent performance in removing persistent organic micro-pollutants and some microorganisms in complex water performance. Through a variety of improvement measures, scholars have synthesized WO3-based materials with large specific surface area and charge separation ability, which have good photocatalytic performance, economic feasibility, sustainability and durability. We have described and compared the different forms of WO<sub>3</sub>, synthetic binary or ternary heterojunctions, and other elements doped in different forms of WO<sub>3</sub>. By modifying  $WO_{3}$ , the photocatalytic performance of WO<sub>3</sub> is improved to a certain extent. Studies have also shown that although doping a certain element promotes the photocatalytic performance of  $WO_3$ , the morphological structure of WO<sub>3</sub> has a greater effect on degradation wastewater ability than the supported cocatalyst. Therefore, there is still much space for improving the performance of WO<sub>3</sub> photocatalyst.

(1) Surface modification and morphology control have been demonstrated that can improve the

photocatalytic activity of  $WO_3$  photocatalysts. But more simple and efficient method with low cost is necessary to be developed for its realistic employment.

- (2) The combination of WO<sub>3</sub> with another semiconductor for the formation of heterojunction is a promising way to promote the photocatalytic performance. However, whether binary or ternary, or more complex composites of WO<sub>3</sub>based photocatalysts, the deep micro-scale photocatalytic mechanism analysis is still a challenge and the integration of experiment and computational could be a good entry point.
- (3) Many publications have been focused on element doping and modification to enhance the photocatalytic properties of WO<sub>3</sub>. In most cases, noble elements or metals have been utilized, which increases the cost of materials and hinders its practical application. So highly efficient cheap metal elements or non-metallic elements modification method are urgently needed.
- (4) Surface defect or vacancy is a very novel and effective methods in the study of other photocatalysts. However, about WO<sub>3</sub>, relative studies are scarce, so some interests should be focused on this field of WO<sub>3</sub>, which would be very efficient in further improving the photocatalytic activity of WO<sub>3</sub>-based materials.

#### Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Grant No.51909089), Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5252), China Postdoctoral Science Foundation (Grant No. 2019M662781), Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20B304), Science Foundation for Young Scholars of Hunan Agricultural University (19QN35), and Hunan Provincial Innovation Foundation for Postgraduate (CX20200663).

#### References

[1] Prashant V.Kamat, Kei Murakoshi, Yuji Wada et al (2000) Chapter 6—Semiconductor nanoparticles. Handbook of Nanostructured Materials and Nanotechnolgy 3: 291–344. https://doi.org/10.1016/B978-012513760-7/50037-X.

- [2] Apichon Watcharenwong, Wilaiwan Chanmanee, Norma R. de Tacconi et al (2008) Anodic growth of nanoporous WO<sub>3</sub> films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J Electroanal Chem 612:112–120. h ttps://doi.org/10.1016/j.jelechem.2007.09.030.
- [3] Zheng Q, Durkin DP, Elenewski JE et al (2016) Visiblelight-responsive graphitic carbon nitride: rational design and photocatalytic aapplications for water treatment Environ Sci Technol 50:12938–12948. https://doi.org/10.1021/ acs.est.6b02579
- [4] Chao Zhen, Tingting Wu, Runze Chen et al. (2019) Strategies for modifying TiO<sub>2</sub> bbased electron transport layers to boost Perovskite solar cells. ACS Sustain Chem Eng 7:4586–4618. https://doi.org/10.1021/acssuschemeng. 8b06580.
- [5] Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
- [6] Gongming Wang, Hanyu Wang, Yichuan Ling et al (2011) Hydrogen-treated TiO<sub>2</sub> nanowire arrays for photoelectrochemical water splitting. Nano Lett 11: 3026–33. https://d oi.org/10.1021/nl201766h.
- [7] Linsebigler AL, Guangquan Lu, Yates JT (1995) Photocatalysis on TiOn surfaces: principles, mmechanisms, and selected results. Chem Rev 95:735–758
- [8] Butler MA, Nasby RD, Quinn RK (1976) Tungsten triodide as an electrode for photoelectrolysis of water. Solid State Commun
- [9] Ping-Quan Wang, Yang Bai, Ping-Ya Luo et al (2013) Graphene–WO<sub>3</sub> nanobelt composite: elevated conduction band toward photocatalytic reduction of CO<sub>2</sub> into hydrocarbon fuels. Catalysis Commun 38: 82–85. https://doi.org/ 10.1016/j.catcom.2013.04.020.
- [10] Senlin Deng, Zebin Yang, Guojun Lv et al (2019) WO<sub>3</sub> nanosheets/g-C<sub>3</sub>N<sub>4</sub> nanosheets' nanocomposite as an effective photocatalyst for degradation of rhodamine B.. Appl Phys A Mater Sci Process 125. https://doi.org/10.10 07/s00339-018-2331-9.
- [11] Suk Joon Hong, Hwichan Jun, Pramod H. Borse et al (2009) Size effects of WO<sub>3</sub> nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy 34: 3234–3242. h ttps://doi.org/10.1016/j.ijhydene.2009.02.006.
- [12] Zheng H, Jian Zhen Ou, Strano MS et al (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Func Mater 21:2175–2196. https://doi.org/10. 1002/adfm.201002477

- [13] Bilal Ahmed, Animesh K. Ojha, Ajeet Singh et al (2018) Well-controlled in-situ growth of 2D WO<sub>3</sub> rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J Hazard Mater 347: 266–278. https://doi.org/10.1016/j.jhazmat.2017.12.069.
- [14] Gondal MA, Seddigi Z (2006) Laser-induced photo-catalytic removal of phenol using *n*-type WO<sub>3</sub> semiconductor catalyst. Chem Phys Lett 417: 124–127. https://doi.org/10. 1016/j.cplett.2005.09.115.
- [15] Deng Y, Li Z, Tang R et al (2020) What will happen when microorganisms "meet" photocatalysts and photocatalysis? Environ Sci Nano 7:702–723. https://doi.org/10.1039/c9e n01318k
- [16] Tahir MB, Ali S, Rizwan M (2019) A review on remediation of harmful dyes through visible light-driven WO<sub>3</sub> photocatalytic nanomaterials. Int J Environ Sci Technol 16:4975–4988. https://doi.org/10.1007/s13762-019-02385-5.
- [17] Longbo Jiang, Xingzhong Yuan, Guangming Zeng et al (2018) In-situ synthesis of direct solid-state dual Z-scheme WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385. https://doi.org/10.1016/j.apcatb.2018.01. 042.
- [18] Ying Peng Xie, Gang Liu, Lichang Yin et al (2012) Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO<sub>3</sub> for solar energy conversion. J Mater Chem 22. https://doi.org/10.1039/c2jm16178h.
- [19] Mousa Farhadian, Parvaneh Sangpour, Ghader Hosseinzadeh (2015) Morphology dependent photocatalytic activity of WO<sub>3</sub> nanostructures. J Energy Chem 24:171–177. h ttps://doi.org/10.1016/s2095-4956(15)60297-2.
- [20] Xiaoqiang An, Jimmy C. Yu, Yu Wang et al (2012) WO<sub>3</sub> nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO<sub>2</sub> gas sensing. J Mater Chem 22. https://doi.org/10.1039/c2jm16709c.
- [21] Jinguo Wang, Zimei Chen, Guangjun Zhai et al (2018) Boosting photocatalytic activity of WO<sub>3</sub> nanorods with tailored surface oxygen vacancies for selective alcohol oxidations. Appl Surface Sci 462:760–771. https://doi.org/ 10.1016/j.apsusc.2018.08.181.
- [22] Shunyu Yao, Fengyu Qu, Gang Wang et al (2017) Facile hydrothermal synthesis of WO<sub>3</sub> nanorods for photocatalysts and supercapacitors. J Alloys Compounds 724:695–702. h ttps://doi.org/10.1016/j.jallcom.2017.07.123.
- [23] Bilal Ahmed, Sumeet Kumar, Animesh K. Ojha et al (2017) Facile and controlled synthesis of aligned WO<sub>3</sub> nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta A Molecular Biomolecular Spectroscopy 175:250–261. https://doi.org/10.1016/j.saa.2016.11.044.

- [24] Ofori FA, Sheikh FA, Appiah-Ntiamoah R et al (2015) A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity. Nano-Micro Lett 7:291–297. https://doi.org/10.1007/s40820-015-0042-8
- [25] Xiongwen Lou, Huachun Zhang (2003) An inorganic route for controlled synthesis of W<sub>18</sub>O<sub>49</sub>. Nanorods Inorganic Chem 42:6169–6171. https://doi.org/10.1021/ic034771q.
- [26] Su J, Feng X, Sloppy JD et al (2011) Vertically aligned WO<sub>3</sub> nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208. https://doi.org/ 10.1021/nl1034573.
- [27] Zhao Z-G, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem 120:7059–7163. https://doi. org/10.1002/anie.200802207
- [28] Xiaoqing Gao, Chao Yang, Feng Xiao et al (2012) WO<sub>3</sub>. 0.33H<sub>2</sub>O nanoplates: hydrothermal synthesis, photocatalytic and gas-sensing properties.Mater Lett 84:151–153. h ttps://doi.org/10.1016/j.matlet.2012.06.078.
- [29] Xiaoqing Gao, Xintai Su, Chao Yang et al (2013) Hydrothermal synthesis of WO<sub>3</sub> nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst. Sensors Actuators B Chem 181:537–543. https://d oi.org/10.1016/j.snb.2013.02.031.
- [30] Mohite SV, Ganbavle VV, Rajpure KY (2016) Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO<sub>3</sub> photoelectrode. J Alloys Compounds 655:106–113. h ttps://doi.org/10.1016/j.jallcom.2015.09.154.
- [31] Zhang Y-Q, Li X-H, Lü J et al (2014) A ternary TiO2/ WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B. Int J Minerals Metal Mater 21:813–819. https://doi.org/10.1007/s12613-014-0975-9
- [32] Jian Yi Luo, Zhi Cao, Feng Chen et al. (2013) Strong aggregation adsorption of methylene blue from water using amorphous WO<sub>3</sub> nanosheets Applied Surface Science 287: 270–275. https://doi.org/10.1016/j.apsusc.2013.09.139.
- [33] Yan Liang, Yong Yang, Chengwu Zou et al (2019) 2D ultra-thin WO<sub>3</sub> nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation. J Alloys Compounds 783: 848–854. https://doi.org/10.1016/j.jallcom.2018.12. 384.
- [34] Wu J, Qiao P, Li H et al (2019) Surface-oxygen vacancy defect-promoted electron-hole separation of defective tungsten trioxide ultrathin nanosheets and their enhanced solar-driven photocatalytic performance. J Colloid Interface Sci 557:18–27. https://doi.org/10.1016/j.jcis.2019.09.006

- [35] Xiaoguang Wang, Minghui Sun, Muthu Murugananthan et al (2020) Electrochemically self-doped WO<sub>3</sub>/TiO<sub>2</sub> nanotubes for photocatalytic degradation of volatile organic compounds. Appl Catal B Environ 260. https://doi.org/10. 1016/j.apcatb.2019.118205.
- [36] Jiaguo Yu, Qi L, Cheng B et al (2008) Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. J Hazard Mater 160:621–628. https://doi.org/10.1016/j.jhazmat.2008.03. 047
- [37] Li Q-H, Wang L-M, Chu D-Q et al (2014) Cylindrical stacks and flower-like tungsten oxide microstructures: controllable synthesis and photocatalytic properties. Ceram Int 40:4969–4973. https://doi.org/10.1016/j.ceramint.2013. 09.115
- [38] Dandan Xu, Tengfei Jiang, Dejun Wang et al (2014) pH-Dependent assembly of Tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl Mater Interfaces 6:9321–7. https://doi.org/10.1021/a m501651m.
- [39] Zhenfeng Wang, Deqing Chu, Limin Wang et al (2017) EDTA-assisted synthesis of camellia-like WO<sub>3</sub> ·0.33H<sub>2</sub>O architectures with enhanced visible-light-driven photocatalytic activity. Catalysis Commun 88:1–4. https://doi.org/ 10.1016/j.catcom.2016.09.021.
- [40] Haitao Wang, Huifang Yang, Deqing Chu et al (2017) Synthesis of 3D hierarchical WO<sub>3</sub>·0.33H<sub>2</sub>O microsphere architectures with enhanced visible-light-driven photocatalytic activity. Mater Lett 193:5–8. https://doi.org/10.1016/ j.matlet.2017.01.048.
- [41] Liang Zhang, Xincun Tang, Zhouguang Lu et al (2011) Facile synthesis and photocatalytic activity of hierarchical WO<sub>3</sub> core–shell microspheres. Appl Surface Sci 258:1719–1724. https://doi.org/10.1016/j.apsusc.2011.10. 022.
- [42] Shunyu Yao, Xu Zhang, Fengyu Qu et al (2016) Hierarchical WO<sub>3</sub> nanostructures assembled by nanosheets and their applications in wastewater purification. J Alloys ompounds 689:570–574. https://doi.org/10.1016/j.jallcom. 2016.08.025.
- [43] Chen Di, Ye J (2008) Hierarchical WO<sub>3</sub> hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Func Mater 18:1922–1928. https://doi.org/10. 1002/adfm.200701468
- [44] Gang Liu, Jimmy C. Yu, Gao Qing (Max), Lu et al. (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47:6763–6783. https://doi.org/10.1039/c1cc10665a.
- [45] Jin Yang, Jiadong Xiao, Hongbin Cao et al (2018) The role of ozone and influence of band structure in WO<sub>3</sub>

photocatalysis and ozone integrated process for pharmaceutical wastewater treatment. J Hazard Mater 360:481–489. https://doi.org/10.1016/j.jhazmat.2018.08. 033.

- [46] Siyu Zhang, Hui Li, Zhifeng Yang (2017) Controllable synthesis of WO<sub>3</sub> with different crystalline phases and its applications on methylene blue removal from aqueous solution. J Alloys Compounds 722:555–563. https://doi.or g/10.1016/j.jallcom.2017.06.095.
- [47] Reza Abazari, Ali Reza Mahjoub, Lotf Ali Saghatforoush et al (2014) Characterization and optical properties of spherical WO<sub>3</sub> nanoparticles synthesized via the reverse microemulsion process and their photocatalytic behavior. Mater Lett 133:208–211. https://doi.org/10.1016/j.matlet.2 014.07.032.
- [48] Jianhua Huang, Liang Xiao, Xiaolong Yang (2013) WO<sub>3</sub> nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater Res Bull 48:2782–2785. h ttps://doi.org/10.1016/j.materresbull.2013.04.022.
- [49] Xiao-Ju Wen, Cheng-Gang Niu, Lei Zhang et al (2018) A novel Ag<sub>2</sub>O/CeO<sub>2</sub> heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl Catal B Environ 221:701–714. h ttps://doi.org/10.1016/j.apcatb.2017.09.060.
- [50] Weilai Yu, Junxiang Chen, Tongtong Shang et al (2017) Direct Z-scheme g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> photocatalyst with atomically defined junction for H2 production. Appl Catal B Environ 219:693–704. https://doi.org/10.1016/j.apcatb.201 7.08.018.
- [51] Deng Y, Feng C, Tangb L et al (2020) Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism. Chem Eng J 393:124718. https://doi. org/10.1016/j.cej.2020.124718
- [52] Liying Huang, Hui Xu, Yeping Li et al (2013) Visible-lightinduced WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composites with enhanced photocatalytic activity. Dalton Trans 42:8606–8616. https://doi. org/10.1039/c3dt00115f.
- [53] Guochang Chen, Shicong Bian, Cun-Yue Guo et al (2019) Insight into the Z-scheme heterostructure WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> for enhanced photocatalytic degradation of methyl orange. Mater Lett 236: 596–599. https://doi.org/10.1016/j.matlet. 2018.11.010.
- [54] Jikai Yang, Xintong Zhang, Hong Liu et al.(2013) Heterostructured TiO<sub>2</sub>/WO<sub>3</sub> porous microspheres: preparation, characterization and photocatalytic properties. Catal Today 201:195–202. https://doi.org/10.1016/j.cattod.2012. 03.008.

- [55] Di Liberto G, Tosoni S, Pacchioni G (2019) Theoretical treatment of semiconductor heterojunctions for photocatalysis: the WO<sub>3</sub>/BiVO<sub>4</sub> interface. J Phys Condensed Matter 31:434001. https://doi.org/10.1088/1361-648X/ab2 fa4.
- [56] Ashok Kumar KV, Chandana L, Ghosal P et al (2018) Simultaneous photocatalytic degradation of p-cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Molecular Catal 451:87–95. https://doi.org/10.1016/j.mcat. 2017.11.014.
- [57] Jeevitha G, Abhinayaa R, Mangalaraj D et al (2018) Tungsten oxide-graphene oxide (WO<sub>3</sub>-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J Phys Chem Solids 116:137–147. https://doi.org/10. 1016/j.jpcs.2018.01.021.
- [58] Tao Jiang, Ling Cheng, Yingchun Han et al (2020) One-pot hydrothermal synthesis of Bi<sub>2</sub>O3-WO<sub>3</sub> p-n heterojunction film for photoelectrocatalytic degradation of norfloxacin. Separation Purification Technol 238:116428. https://doi.or g/10.1016/j.seppur.2019.116428.
- [59] Minghuan Gao, Lisha You, Linna Guo et al (2019) Fabrication of a novel polyhedron-like WO<sub>3</sub>/Ag<sub>2</sub>CO<sub>3</sub> p-n junction photocatalyst with highly enhanced photocatalytic activity. J Photochem Photobiol A Chem 374:206–217. h ttps://doi.org/10.1016/j.jphotochem.2019.01.022.
- [60] Jin Luo, Xiaosong Zhou, Lin Ma et al (2015) Enhanced visible-light-driven photocatalytic activity of WO<sub>3</sub>/BiOI heterojunction photocatalysts. J Molecular Catal A Chem 410:168–176. https://doi.org/10.1016/j.molcata.2015.09. 019.
- [61] Deng Y, Tang L, Feng C et al (2018) Insight into the dualchannel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Appl Catal B 238:225–237. https://doi.org/10.1016/j.apcatb.2018.04. 075
- [62] Hui Xu, Liang Liu, Xiaojie She et al (2016) WO<sub>3</sub> nanorod photocatalysts decorated with few-layer g-C<sub>3</sub>N<sub>4</sub> nanosheets: controllable synthesis and photocatalytic mechanism research. RSC Adv 6:80193–80200. https://doi.org/10.103 9/c6ra12861k.
- [63] Junwei Fu, Quanlong Xu, Jingxiang Low et al (2019) Ultrathin 2D/2D WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> step-scheme H<sub>2</sub>-production photocatalyst. Appl Catal B Environ 243:556–565. https://d oi.org/10.1016/j.apcatb.2018.11.011.
- [64] Tao Pan, Dongdong Chen, Weicheng Xu et al (2020) Anionic polyacrylamide-assisted construction of thin 2D-2D WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation.

J Hazard Mater 393:122366. https://doi.org/10.1016/j.jhaz mat.2020.122366.

- [65] Fei He, Aiyun Meng, Bei Cheng et al (2020) Enhanced photocatalytic H<sub>2</sub>-production activity of WO<sub>3</sub>/TiO<sub>2</sub> stepscheme heterojunction by graphene modification. Chin J Catal 41:9–20. https://doi.org/10.1016/s1872-2067(19)633 82-6.
- [66] Pengfei Xia, Shaowen Cao, Bicheng Zhu et al (2020) Designing a 0D/2D S-Scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angewandte Chem Int Edition. https://d oi.org/10.1002/anie.201916012.
- [67] Jingxiang Low, Jiaguo Yu, Mietek Jaroniec et al (2017) Heterojunction photocatalysts. Adv Mater 29. https://doi. org/10.1002/adma.201601694.
- [68] Hao Zhang, Xiaojun Lv, Yueming Li et al (2010) P25graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k.
- [69] He Guo, Nan Jiang, Huijuan Wang et al. (2019) Pulsed discharge plasma assisted with graphene-WO<sub>3</sub> nanocomposites for synergistic degradation of antibiotic enrofloxacin in water Chemical Engineering Journal 372: 226–240. https://doi.org/10.1016/j.cej.2019.04.119.
- [70] Lu Gan, Lijie Xu, Songmin Shang et al (2016) Visible light induced methylene blue dye degradation photo-catalyzed by WO<sub>3</sub>/graphene nanocomposites and the mechanism. Ceramics Int 42:15235–15241. https://doi.org/10.1016/j.ce ramint.2016.06.160.
- [71] Wenyu Zhu, Faqian Sun, Ronn Goei et al (2017) Facile fabrication of RGO-WO<sub>3</sub> composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl Catal B Environ 207:93–102. https://doi.org/10.1016/j.apca tb.2017.02.012.
- [72] Jingjing Guo, Yao Li, Shenmin Zhu et al (2012) Synthesis of WO<sub>3</sub>@Graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv 2:1356–1363. h ttps://doi.org/10.1039/c1ra00621e.
- [73] Junqi Li, Zhenxing Liu, Zhenfeng Zhu (2015) Enhanced photocatalytic activity in ZnFe<sub>2</sub>O<sub>4</sub>–ZnO–Ag<sub>3</sub>PO<sub>4</sub> hollow nanospheres through the cascadal electron transfer with magnetical separation. J Alloys Compounds 636:229–233. https://doi.org/10.1016/j.jallcom.2015.02.176.
- [74] Yaocheng Deng, Lin Tang, Guangming Zeng et al (2017) Plasmonic resonance excited dual Z-scheme BiVO<sub>4</sub>/Ag/ Cu<sub>2</sub>O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ Sci Nano 4:1494–1511. h ttps://doi.org/10.1039/c7en00237h.
- [75] Qian Zhou, Yun Song, Najun Li et al (2020) Direct Dual Z-Scheme Bi<sub>2</sub>WO<sub>6</sub>/GQDs/WO<sub>3</sub> inverse opals for enhanced

photocatalytic activities under visible light. ACS Sustain Chem Eng 8:7921–7927. https://doi.org/10.1021/acssusche meng.0c01548.

- [76] Yee Wen Teh, Yien Wei Goh, Xin Ying Kong et al (2019) Fabrication of Bi<sub>2</sub>WO<sub>6</sub>/Cu/WO<sub>3</sub> Allsolid-State Zscheme composite photocatalyst to improve CO<sub>2</sub> photoreduction under visible light irradiation. ChemCatChem 11: 6431–6438. https://doi.org/10.1002/cctc.201901653.
- [77] Jiayi Chen, Xinyan Xiao, Yi Wang et al (2019) Ag nanoparticles decorated WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surface Sci 467–468:1000–1010. https://doi.org/10.1016/j.apsusc.2018.10.236.
- [78] Xingzhong Yuan, Longbo Jiang, Xiaohong Chen et al (2017) Highly efficient visible-light-induced photoactivity of Z-scheme Ag<sub>2</sub>CO<sub>3</sub>/Ag/WO<sub>3</sub> photocatalysts for organic pollutant degradation. Environ Sci Nano 4:2175–2185. h ttps://doi.org/10.1039/c7en00713b.
- [79] Shanshan Ding, Mengshu Han, Yuxuan Dai et al (2019) Synthesis of Ag/AgBr/Bi4O<sub>5</sub>Br<sub>2</sub> plasmonic heterojunction photocatalysts: elevated visible-light photocatalytic performance and Z-scheme. Mech ChemCatChem 11:1–16. http s://doi.org/10.1002/cctc.201900529.
- [80] Jiabai Cai, Xueqing Wu, Shunxing Li et al (2016) Synthesis of TiO<sub>2</sub>@WO<sub>3</sub>/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity. ACS Sustain Chem Eng 4:1581–1590. http s://doi.org/10.1021/acssuschemeng.5b01511.
- [81] Jun Zhang, Yun Guo, Yuhan Xiong et al (2017) An environmentally friendly Z-scheme WO<sub>3</sub>/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. J Catal 356:1–13. http s://doi.org/10.1016/j.jcat.2017.09.021.
- [82] Fangjun Wu, Xin Li, Wei Liu et al (2017) Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C<sub>3</sub>N<sub>4</sub>-RGO-TiO<sub>2</sub> nanoheterojunctions. Appl Surface Sci 405:60–70. https://d oi.org/10.1016/j.apsusc.2017.01.285.
- [83] Na Lu, Pu Wang, Yan Su et al (2019) Construction of Z-Scheme g-C<sub>3</sub>N<sub>4</sub>/RGO/WO<sub>3</sub> with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin .Chemosphere 215: 444–453. https://doi.org/10.1016/j.chemosphere.2018.10. 065.
- [84] Ahmad Beyhaqi, Qingyi Zeng, Sheng Chang et al (2020) Construction of g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub>/MoS<sub>2</sub> ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. Chemosphere 247:125784. https://doi.org/10.1016/j.chemosphere.2019. 125784.

- [85] Huali Li, Yajie Chen, Wei Zhou et al (2019) WO<sub>3</sub>/BiVO<sub>4</sub>/ BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation. J Alloys Compounds 802:76–85. https://doi.org/10.1016/j. jallcom.2019.06.187.
- [86] Hyoung-il Kim, Jungwon Kim, Wooyul Kim et al (2011) Enhanced photocatalytic and photoelectrochemical activity in the Ternary Hybrid of CdS/TiO<sub>2</sub>/WO<sub>3</sub> through the Cascadal electron transfer. J Phys Chem C 115:9797–9805. h ttps://doi.org/10.1021/jp1122823.
- [87] Narges Omrani, Alireza Nezamzadeh-Ejhieh (2020) A comprehensive study on the enhanced photocatalytic activity of Cu<sub>2</sub>O/BiVO<sub>4</sub>/WO<sub>3</sub> nanoparticles. J Photochem Photobiol A Chem 389. https://doi.org/10.1016/j.jphotoche m.2019.112223.
- [88] Zhenfeng Zhu, Ying Yan, Junqi Li (2015) Preparation of flower-like BiOBr–WO<sub>3</sub>–Bi<sub>2</sub>WO<sub>6</sub> ternary hybrid with enhanced visible-light photocatalytic activity. J Alloys Compounds 651:184–192. https://doi.org/10.1016/j.jallco m.2015.08.137.
- [89] Ming Yan, Yilin Wu, Fangfang Zhu et al (2016) The fabrication of a novel Ag<sub>3</sub>VO<sub>4</sub>/WO<sub>3</sub> heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys Chem Chem Phys 18:3308–3315. https://doi.org/10.1039/c5cp05599g.
- [90] Shijie Li, Shiwei Hu, Wei Jiang et al. (2019) In situ construction of WO<sub>3</sub> nanoparticles decorated Bi<sub>2</sub>MoO<sub>6</sub> microspheres for boosting photocatalytic degradation of refractory pollutants. J Colloid Interface Sci 556:335–344. https://doi.org/10.1016/j.jcis.2019.08.077.
- [91] Priya A, Prabhakarn Arunachalam, Selvi A et al (2018) Synthesis of BiFeWO<sub>6</sub>/WO<sub>3</sub> nanocomposite and its enhanced photocatalytic activity towards degradation of dye under irradiation of light. Colloids Surfaces A Physicochem Eng Aspects 559:83–91. https://doi.org/10.1 016/j.colsurfa.2018.09.031.
- [92] Shifu Chen, Yingfei Hu, Sugang Meng et al (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C<sub>3</sub>N<sub>4</sub>-WO<sub>3</sub>. Appl Catal B Environ 150–151:564–573. https://doi.org/10.101 6/j.apcatb.2013.12.053.
- [93] Mahdi Karimi-Nazarabad, Elaheh K. Goharshadi (2017) Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposite. Solar Energy Mater Solar Cells 160:484–493. https://doi. org/10.1016/j.solmat.2016.11.005.
- [94] Manoj Pudukudy, Shaoyun Shan, Yingju Miao et al (2020) WO<sub>3</sub> nanocrystals decorated Ag<sub>3</sub>PO<sub>4</sub> tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous

medium. Colloids Surfaces A Physicochem Eng Aspects 589. https://doi.org/10.1016/j.colsurfa.2020.124457.

- [95] Jinsuo Lu, Yujing Wang, Fei Liu et al (2017) Fabrication of a direct Z-scheme type WO<sub>3</sub>/Ag<sub>3</sub>PO<sub>4</sub> composite photocatalyst with enhanced visible-light photocatalytic performances. Appl Surface Sci 393:180–190. https://doi.org/10. 1016/j.apsusc.2016.10.003.
- [96] Xingchao Zhang, Ruoyu Zhang, Siying Niu et al (2019) Construction of core-shell structured WO<sub>3</sub>@SnS<sub>2</sub> heterojunction as a direct Z-scheme photo-catalyst. J Colloid Interface Sci 554:229–238. https://doi.org/10.1016/j.jcis.2 019.06.107.
- [97] Jichao Zhu, Jie He, Lifang Hu et al (2019) All-solid-state Z-scheme WO<sub>3</sub>/HTiNbO<sub>5</sub>-NS heterojunctions with enhanced photocatalytic performance. J Solid State Chem 276:104–113. https://doi.org/10.1016/j.jssc.2019.04.026.
- [98] Hanan H. Mohamed (2019) Rationally designed Fe<sub>2</sub>O<sub>3</sub>/ GO/WO<sub>3</sub> Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A Chem 378:74–84. https://doi.org/10.1016/j.jphotochem.20 19.04.023.
- [99] Pingfan Xu, Siyi Huang, Minghua Liu et al (2019) Z-Schemed WO<sub>3</sub>/rGO/SnIn<sub>4</sub>S<sub>8</sub> Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification Catalysts 9: https://doi.org/10.3390/catal9020187.
- [100] Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO<sub>3</sub> for water splitting under laser illumination: role of 3d-orbitals. Catalysis Commun 5:715–719. https://doi.org/10.10 16/j.catcom.2004.09.002.
- [101] Hui Song, Yaguang Li, Zirui Lou et al (2015) Synthesis of Fe-doped WO<sub>3</sub> nanostructures with high visible-light-driven photocatalytic activities. Appl Catal Environ 166–167:112–120. https://doi.org/10.1016/j.apcatb.2014.1 1.020.
- [102] Vijay Luxmi, Ashavani Kumar (2019) Enhanced photocatalytic performance of m-WO<sub>3</sub> and m-Fe-doped WO<sub>3</sub> cuboids synthesized via sol-gel approach using egg albumen as a solvent Materials Science in Semiconductor Processing 104: https://doi.org/10.1016/j.mssp.2019. 104690.
- [103] Chao Min Teh, Abdul Rahman Mohamed (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compounds 509:1648–1660. https://doi.org/10.1 016/j.jallcom.2010.10.181.
- [104] Bilal Tahir M, Sagir M (2019) Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen



production. Separation Purification Technol 209:94–102. h ttps://doi.org/10.1016/j.seppur.2018.07.029.

- [105] Liu H, Peng T, Ke D et al (2007) Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Mater Chem Phys 104:377–383. https://doi. org/10.1016/j.matchemphys.2007.03.028
- [106] Xiying Zhu, Pan Zhang, Bin Li et al (2017) Preparation, characterization and photocatalytic properties of La/WO<sub>3</sub> composites. J Mater Sci Mater Electron 28:12158–12167. h ttps://doi.org/10.1007/s10854-017-7030-3.
- [107] Cong Wang, Lin Cao (2011) Preparation, spectral characteristics and photocatalytic activity of Eu<sup>3+</sup>-doped WO<sub>3</sub> nanoparticles. J Rare Earths 29:727–731. https://doi.org/10. 1016/s1002-0721(10)60531-5.
- [108] Mohite SV, Ganbavle VV, Rajpure Ky (2017) Photoelectrocatalytic activity of immobilized Yb doped WO<sub>3</sub> photocatalyst for degradation of methyl orange dye. J Energy Chem 26:440–447. https://doi.org/10.1016/j.jechem.2017. 01.001.
- [109] Girish Kumar S, Koteswara Rao KSR (2015) Tungstenbased nanomaterials (WO<sub>3</sub> & Bi<sub>2</sub>WO<sub>6</sub>): Modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl Surface Sci 355:939–958. http s://doi.org/10.1016/j.apsusc.2015.07.003.
- [110] Guodong Chen, Qi Wang, Zhilin Zhao et al (2020) Synthesis and photocatalytic activity study of S-doped WO<sub>3</sub> under visible light irradiation. Environ Sci Pollut Res. h ttps://doi.org/10.1007/s11356-020-07827-z.
- [111] Yaocheng Deng, Lin Tang, Guangming Zeng et al (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C<sub>3</sub>N<sub>4</sub> nanosheets from aqueous media: Performance and reaction mechanism. Appl Catal B Environ 203:343–354. https://d oi.org/10.1016/j.apcatb.2016.10.046.
- [112] Fugui Han, Heping Li, Li Fu et al (2016) Synthesis of S-doped WO<sub>3</sub> nanowires with enhanced photocatalytic performance towards dye degradation. Chem Phys Lett 651:183–187. https://doi.org/10.1016/j.cplett.2016.03.017.
- [113] Yuyang Liu, Ya Li, Wenzhang Li et al (2012) Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO<sub>3</sub> photoelectrodes under visible light. Appl Surface Sci 258:5038–5045. https://doi.org/10. 1016/j.apsusc.2012.01.080.
- [114] Keyan Bao, Shaojie Zhang, Ping Ni et al (2020) Convenient fabrication of carbon doped  $WO_{3-x}$  ultrathin nanosheets for photocatalytic aerobic oxidation of amines. Catal Today 340:311–317. https://doi.org/10.1016/j.cattod. 2018.11.013.

- [115] Deng Y, Tang L, Feng C et al (2017) Construction of plasmonic Ag and nitrogen-doped Graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: fullspectrum response ability and mechanism insight. ACS Appl Mater Interfaces 9:42816–42828. https://doi.org/10. 1021/acsami.7b14541
- [116] Mohammadi S, Sohrabi M, Golikand AN et al (2016) Preparation and characterization of zinc and copper codoped WO<sub>3</sub> nanoparticles: Application in photocatalysis and photobiology. J Photochem Photobiol B Biol 61:217–21. https://doi.org/10.1016/j.jphotobiol.2016.05. 020.
- [117] Xu Ying, Zhou Ying, Nie Guo Zheng et al (2018) Tailoring the photocatalytic activity of WO<sub>3</sub> by Nb-F codoping from first-principles calculations. Chin J Phys 56:2285–2290. h ttps://doi.org/10.1016/j.cjph.2018.07.003.
- [118] Tijani JO, Ugochukwu O, Fadipe LA et al (2019) Photocatalytic degradation of local dyeing wastewater by iodinephosphorus co-doped tungsten trioxide nanocomposites under natural sunlight irradiation. J Environ Manage 236:519–533. https://doi.org/10.1016/j.jenvman.2019.02. 027
- [119] Gondal MA, Bagabas A, Dastageer A et al (2010) Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO<sub>3</sub>. J Molecular Catal A Chem 323:78–83. https://doi.org/10.1016/j.molcata.2010.0 3.019.
- [120] Jijin Mai, Yanxiong Fang, Jincheng Liu et al. (2019) Simple synthesis of WO<sub>3</sub>-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation Molecular Catalysis 473: https://doi.org/ 10.1016/j.mcat.2019.04.018.
- [121] Jungwon Kim, Chul Wee Lee, Wonyong Choi (2010) Platinized WO<sub>3</sub> as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44:6849–6854. https://doi.org/10.1021/es101981r.
- [122] Wicaksana Y, Liu S, Scott J et al (2014) Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19:17747–17762. https://doi.org/10.3 390/molecules191117747
- [123] Mohsen Khajeh Aminian, Jinhua Ye (2011) Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles. J Mater Res 25:141–148. h ttps://doi.org/10.1557/jmr.2010.0021
- [124] Qamar M, Yamani ZH, Gondal MA et al (2011) Synthesis and comparative photocatalytic activity of Pt/WO<sub>3</sub> and Au/ WO<sub>3</sub> nanocomposites under sunlight-type excitation. Solid State Sci 13:1748–1754. https://doi.org/10.1016/j.solidstate sciences.2011.07.002.

- [125] Wenyu Zhu, Jincheng Liu, Shuyan Yu et al (2016) Ag loaded WO<sub>3</sub> nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater 318:407–416. h ttps://doi.org/10.1016/j.jhazmat.2016.06.066.
- [126] Faisal Mehmood, Javed Iqbal, Tariq Jan et al (2017) Structural, photoluminescence, electrical, anti cancer and visible light driven photocatalytic characteristics of Co doped WO<sub>3</sub> nanoplates. Vibrational Spectroscopy 93:78–89. https://doi.org/10.1016/j.vibspec.2017.09.005.
- [127] Faisal Mehmood, Javed Iqbal, Ismail M et al (2018) Ni doped WO<sub>3</sub> nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J Alloys Compounds 746:729–738. https://doi.org/10.1016/ j.jallcom.2018.01.409.
- [128] Dhanalakshmi M, Lakshmi Prabavathi S, Saravanakumar K et al (2020) Iridium nanoparticles anchored WO<sub>3</sub> nanocubes as an efficient photocatalyst for removal of refractory contaminants (crystal violet and methylene blue). Chem Phys Lett 745. https://doi.org/10.1016/j.cplett.2020. 137285.
- [129] Adel A. Ismail, M. Faisal, Adel Al-Haddad (2018) Mesoporous WO<sub>3</sub>-graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination. J Environ Sci 66:328–337. https://doi.org/10. 1016/j.jes.2017.05.001.

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.