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ABSTRACT

WO3, a visible light reaction catalyst, absorbs light at a wavelength of 470 nm

and has many advantages, such as strong stability, long life, non-toxicity, low

cost, and suitable band edges. In this review, the photocatalytic mechanism of

WO3 in water pollution treatment is introduced, as well as a systematic sum-

mary, and some main strategies for improving the photocatalytic activity of

WO3 in water pollution treatment are introduced, for example surface and

morphology control, synthetic heterojunctions, and doping element. Finally, the

main conclusions and prospects of WO3-based photocatalysts are pointed out. It

can be expected that this review can provide guidance for designing low-cost,

high-efficiency new WO3-based photocatalysts in the process of water pollution

treatment and can meet the application prospects of efficient utilization of solar

degradation in the field of environmental purification.
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GRAPHICAL ABSTRACT

Abbreviations

ROS Reactive oxygen species

VB Valence band

CB Conduction band

RhB Rhodamine B

MB Methylene blue

MO Methyl orange

ER Eosin red

CR Congo red

GR Graphene

GO Graphene oxide

RGO Reduced graphene oxide

RhB 6G Rhodamine B 6G

TC Tetracycline

BF Basic fuchsin

IC Indigo carmine

SMX Sulfamethoxazole

CV Crystal violet

AO7 Acid orange 7

TOC Total organic carbon

SAM Sulfanilamide

Introduction

With the rapid development of modern society and

the industrialization process, water environmental

pollution has become the focus of attention. It is

imperative to find a suitable and effective treatment
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method. In the past few decades, the application of

photocatalysis has attracted attention because it can

be widely used in many fields, especially in the

environment and energy fields [1, 2]. Photocatalysis

is an effective treatment method for degradation of

persistent organic trace pollutants because the pho-

tocatalyst is stimulated by effective light to generate

photo-generated electrons and holes, thereby causing

O2 and H2O to generate active oxygen species (ROS,

such as �OH, �O2
-/�HO2, H2O2,1O2) to degrade the

pollutants [3]. Part of the research on reactive oxygen

species can also inactivate some microorganisms.

Among many photocatalysts, TiO2 has been the

most widely studied due to its non-toxicity, avail-

ability, and low price [4]. Since the water was first

demonstrated to decompose into H2 on TiO2 pho-

toanode [5], it is one of the most widely used pho-

tocatalysts at present due to the overall superior

properties of TiO2, including availability, long-term

stability, and non-toxicity [6]. However, TiO2 only

can respond to about 4% of solar ultraviolet radiation

with large band-gap energy (* 3.2 eV) [7]. Also, the

fast electron–hole recombination inherent in con-

ventional TiO2 photocatalysts is an important factor

affecting its low photocatalytic efficiency.

Recently, tungsten trioxide (WO3) has attracted

attention due to its strong ability to degrade organic

pollutants, high stability, long life, non-toxicity, low

cost, and suitable band edges. Since it was first

reported in 1976, extensive research has been con-

ducted on the photocatalytic performance of WO3.

Especially in the past ten years, a great deal of

research has focused on WO3 and improving WO3

photocatalytic performance. In Fig. 1a, the rising

trend indicates that the application of WO3 photo-

catalyst in the field of photocatalysis is increasing.

Over the past several decades, photocatalysis has

been the best procedure for wastewater treatment

because of the ability of this method to perfectly

mineralize the contaminants. In 1976, Butler et al.

already reported that n-type tungsten trioxides were

a great photocatalyst for water oxidation [8]. Because

of the narrow band-gap (2.6–2.8 eV), nontoxicity, and

strong adaptability of WO3, it has considered as a

photocatalyst that can effectively degrade pollutants

[9]. The valence band (VB) of WO3 was about 3.1 eV

[10], which made WO3 have a strong oxidizing

property. The mechanism of WO3 is shown in Fig. 1b.

The large specific surface area of WO3 nanostruc-

ture can increase the effective surface area of photo-

catalytic reaction. However, there are also materials

with larger surface areas showing lower photocat-

alytic activity. For example, some scholars have

pointed out that 500 nm WO3 nanoparticles obtained

at 800 �C can induce more O2 precipitation than

30 nm nanoparticles obtained at 500 �C [11], which is

Figure 1 a The Number of Journal Citation Reports (JCR) articles

per year, as reported by Web of Science (http://apps.webofknowl

edge.com) from 2006 and updated to December 2019 retrieved via

the keywords ‘‘WO3’’ and ‘‘photocatalysis’’ in the topic of papers.

b The mechanism of WO3 and strategies for enhancing the

photocatalytic activity of WO3 photocatalysts in wastewater.
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attributed to the fact that larger particles have better

crystallinity (resulting in smaller Eg), and thus

counteracting the effect of small specific surface area

[12]. In addition to the above effects, the range of

photo-response values and the recombination speed

of photogenerated carriers will affect the WO3 pho-

tocatalytic performance. Therefore, some strategies

which can change the WO3 photo-response value and

photogenerated carriers recombination efficiency are

adopted to enhance the photocatalytic activity of

WO3. So far, strategies for improving the photocat-

alytic performance of WO3 for contaminants, i.e.,

surface modification and control of morphology size,

synthetic heterojunction, element doping, are being

reported. We need a review to summarize the

improvement of photocatalysts based on WO3 in

wastewater treatment. In this review, the photocat-

alytic mechanism of WO3 and three aspects to

enhance the photocatalytic activity of WO3 in water

pollution are introduced. Finally, the research status

and application challenges of WO3-based photocata-

lysts are briefly summarized.

Advantages and limitations of pure WO3

in photocatalysis

As a photocatalytic material, it is impossible to oxi-

dize H2/H2O (relative to NHE (common hydrogen

electrode)) and reduce H2O/O2 due to the positions

of the conduction band (CB) and valence band (VB)

of the WO3 semiconductor. These allow WO3 to

effectively degrade many organic compounds, such

as textile dyes and antibiotics [12–14], which can also

inactivate some microorganisms [15]. Besides, WO3

has significant stability in acidic environments and is

an excellent material for treating organic acid con-

taminated water [16]. And some advantages are

mentioned in the previous section, such as high sta-

bility, long life, non-toxicity, low cost, suitable band

edges, and so on.

The photocatalyst absorbs energy from optical

radiation to generate hole and electron pairs. Then,

holes and electrons directly react with pollutants or

generate free radicals and degrade pollutants

through oxidation and reduction reactions. There-

fore, the position of the energy level between VB and

CB and the band-gap of WO3 play a decisive role in

the ability to oxidize and reduce pollutants. Figure 2

shows the photocatalytic mechanism of the WO3

semiconductor. The reactions are as follows:

Photocatalyst þ hv ! e� þ hþ ð1Þ

H2O ! Hþ þOH� ð2Þ

e� þO2 ! �O�
2 ð3Þ

hþ þOH� ! �OH ð4Þ

�OH=hþ þ R pollutant
� �

! R � oxidizedð Þ ð5Þ

�O�
2 þ R ! O2 þ R � � reducedð Þ ð6Þ

R � oxidizedð Þ or R � � reducedð Þ ! final products
� �

! CO2 þ H2O

ð7Þ

The free radicals generated are the key to the

degradation of organic pollutants. However, four

important effects limit the photocatalytic perfor-

mance of tungsten trioxides for wastewater treat-

ment: first of all, low visible light response ability

(k\ 470 nm); secondly, low specific surface area;

thirdly, fast recombination rate of photogenerated

electron–hole pairs [17]; fourthly, many reactions in

photocatalysts cannot happen due to the low CB

position (low than -0.1 V vs NHE, PH = 7), for

example single-electron reduction of O2 (O2 ? e--

? O2
-(aq), -0.33 V) and reduction of H? to H2

(2H? ? 2e- ? H2, -0.41 V) [18]. Therefore, for the

WO3 semiconductor without any improvement, its

photocatalytic activity is relatively low. In the recent

Figure 2 Mechanism of WO3 degradation of pollutants.
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years, many strategies have been proposed, which

can improve the activity of WO3 photocatalyst.

Therefore, in Sect. 3, we will elaborate on the fol-

lowing points, such as surface modification and

morphological size control, the formation of hetero-

junctions and the modification of other elements.

Strategies for improving photocatalytic
activity of WO3 for wastewater treatment

Surface modification and control
of morphology size of WO3 for wastewater
treatment

Surface modification and morphology control of

photocatalysts are generally regarded as effective

strategies to enhance the activity of photocatalysts

because the crystal surface and morphology can be

changed. Besides, the shape of the material will affect

the photocatalytic activity of WO3 nanostructures to a

certain extent [19]. Therefore, surface modification

and morphology control of WO3 nanostructures are

very important for efficient photocatalytic degrada-

tion of water pollutants.

WO3 one-dimensional structures and two-dimensional

structures

One-dimensional (1-D) semiconductor structures can

provide a direct path for photo-generated charges

transfer, have small grain boundaries and thus own

excellent charge transport properties. Since the scat-

tering of free electrons is suppressed, the photocat-

alytic activity of one-dimensional nanomaterials can

be improved compared to nanoparticles [20]. In the

recent years, various one-dimensional WO3 nanos-

tructures have been developed, such as nanorods

[21–23], nanofibers [24], nanotubes [25], and nano-

wires [26]. Table 1 shows the effects of various WO3

one-dimensional structures and two-dimensional

shapes on wastewater treatment. For example,

nanofibers have excellent porosity, excellent

mechanical and ideal chemistry property, which can

improve the photocatalytic activity of WO3. It has

Table 1 Modification for enhancing the photocatalytic activity by using various shapes WO3 photocatalyst

Material Pollutant Concentration

of pollutant

Method Light source Bandgap

value

Results Ref

1-D and 2-D structures
Nanoparticles MB – Inverse microemulsion visible-light 2.88 eV 75% in 90 min [47]
Nanorods MB 10 ppm Hydrothermal method 800 W Xe lamp 2.75 eV 93.1% in 70 min [22]

ER 10 ppm 86% in 70 min
CR 10 ppm 87% in 80 min

Nanofibers MB 20 ppm Simple electrospun method visible-light – 50% in 120 min [24]
Nanosheets MB 20 ppm The means of thermal

deposition
– MB adsorption capacity

can reach 600 mg/g
[32]

Nanoplates MB 10 ppm PABA-assisted
hydrothermal method

Xe lamp at 400 nm – *98.12% in 60 min –

RhB 5 ppm Hydrothermal method Xe lamp at 400 nm 2.63 eV 100% in 150 min [48]
Films RhB 47.9 ppm Simple chemical spray

pyrolysis technique
Solar radiation 2.64 eV 12% in 160 min [30]

Special morphology
WO3 hollow
microspheres

RhB 4.79 ppm Hydrothermal method Visible-light 2.7 eV – [36]

WO3 flower-like MB 10 ppm Straightforward
hydrothermal method

300 W Xe lamp 2.55 eV 94.7% in 60 min [37]

WO3 cylindrical
stacks

MB 10 ppm Straightforward
hydrothermal method

300 W Xe lamp 2.58 eV 90.3% in 60 min [37]

Flower-like
WO3�0.33H2O

RhB 10 ppm Hydrothermal method 500 W high-pressure
UV mercury lamp

&78% in 60 min [38]

Hierarchical
WO3

structures

MB 10 ppm A facile and surfactant-free
hydrothermal method

800 W Xe lamp 92% in 110 min [42]
ER 10 ppm 81% in 110 min
CR 10 ppm 75% in 110 min

3D hierarchical
WO3�0.33H2O

RhB 10 ppm One-pot solvothermal
method

300 W Xe lamp 92% in 50 min [40]

Hierarchical
WO3 core–
shell

RhB 10 ppm Template-free precipitation
method

Visible light 75% in 120 min [41]
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been reported that WO3 nanofibers were prepared by

electro-spinning, which degraded methylene blue

twice as efficiently as WO3 particles [24]. Compared

with nanofibers, nanotubes can provide higher sur-

face area and more effective sites to degrade pollu-

tants, so that pollutant molecules can be diffused

quickly and effectively in nanotube structures. For

example, Zhao et al. successfully synthesized WO3

nanotubes through template-free WCl6 urea-assisted

alcoholysis and the SEM images are shown in

Fig. 3a–b [27]. These WO3 NTs are monodisperse,

with a diameter of about 300–1000 nm and a length of

about 2–20 mm. They are composed of a single WO3

nanoparticle linear arrangement, and many self-

supporting pores are formed due to incomplete

aggregation of the nanoparticles. Experiment results

show that the BET value of these WO3 NTs (25

m2g-1) is increased by 5.7 times, compared with the

BET value of commercial WO3 particles (4.4 m2g-1),

and that WO3 NTs can generate electron–holes in

visible light with a wavelength greater than 400 nm.

Compared with commercial WO3 particles, the pre-

pared nanotubes have higher RhB degradation effi-

ciency and better photocatalytic performance. The

relationship between the initial decomposition rate of

the two materials and the Pt loading concentration is

shown in Fig. 3c. Because the tubular structure has

larger effective surface area, higher charge carrier

mobility, and wider light response range, the degra-

dation activity of the nanotube is enhanced. Different

shapes of the one-dimensional WO3 structure have

their own advantages, and can be selected according

to the purpose in order to degrade the pollutants

efficiently and cheaply.

Unlike one-dimensional materials, two-dimen-

sional materials are nano-flaky materials with flat

surfaces and high aspect ratios, with an extremely

small thickness and strong adhesion to substrates.

Nanosheets [28], nanoplates [29] and films [30, 31]

have been developed. Research has shown that by

using WO3 nanosheet as the adsorbent, the saturated

adsorption amount can reach MB 600 mg/g, higher

than the normally activated carbon powder [32]. Due

to the high adsorption capacity, the photocatalytic

performance of the nanosheets is improved. Com-

pared with ordinary two-dimensional nanosheets,

ultrathin nanosheets have the advantages of greater

specific surface area and richer active sites, which

make WO3 ultrathin nanosheets present better cat-

alytic performance. For example, Liang et al.

Figure 3 a and b SEM images with WO3 NTs. c Plots of initial

decomposition rates versus Pt-loading concentration (adapted with

permission from reference [27]. Copyright (2008) Wiley–VCH). d

and e SEM images with different magnification of 2D-WO3. f

Change of MO normalization concentration versus the exposure

time under irradiation with the different photocatalysts (adapted

with permission from reference [33], Copyright (2019) Elsevier).
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synthesized a two-dimensional (2D) ultrathin WO3

nanosheet dominated by {002} crystal plan through a

simple surfactant-induced self-assembly method and

the SEM images of 2D-WO3 are shown in Fig. 3d–e

[33]. The SEM diagram shows the ultra-thin

nanosheet structure with a lateral dimension of

hundreds of nanometers and a thickness of about

4.9 nm. The experimental results show that the

degradation rate constant of MO by 2D-WO3 is 6.5

times higher than that of WO3 nanoparticles, showing

strong degradation activity (Fig. 3f). The improve-

ment in properties can be owned to the 2D-WO3 with

unique structure, such as high reactivity {002} crystal

surface percentage, high specific surface area, wide

photo-response range, and high photogenerated

electron–hole separation rate. It can be seen that WO3

two-dimensional materials show superiority in

degrading pollutants.

Based on the synthesized one-dimensional and

two-dimensional WO3 nanomaterials, the degrada-

tion efficiency of the photocatalyst can be further

improved by other methods. Here, we only give a

brief example by adding oxygen vacancies on the

surface of the materials. For example, Wang and his

colleagues synthesized uniformly distributed oxygen

vacancies on the surface of WO3 nanorods through

the hydrothermal method [21]. The performance of

WO3 nanorods photocatalyst was demonstrated by

comparing with the efficiency of alcohol oxidation to

the corresponding ketone. The experimental results

show that the activity of WO3 nanorods prepared by

this method is greatly improved, through the

adsorption of alcohol molecules with higher specific

surface area, the rapid transfer of photogenerated

electrons with smaller crystal size, and the surface

oxygen vacancies as traps to capture photoelectrons,

thus reducing the recombination of photoelectrons

and holes. The author believes that the combined

effect of the above three points improves the photo-

catalytic performance of WO3. Also, Wu et al. suc-

cessfully synthesized WO3 ultra-thin nanosheets with

oxygen vacancies on the surface [34]. The improve-

ment of the material in photocatalysis is similar to the

nanorods appealed. Some studies call the addition of

oxygen vacancies as self-doped, which means the

dope of oxygen vacancies on the surface of the

material. For example, Wang and his colleagues used

electrochemical methods to add oxygen holes to the

surface of WO3/TiO2 heterojunction to improve the

degradation of exhaust gas [35].

Compared with pure WO3, the photocatalytic

activity of different shapes of WO3 has been

improved to some extent, but the comparison

between different shapes is not clear. In 2014,

Farhadian et al. have prepared and characterized

one-dimensional WO3 nanostructures and two-di-

mensional WO3 nanosheets, i.e., nanorods, nano-

sphere, and nanoplates, to study the photocatalytic

performance of the shape on the degradation of RhB

dye, as displayed in Fig. 4 [19]. In this experiment,

the authors found that tetrahedral and cubic nanos-

tructures (nanorods and nanoplates) had higher cat-

alytic activity than spherical nanostructures

(nanosphere) because they had more atoms at the

edges and corners and these atoms showed higher

catalytic activity. Therefore, nanoplates and nanorods

had a stronger adsorption capacity than nanosphere.

However, the band-gap of WO3 nanorods in this

experiment was the same as the band-gap of TiO2, so

it has a very low light response range in visible light.

The results show that nanoplates have the highest

degradation performance among the three shapes.

Similarly, R. Narayanan et al. studied the effect of

different shaped materials on photocatalytic activity

in 2004, which was consistent with this conclusion. So

we can see that different shapes of WO3 materials can

affect the band-gap, specific surface area, and

adsorption capacity. Through this experiment, it can

be seen that different shapes of WO3 materials can

also affect the activity of atoms.

Special morphology

Other different shapes can increase the photocatalytic

activity of pure WO3 in water pollution treatment

through measures such as increasing specific surface

area, improving separation efficiency, and enhancing

light response. Some scholars have reported that

other shapes have been synthesized but mainly

composed of WO3 nanoparticles, nanorods, and

nanosheets. Hollow particles (Fig. 5a) [36] and flow-

ers (Fig. 5b) [37] are composed of nanoparticles. The

nanorods can form cylindrical stacks (Fig. 5c) [37]

and a flower shape (Fig. 5d) [38]. A flower-like

structure is formed by most nanosheets stacked clo-

sely together (Fig. 5e) [39], and a WO3�0.33H2O

microsphere structure is formed by nanosheets

stacked (Fig. 5f) [40]. The core layer is a dense

structure composed of aggregated nanoparticles, and

the shell layer is a layered structure composed of

14422 J Mater Sci (2021) 56:14416–14447



WO3 ultra-fine nanoplates [41]. Table 1 shows the

effects of various WO3 special morphology shapes on

wastewater treatment.

For example, Xu and his colleagues successfully

synthesized three-dimensional flower-like and

wheel-like structures based on one-dimensional WO3

nanorods (Fig. 5d) [38]. Due to the high charge sep-

aration efficiency of wheel-shaped and flower-shaped

WO3, the degradation activity of RhB was improved.

Figure 4 Schematic illustration of the shape effect on the photocatalytic activity of the WO3 nanostructures (adapted with permission

from reference [19], Copyright (2015) Elsevier).
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Because after irradiation with appropriate wave-

length, the generated holes migrate to the surface

along the potential slope generated by the bending of

the band, and are captured by the H2O molecules

adsorbed on the surface of WO3�0.33H2O, thereby

generating hydroxyl radicals �OH and reducing the

photogenerated electron–hole recombination. The

larger photo-response range and longer photo-carri-

ers existing time make the material have better pho-

tocatalytic performance. Another example is the WO3

layered structure composed of WO3 nanosheets; Yao

et al. synthesized WO3 nanosheets by a simple and

surfactant-free hydrothermal method and combined

them into WO3 layered structure (Fig. 5f) [42]. The

effect of this material on the degradation of MB, ER

and CR harmful organic dyes was studied under

simulated sunlight. The results show that the layered

WO3 nanostructures have more excellent water pol-

lutant degradation efficiency. Besides, by changing

different raw materials, different WO3 shapes can be

obtained, thereby enhancing the degradation of pol-

lutants by WO3. For example, the calcined acid-trea-

ted PbWO4 (sacrifice template) can obtain dendritic

and spherical morphology, while SrWO4 can observe

dumbbells [43].

In general, the larger specific surface area will have

the greater the number of reaction sites. The synthe-

sized spheres and flowers have a higher specific

surface area, so the photocatalytic performance of

pure WO3 is improved to a certain extent. The

research and control of different morphologies show

that the morphology of photocatalysts is very

important in the development of its increased activ-

ity. Because these reactions are usually completed on

the surface, it depends to a large extent on the mor-

phology of the surface. Compared with general

commercial WO3, the material composed of tiny

single crystals has a larger surface area, higher light

transmittance, and more active sites, and thus has

higher photocatalytic activity. This provides an idea

for the preparation of WO3 structures with stronger

photocatalytic degradation ability in the future.

WO3 high-surface-energy facets

In some studies, the engineering of crystal planes of

semiconductors has become an important strategy for

improving the performance of photocatalysts by fine-

tuning the properties of materials. The arrangement

and coordination of surface atoms essentially deter-

mine the adsorption, desorption, and carrier transfer

Figure 5 SEM images of a WO3 hollow particles (adapted with

permission from reference [36], Copyright (2008) Elsevier); b

WO3 flower-like and c WO3 cylindrical stacks (adapted with

permission from reference [37], adapted with permission from

reference); d flower-like WO3�0.33H2O (adapted with permission

from reference [38], Copyright (2014) American Chemical

Society); e hierarchical WO3 structures (adapted with permission

from reference [42], Copyright (2016) Elsevier) and f 3D

hierarchical WO3�0.33H2O (adapted with permission from

reference [40], Copyright (2017) Elsevier).
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efficiency of the pollutants from the surface to the

adsorbed molecules. As a result, the atomic structure

on the surface of the photocatalyst has a great effect

on the degradation of pollutants. The atomic

arrangement and coordination on the catalyst surface

change with the crystal plane changing in different

directions [44]. From this, we can conclude that the

crystal has a great influence on the photocatalyst. In

the recent years, some scholars have synthesized

WO3 materials with different crystal planes and

studied their properties to compare the different

crystals planes on the photocatalytic performance of

WO3.

For example, Yang et al. synthesized three different

WO3 materials and studied the degradation perfor-

mance of sewage under ozone, namely monoclinic

WO3 mainly exposed to {100}, {002} monoclinic WO3

and hexagonal WO3 mainly exposed to {100} surface,

which is called M-100 (Fig. 6a–c), M-002 (Fig. 6d–f),

H-100 (Fig. 6g–i) [45]. In general, a larger surface area

is beneficial for photocatalytic processes. However, in

this report, M-100 has a relatively low surface area,

but it owns the highest catalytic degradation perfor-

mance (Fig. 6j–k), which means that the high-surface-

energy facets would influence the photocatalytic

performance of the photocatalysts greatly. Because

M-100 has the highest CB position, it is thermody-

namically conducive to the electron capture of dis-

solved O3. Additionally, this study also shows that

monoclinic crystals with the same crystal plane are

more active than hexagonal crystals. For the same

crystal, the {100} crystal plane can change the position

Figure 6 FETEM images of M-100 (a), M-002 (d) and H-100

(g). SAED images of M-100 (b), M-002 (e) and H-100 (h).

HRTEM images of M-100 (c), M-002 (f) and H-100 (i).

Degradation of OA (j) and mineralization of cephalexin (k) in

photocatalysis, ozonation and photocatalytic ozonation; and band

structures of the prepared M-100, M-002 and H-100 (l) (adapted

with permission from reference [45], Copyright (2018) Elsevier).
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of the CB, compared to the {002} crystal plane, lead-

ing to the enhancement of degradation activity.

Similarly, in another report, the authors also showed

that the electronic structure effect of the crystal face

was caused by the different atomic structure config-

urations on the {002}, {020} and {200} planes, which

lead to the shift of the CB position (Fig. 6l) [18]. In

summary, the engineering of the crystal facet is to

cause the CB edge to shift upwards and then opti-

mize the degradation activity of WO3 on pollutants.

Some scholars have also compared WO3 with dif-

ferent crystal phases [46]. Cubic WO3 (c-WO3) had

strong adsorption on MB and increased with

increasing temperature, reaching a maximum

adsorption capacity of 35.95 mg/g. Monoclinic WO3

(m-WO3) had strong photocatalytic degradation of

MB, and the degradation efficiency of MB was 100%,

through the generation of photoinduced holes and

hydroxyl (�OH) under 120 min of visible light irra-

diation. In future research, we can combine the

changes of crystal plane and crystal phase to select

the corresponding WO3 for different water quality to

achieve different treatment requirements and

purposes.

WO3-based heterojunction for wastewater treatment

In this section, we introduce the effect of changing the

synthesis of heterojunctions based on WO3 on the

degradation of pollutants. Some scholars believe that

the photocatalytic performance of one-component

photocatalyst is still affected by the high recombina-

tion rate of photogenerated electron–hole pairs [49].

Therefore, the formation of heterojunctions by com-

bining binary or ternary semiconductors with a

suitable band-gap has been considered to be an

effective strategy to improve the performance of

photocatalysts because they can simultaneously

expand the absorption range of light and promote

charge separation [50]. Here, this section describes

the application of WO3 to wastewater treatment

based on the synthesis of heterojunctions from dif-

ferent materials.

Preparing binary composites

Many studies have proved that synthetic hetero-

junction composites can reduce the photogenerated

electron–hole recombination rate and improve the

utilization of electrons and holes [51]. There are many

reports on the synthesis of binary heterojunctions

with WO3 to enhance the photocatalytic activity on

wastewater, such as WO3/g–C3N4 [10, 50, 52, 53],

WO3/TiO2 [54], WO3/BiO4 [55], WO3/grapheme

[9, 13, 20, 56, 57], etc. In particular, WO3/g–C3N4

composites have been studied in detail by changing

the formation of methods and conditions. WO3/g–

C3N4 composite photocatalysts with different photo-

catalytic mechanisms have been successfully pre-

pared, such as traditional type-II and

Z-scheme heterojunctions. So far, most researches on

forming heterojunction composites with WO3-based

have been carried out in p–n heterojunctions, con-

ventional heterojunctions, direct Z-scheme hetero-

junctions, and S-scheme heterojunctions. In addition

to the above heterostructures, there are some special

heterojunctions formed by the combination of gra-

phene and semiconductors. The systematic

improvement effect of the above mechanisms will be

described below.

The p–n heterojunction is composed of n-type WO3

semiconductors and p-type semiconductor [58, 59]. In

the p–n-type heterostructure, a WO3/BiOI hetero-

junction photocatalyst is taken as an example. Luo

et al. proposed the photocatalytic mechanism of the

WO3/BiOI heterojunction catalyst, as shown in Fig. 7

[60]. BiOI is a p-type semiconductor with Fermi level

(Ef–p) near VB, while WO3 is an n-type semiconductor

with Fermi level (Ef–p) near CB (Fig. 7a). After the p–

n-type WO3/BiOI heterojunction is formed, electrons

will be transferred from WO3 to BiOI, while holes

will be transferred from BiOI to WO3. When the

Fermi levels of the two reached equilibrium, the

internal electric field was established at the interface

due to the transfer of electrons. The internal electric

field can also greatly promote the migration of pho-

togenerated carriers and effectively reduce the

recombination rate of photogenerated electron–hole

pairs, thereby improving the performance of photo-

catalyst. As shown in Fig. 7b, the Fermi level (Ef–p) of

BiOI moves upward along the interface, and the

Fermi level (Ef–n) of WO3 moves upward along the

interface so the migration of charge causes adjacent

energy bands to occur bending. It can be found that

the p–n structure greatly inhibits and slows down the

recombination of photogenerated electrons and holes

with the migration of charges and holes and the

internal electric field, which can improve the

photodegradation.
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When two n-type semiconductors synthesize a

heterojunction photocatalyst, and the two semicon-

ductors have suitable energy bands. This mechanism

is called the traditional type-II, where the electrons

and holes generated by the semiconductor are

transferred to the CB of semiconductor I and the VB

of semiconductor II, and no electric field is generated

inside. Currently reported WO3/g–C3N4 heterojunc-

tions, WO3/BiVO4 heterojunctions [55], WO3/Ag3-
VO4 heterojunctions [59] and so on are all traditional

type-II. In this type, we take WO3/g–C3N4 hetero-

junction photocatalyst as an example. Huang and his

partners synthesized a WO3/g–C3N4 heterojunction

through a simple calcination process in 2013 to

degrade pollutants under visible light [52]. Figure 7c

shows the mechanism of the WO3/g–C3N4 hetero-

junction. Since the potential of CB and VB of WO3 is

higher than the potential of CB and VB of g–C3N4, the

electrons generated on g–C3N4 are transferred to the

CB of WO3, and the photogenerated holes on VB of

WO3 are transferred to VB of g–C3N4. The formed

electrons gather on the side of WO3, and the holes

gather on the side of g–C3N4, which can reduce the

electron–hole recombination, thereby promoting the

photocatalytic degradation of MB by the material.

This mechanism is similar to the p–n-type hetero-

junction, but no electric field is generated. Therefore,

the WO3/g–C3N4 heterojunction showed higher

photocatalytic degradation performance when com-

pared to single component of pure WO3 and g–C3N4

photocatalysts.

The traditional type-II heterojunction can improve

the catalytic performance of the catalyst to a certain

extent, but the reducibility of photo-generated elec-

trons and the oxidizability of photo-generated holes

will be reduced as the charge transfer between the

semiconductors. If the semiconductor A and B are

closely combined to form a heterojunction, which

generates an intermediate electric field, so the

heterojunction is called a Z-scheme heterojunction.

This mechanism can significantly increase the space

between electrons and holes, and retain its ability to

redox [61]. Deng et al. successfully synthesized

nanocomposite of Z-scheme WO3 nanosheet/g–C3N4

nanosheet by calcination methods, and studied its

photocatalytic performance [10]. Results showed that

in the WO3 NS/g–C3N4 NS composites with 20 wt%

WO3 NS present best photocatalytic performance,

and the main reason for the improvement of degra-

dation performance is the participation of �O-
2, �OH,

and h? in the reaction. Figure 7d shows the catalytic

mechanism of Z-scheme WO3 NS/g–C3N4 NS com-

posite photocatalyst, with photogenerated electrons

migrating from WO3 NS to g–C3N4 NS, and photo-

generated holes migrating to WO3 NS. Therefore, a

reduction reaction occurs on g–C3N4 with a higher

reduction potential to generate �O-
2, and an oxida-

tion reaction occurs in WO3 with a higher oxidation

potential to generate �OH. The production of free

radicals �O-
2 and �OH optimizes the oxidation ability

and the transmission efficiency of photogenerated

electrons of Z-scheme WO3 NS/g–C3N4 NS. At pre-

sent, various forms of WO3 and g–C3N4 have been

successfully synthesized to form Z-scheme hetero-

junction photocatalysts, such as WO3 nanorods/g–

C3N4 nanosheets [62], WO3 nanosheets/g–C3N4

nanosheet composites [10]. These complexes differ-

ently improved the photocatalytic activity of WO3/g–

C3N4 in the degradation of water pollutants.

Based on p–n heterojunctions, conventional type II

heterojunctions, and Z-scheme heterojunctions, rela-

ted scholars have proposed a new concept of stepped

(S-scheme) heterojunctions [64, 65]. The

S-scheme heterojunction photocatalyst consists of n-

type oxidation photocatalysts and n-type reduction

photocatalysts. After the equilibrium is reached, the

Fermi levels of the two semiconductors are at the

same level, while the photogenerated electrons will

be transferred to the oxidation photocatalysts and

holes will be transferred to the reduction photocata-

lysts, and an internal electric field will be generated.

bFigure 7 a Schematic diagrams for energy bands of p-type BiOI

and n-type WO3 before contact. b The formation of a p–n junction

and its energy band diagram at equilibrium and transfer of

photoinduced electrons from p-type BiOI to n-type WO3 under

visible-light irradiation (adapted with permission from reference

[60], Copyright (2015) Elsevier). c Proposed mechanism for the

photodegradation of MB on WO3/g-C3N4 composites (adapted

with permission from reference [52], Copyright (2015) The Royal

Society of Chemistry). d Schematic diagram of

Z-scheme photocatalytic mechanism of WO3 NS/g-C3N4 NS

composite photocatalyst (adapted with permission from reference

[10], Copyright (2019) Springer). e The work functions of g–C3N4

and WO3 before contact. f The internal electric field and band

edge bending at the interface of WO3/g–C3N4 after contact. g The

S-scheme charge transfer mechanism between WO3 and g–C3N4

under light irradiation (adapted with permission from reference

[63], Copyright (2019) Elsevier).
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Unlike other heterojunctions, as the S-scheme hetero-

junction, the electrons of CB in the oxidized photo-

catalytic with relatively useless and holes of VB in the

reduced photocatalyst with relatively useless will

recombine under the action of the internal electric

field and eliminate, thereby retaining useful electrons

and holes. Some scholars believe that the charge

transfer path of the S-scheme heterojunction is similar

to the ‘‘step’’ type, which has a strong redox capacity

of space separation and photo-generated charge car-

riers [66]. Due to its unique structure and internal

electric field, the S-scheme heterojunction can gener-

ate a large number of active materials to enhance the

degradation efficiency of pollutants. In 2019, Fu et al.

constructed a composite photocatalyst of

S-scheme 2D/2D WO3/g–C3N4 heterojunction

through electrostatic self-assembly methods [63].

Figure 7e-g shows the mechanism of the

S-scheme WO3/g–C3N4 heterojunction. Generally, g–

C3N4 is a reduction type photocatalyst with a small

work function (4.18 eV) and a higher Fermi level. In

contrast, WO3 is an oxidation-type photocatalyst with

a large work function (6.23 eV) and a lower Fermi

level (Fig. 6e). When g–C3N4 and WO3 are in close

contact until the Fermi level is the same (Fig. 6f), g–

C3N4 loses electrons and becomes positively charged,

while WO3 gets electrons and becomes negatively

charged at the interface. As a result, an internal

electric field is generated at the interface and the

band edges are bent of the two semiconductors,

which can make some electrons from WO3 CB com-

bine with holes from g–C3N4 VB. But this way can

prevent electrons from g–C3N4 CB from combining

with holes from WO3 VB, shown in Fig. 6g. In gen-

eral, this heterojunction mechanism can recombine

the relatively useless electrons and holes in the two

semiconductors, while the useful electrons and holes

are retained. It is because of this unique transfer

process of electrons and holes that the 2D/2D WO3/

g–C3N4 composites have strong oxidation and

reduction ability, thereby improving the photocat-

alytic performance of composites. The mechanism

has been shown to exhibit strong photocatalytic

activity against water decomposition. Unfortunately,

no research has been done on S-scheme WO3-based

binary composite heterojunctions for wastewater.

However, this mechanism shows great potential in

terms of photocatalysis, and this photocatalytic

mechanism will show greater potential in water

pollution treatment in the future.

Within ordinary heterojunctions, Z-scheme and

S-scheme heterojunctions, there are special hetero-

junctions formed by the combination of graphene

(GR) and semiconductors. Graphene is a two-di-

mensional single-layer SP2 hybrid carbon atom with

excellent charge transfer performance, high thermal

conductivity, high surface area and hexagonal filled

structure [67]. The ultra-high electrical conductivity

and low conduction band potential (-0.08 V vs. SHE,

pH = 0) of graphene allow photo-generated electrons

to flow from the semiconductor to its surface, thereby

reducing the compound photo-generated electrons-

holes. In 2010, Zhang et al. first proposed the appli-

cation of graphene in photocatalysis and they proved

that the addition of graphene improved the degra-

dation efficiency of MB in the composites [68]. Based

on graphene, people also synthesize GO and RGO to

synthesize composite materials with semiconductors.

So far, many scholars have successfully prepared

composite photocatalysts composed of WO3 and

graphene with different morphological structures,

such as WO3 nanoparticles [69], one-dimensional

nanostructures [20, 70], two-dimensional nanosheets

[13, 71] and so on, and all have proved the synthe-

sized composites materials can significantly enhance

the ability to degrade water pollution. Guo et al.

synthesized WO3 nanoparticles on the graphene

sheets by the sonochemical method [72]. Studies have

shown that the amount of O2 precipitated from the

water of WO3@GR composites with 40 wt% GR

inside was twice that of pure WO3. The improvement

in photocatalyst performance was the result of the

joint action of WO3 nanoparticles and GR sheets,

through enlarging the absorption range of visible

light, enhancing the electron transport and promot-

ing the separation of photogenerated charge carriers.

The mechanism diagram is shown in Fig. 8a. As we

all know, the application of one-dimensional single-

crystal nanomaterials in photocatalysis is very

important. Compared with nanoparticles, one-di-

mensional materials have smaller grain boundaries,

which provide the path for photo-generated charges

and inhibit free electron scattering, thereby having

higher photocatalytic activity. For example, in 2012,

An et al. synthesized WO3 nanorods on the surface of

graphene through the hydrothermal method, and the

mechanism shown in Fig. 8b [20]. Studies have

shown that the degradation efficiency of rhodamine B

6G (RhB 6G) by WO3/graphene composites contain-

ing 3.5wt% graphene was 2.2 times than that of pure
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WO3 nanorods. They believe that the interaction

between dyes and negatively charged groups in

graphene can result in higher adsorption capacity of

RhB 6G for WO3/graphene and improve migration of

photo-generated carriers are important factors to

improve the photocatalytic performance of

WO3/graphene.

Preparing ternary composites

To date, many binary composites based on WO3 have

been synthesized. However, studies have shown that

ternary nanocomposites generally have wider visible

light response range, lower recombination rate and

higher interfacial charge transfer than binary

nanocomposites [73–76]. Among the ternary com-

posites of WO3-based, there are two kinds of semi-

conductors combined with electronic mediators to

synthesis composite materials, and there are three

kinds of semiconductors, which we will discuss

separately.

In ternary Z-scheme heterojunctions, electron

mediators are usually used as conductive materials to

improve electron transfer, such as Ag [77–79], Au

[80], carbon nanodots [81] and RGO [82]. Because the

Fermi level of the electron mediator is between two

semiconductors, the electron mediator and the two

semiconductor materials form a Z-scheme photocat-

alytic mechanism. Here, take redox graphene (RGO)

and metallic Ag nanoparticles as examples. For

example, in 2018, Lu et al. successfully prepared

Z-scheme WO3/RGO/g–C3N4 composite materials,

in which RGO is an electron mediator [83]. The

degradation mechanism is shown in Fig. 9a. RGO, as

an electron mediator, changes the charge transfer

pathway of the composite, which is different from the

binary Z-scheme heterojunction. In the ternary

Z-scheme WO3/RGO/g–C3N4 composite, the photo-

generated electrons on CB of WO3 combined with the

holes on VB of g–C3N4 through RGO in the interface

between RGO and g–C3N4. Thus, useful electrons

and holes are retained for generating the radicals

�O-
2 and �OH. Free radicals can participate in the

oxidation reaction, thereby improving the perfor-

mance of WO3/RGO/g–C3N4 photocatalyst. Also in

2019, Chen et al. successfully synthesized WO3

nanoplate/Ag/g–C3N4 nanosheet compound mate-

rials by solvent evaporation and in situ calcination

[77]. The study showed that WO3/Ag/g–C3N4 can

degrade RhB about 96.2% in 40 min, while the

degradation efficiency of RhB by WO3/g–C3N4 is

58.2% under the same conditions. The synergistic

effect of g–C3N4 nanosheets and WO3 nanoplates

beneficial to enhance photocatalytic performance can

provide conditions for the rapid transfer of photo-

generated electrons and holes, and the electron

mediator Ag nanoparticles are conducive to the

charge transfer (Fig. 9b). Moreover, the

Z-scheme heterostructure allows the composite to

retain high redox capacity. Excellent photocatalytic

activity, easy design and easy manufacturing are all

Figure 8 a The procedure of photocatalytic oxidation for the

WO3@GR composite (adapted with permission from reference

[72], Copyright (2012) The Royal Society of Chemistry). b

Proposed photodegradation mechanism of RhB 6G over WO3

nanorods/graphene composites (adapted with permission from

reference [20], Copyright (2012) The Royal Society of Chemistry).
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advantages of binary Z-scheme composite photocat-

alyst. However, the composite materials have the

disadvantages, such as low surface area, small

response range of visible light, poor adsorption per-

formance, and weak redox capacity. The electron

mediator usually provides a close contact area

between WO3 and other semiconductors, so that the

electrons are better transferred, the photogenerated

electron–hole pairs recombination is reduced, and the

degradation efficiency is improved. This mechanism

is similar to the S-scheme mechanism through the

combination of relatively useless electrons and holes

to leave useful electrons and holes, which use useful

electrons and holes to generate free radicals to

improve photocatalytic activity. At present, some

scholars have proposed to form ternary

S-scheme heterojunctions by doping electron media-

tors. For example, Pan et al. doped C in

S-scheme 2D/2D WO3/g–C3N4 and studied the

photocatalytic ability to degrade MB [64]. The

degradation of MB can reach 92.4% in 60 min. When

C as electron mediator, the heterojunction has high

redox capacity, short charge transfer distance, and

wide response range of visible light, which greatly

improves photocatalytic ability.

The Z-scheme composites coupled with three kinds

of semiconductors can produce more electrons and

holes to improve the photocatalytic performance of

the composites. Recently, scholars have successfully

synthesized ternary Z-scheme complexes based on

WO3, such as WO3/MoS2/g–C3N4 and WO3/g–

C3N4/Bi2O3 84] presenting much better photocat-

alytic abilities than binary Z-scheme photocatalytic

systems. For example, Jiang and his partners have

synthesized the Z-scheme WO3/g–C3N4/Bi2O3 com-

posite through a one-step co-calcination strategy and

proved that the material has excellent photocatalytic

performance [17]. The migration of electrons along

the interface leads to accumulating in the CB of g–

C3N4, while holes accumulate in the VB of WO3 and

Bi2O3 shown in Fig. 9c. Therefore, the electrons in the

CB of g–C3N4 can be captured by O2 to generate �O-
2,

while the holes in VB of WO3 and Bi2O3 can oxida-

tively degrade TC or oxidize H2O to form �OH radi-

cals. Active free radicals then participated in the

degradation of pollutants, which increased the

degradation rate of TC by the composites.

In addition to ternary semiconductors coupled into

Z-scheme composites, ternary semiconductors are

coupled into cascade structures, in which electrons

and holes migrate through the interface potential

gradient in the ternary mixed-valence band. WO3/

Bi2WO6/BiOBr, WO3/TiO2/CdS, WO3/Cu2O/

BiVO4, and WO3/BiVO4/BiOCl have been reported

[85–87]. For example, Zhu et al. successfully prepared

flower-like WO3-BiOBr-Bi2WO6 ternary composites,

in 2015 [88]. The experimental results showed that the

composite material showed higher photocatalytic

activity compared with the WO3-Bi2WO6 binary

composite, and the degradation mechanism of RhB

by this material is proposed (Fig. 9d). In Fig. 9d, it

can be seen that the CB edge of BiOBr is located

between Bi2WO6 and WO3. Therefore, the ternary

composite can form a cascade structure, similar to the

traditional type-II heterojunction. For the WO3-

BiOBr-Bi2WO6 material, the electrons are accumu-

lated in the CB of WO3 and the holes are accumulated

in Bi2WO6 by the migration of charge carriers. So the

electrons on the surface of WO3 and the hydroxyl

radicals generated by the holes on the surface of

Bi2WO6 can directly participate in the reaction to

degrade organic pollutants. WO3-BiOBr-Bi2WO6 cas-

cade structure has improved RhB degradation effi-

ciency by high surface area, close interfacial contact,

and differences in energy band positions. Besides, the

cascade CB positioning of the ternary semiconductor

will generate a built-in potential gradient, which can

better promote the separation of photo-generated

electrons and holes, thereby promoting electron

transfer within the junction structure. This conclusion

has been proved in other reports [86, 87].

From this, in the process of degradation of sewage

with WO3 photocatalyst, Z-scheme ternary compos-

ites, and ternary cascade composites can enhance the

bFigure 9 a Schematic illustration of the separation and transfer of

photogenerated charges and the reactive species in the degradation

process of Z-scheme photocatalyst g–C3N4/RGO/WO3 (left) and

heterojunction-type photocatalyst g–C3N4/WO3 (right) (adapted

with permission from reference [83], Copyright (2018) Elsevier).

b Photocatalytic mechanism for WO3/Ag/CN composite under

visible light irradiation (adapted with permission from reference

[77], Copyright (2018) Elsevier). c Schematic diagram for the

possible charge separation of Z-scheme WO3/g–C3N4/Bi2O3

(adapted with permission from reference [17], Copyright (2018)

Elsevier). (d) Schematic diagram for the possible charge

separation of flower-like BiOBr-WO3–Bi2WO6 ternary hybrid

(adapted with permission from reference [88], Copyright (2015)

Elsevier).
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degradation of organic compounds. In the recent

years, many scholars have proposed that hetero-

junction composites have great potential in the

degradation of water pollution. Therefore, the for-

mation of Z-scheme (or S-scheme) heterojunctions

can obtain the best performance by increasing the

absorption range of visible light, increasing the

specific surface area, promoting effective charge

separation, strengthening interface contact and gen-

erating free radicals (Table 2).

Element modification of WO3

for wastewater treatment

At present, some scholars have used non-metal and

metal to modify semiconductors for improving the

photocatalytic degradation performance of WO3 on

sewage. Because the modification of elements in

photocatalyst can enhance the photocatalytic activity

of photocatalysts by enhancing the separation rate of

photogenerated electron–hole pairs and increasing

the photo-response range of visible light. So far, Fe,

Ni, Cu, Zn, Co, and other metal ion-doped WO3

composite materials and N, S, C, P, I, F and other

non-metal ion-doped composite materials have been

successfully synthesized. Co-doping of elements can

promote the separation of photogenerated electrons

and holes faster, which means that the co-doping of

elements WO3 is more conducive to the improvement

of photocatalytic performance. In this section, the

photocatalytic degradation properties of transition

metals, precious metals, rare earth metals, non-met-

als, and multi-element co-doped materials are stud-

ied. The results are summarized in Table 3.

Metal element doping

Co, Zn, Ni, Cu, and Fe transition metals have been

studied to dope WO3 to widen the visible light

response range of WO3 for improving the photocat-

alytic activity of WO3. Hameed and his colleagues

studied the effect of Co, Zn, Ni, Cu-doped WO3 on

photocatalysis [100]. Studies have shown that among

transition metals, the doping of Ni has the greatest

effect on the catalytic hydrogen production of WO3.

When doped with 1.0% and 10.0% Ni, the photocat-

alytic oxygen generation efficiency of WO3 was 4

times and 19 times of the original. However, oxygen

production and hydrogen production are different.

By doping pure WO3 with 10% Fe, WO3 had the

highest hydrogen production capacity, in which the

hydrogen production was 7 times that of the original.

The effect of doping different concentrations of Fe on

the degradation of RhB by WO3 was also reported

[101]. When Fe was doped at 5.25%, WO3 had the

highest photocatalytic efficiency under visible light.

About 93% of phenol was reduced in 240 min, and

about 92% of RhB was degraded in 120 min by 5.25%

Fe-doped WO3. When 5% Fe-doped WO3 showed the

best photocatalytic performance in MB degradation,

it could degrade about 95% of MB in 120 min under

visible light irradiation [102]. Thereby, the transition

metal-doped WO3 shows higher photocatalytic

degradation ability when treating organic com-

pounds in wastewater.

The rare earth metals in the periodic table include

17 elements, which can be used as dopants for WO3

semiconductors to degrade organic pollutants. In the

recent years, some scholars have proposed that

doping rare earth metals into WO3 can promote the

concept of charge separation. Because the 4f orbit of

the rare earth metal is not completely occupied, and

the 5d orbit is empty, it can effectively capture elec-

trons, which can effectively promote the separation of

the photogenerated carrier, thereby playing an

important role in doping for improving the perfor-

mance of photocatalysis [103]. The effects of doping

rare earth metals such as Gd 104], Dy [105], La [106],

Eu [107], and Yb [108] on the photo-activity and

photo-stability of WO3 have been studied. In the case

of Dy-WO3, Dy3? can provide electrons to the

adsorbed oxygen and then convert it to Dy4?, thereby

promoting the generation of superoxide radicals.

Besides, Dy4? can trap electrons in WO3 CB and

inhibit photo-generated electron–hole recombination.

WO3 may be partially consumed in aqueous solution,

and Dy3? doping will hinder this deactivation pro-

cess [109]. Tahi et al. used a hydrothermal method to

synthesize rare metal-modified WO3 composites

[104]. Studies have shown that the doping of rare

metals affects the grain size and specific surface area

of the photocatalyst so that WO3 exhibits excellent

photocatalytic performance during the degradation

of harmful dyes. Among them, doping 2% Gd

showed the most effective degradation performance

of WO3, and the degradation efficiency of various

pollutants could reach about 98%. Although doped

rare earth metals are very expensive, they have great

potential for improving the WO3 degradation of

pollutants.
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Non-metal element doping

The above-mentioned that the performance of the

catalyst can be enhanced through doping metals, but

some researchers have found that metal-doped

semiconductors are not heat-resistant and may cause

photoelectron-hole pair recombination [110]. There-

fore, it is proposed that doping non-metals can also

improve the wide band-gap and promote the sepa-

ration of photogenerated carriers [111]. Some

researchers have demonstrated that doping non-

metals can enhance the performance of WO3 photo-

catalyst [110, 112–114]. For example, Chen et al.

synthesized S-doped WO3 samples by the

hydrothermal method [110]. Experimental results

showed that compared with undoped WO3, S-WO3

samples had better photo-degradability, and the

maximum MB removal efficiency of 5% S-WO3

samples was 78.7%. It is attributed to the lower

bandgap energy, more oxygen vacancies in the sur-

face lattice and the heterojunction formed by WS2
and WO3. Because the CB position of WS2 was higher

than the CB position of WO3, which caused the

generated electrons to be injected into the CB of WO3,

resulting in effective charge separation. Therefore,

non-metal-doped WO3 shows higher photocatalytic

degradation ability than undoped WO3 when treating

organic compounds in wastewater treatment.

Elements co-doping

In addition to single-element doping, multi-element

co-doping has also been used to increase the effi-

ciency of WO3 photocatalysts [115]. Multi-element co-

doped WO3 composites have been successfully syn-

thesized and proved to have good photocatalytic

properties, such as Zn-Cu co-doped WO3 [116], Nb-F

co-doped WO3 [117], and so on. Here, we take I-P co-

doped WO3 as an example. Tijani et al. prepared the

I-P elements co-doped WO3 nanoparticles and stud-

ied the photocatalytic performance of the material to

degrade the local wastewater contaminated with

dyes [118]. The found that spherical WO3 nanopar-

ticles can be completely transformed into rods and

bamboo bundles with different doping percent of I

and P elements, and the relative images are shown in

Fig. 10. For I-P co-doped WO3, it can be observed that

the relative morphology can be transferred from

spherical symmetry into rod-like structure by

adjusting the doping content of different I and P

element. The reasons may refer to the fact that the

nature of the dopant vis-a-vis atomic weight and

ionic size can make great influence on the morphol-

ogy of the target materials. Compared with the

undoped WO3 with spherical and cubic structure,

both I- and P?3 dopants can be treated as the struc-

ture directing agents for the formation of a less

compacted rod and hexagonal nanostructures. The

detail morphology adjustment mechanism can be

explained as follows: the formation of the nanorods

liked WO3 with 10% iodine or phosphorus mainly

originated from the side-by-side alignment, which

caused by the high lateral capillary forces; the for-

mation of bamboo-like or nanorods bundles liked I-P

co-doped WO3 refers to the oriented attachment,

which caused by the reduction of the surface energy

due to the synergetic effect between I and P element

[118]. As for the photocatalytic performance, I-P co-

doped WO3 nanocomposites can degrade 93.4% TOC

and 95.14% COD, and show the highest photocat-

alytic activity compared with single-doped and

undoped WO3. I- and P?3 occupied the oxygen

vacancies in WO3 nanoparticles, but through the

synergy between the two dopants, the crystal size

was reduced and the surface area was increased. As a

result, some I and P diffused on the surface of WO3,

which may cause surface defects, thereby improving

the degradation of printing and dyeing wastewater.

Also, local internal electric field determined by both I

and P can make the rapid separation of photogener-

ated carriers to improve the degradation efficiency. In

general, this material had many advantages, such as

higher specific surface area, smaller band-gap energy,

good crystallinity, wider visible light response range,

and lower photo-generated electron–hole recombi-

nation rate. It can be obtained that the presence of co-

dopants can further improve the photocatalytic

degradation ability of WO3 doped with a single ele-

ment on wastewater.

Deposition of noble metal

At present, the research on the deposit of WO3, such

as Au, Pt, Ag, Pd and so on, shows that the degra-

dation performance of WO3 can be improved by

improving charge transfer, increasing electron traps

and reducing band-gap energy. It has been reported

that noble metal-deposited WO3 nanoparticles

improve photocatalytic activity by adjusting the

Fermi level balance between noble metal and WO3
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photocatalyst to reduce band-gap energy [119], and

suppress electron–hole recombination [120]. As early

as 2010, scholars reported that the deposition of Pt

can improve the performance of WO3 photocatalyst

[121]. The effect of WO3 with different shapes of Pt

deposited on ethylene under visible light was also

studied. Studies have shown that the order of pho-

toactivity is Pt/nanocubes[Pt/nanoparti-

cles[Pt/nanobundles [122]. WO3 nanocube had the

best photo-degradability due to its unique geometry.

The presence of Pt deposits improved the photo-ac-

tivity of nanoparticles and nanocubes, which was

attributed to the ability of Pt deposits to promote the

multi-electron reduction of O2. Also, some scholars

have compared the photocatalytic performance of Pt

loaded with different shapes of WO3 [123]. According

to the photocatalytic evaluation results of Pt-loaded

samples, the sequence of the most active sample was

not significantly different from that of the unloaded

sample. This meant that the morphological structure

of WO3 on the photocatalytic degradation ability was

greater than that of the supported co-catalyst. At the

same time, the size of noble metal particles also

affects the performance of WO3. The deposition of Au

nanoparticles was not conducive to improving the

activity of WO3 to degrade pollutants. Because the

Figure 10 HR-SEM images for a undoped WO3, b 2% I-doped WO3, c 2% P-doped WO3 and d 2% P and I co-doped WO3 (adapted with

permission from reference [118], Copyright (2019) Elsevier).
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size of Au nanoparticles was too large, and most of

the surface of WO3 was covered by gold particles,

which prevented the incident light from reaching the

surface and made this part of the catalyst in an

inactive state during the reaction [124]. The effect of

different concentrations of deposited Ag on the

degradation efficiency of sulfanilamide (SAM) was

also studied [125]. Within a certain range, the

degradation efficiency increased with the increase in

Ag concentration. Ag nanoparticles as electron cap-

ture centers during WO3 degradation SAM process

can improve the separation of photogenerated elec-

trons. Moreover, WO3/Ag composites could also

deactivate Escherichia Coli and Bacillus subtilis under

visible light. The antibacterial effect can be attributed

to synergistic effect among Ag, Ag?, and antibacte-

rial of WO3/Ag composite. Therefore, the photocat-

alytic degradation ability of noble metal-deposited

WO3 is higher than that of WO3 without noble metal

deposition when treating organic compounds in

wastewater. And it has great potential in treating

wastewater contaminated by pathogens.

Conclusions and future prospective

Many studies have shown that WO3 is a promising

photocatalyst for water pollution treatment by

responding to visible light because of its highly

adjustable performance and excellent performance in

removing persistent organic micro-pollutants and

some microorganisms in complex water perfor-

mance. Through a variety of improvement measures,

scholars have synthesized WO3-based materials with

large specific surface area and charge separation

ability, which have good photocatalytic performance,

economic feasibility, sustainability and durability.

We have described and compared the different forms

of WO3, synthetic binary or ternary heterojunctions,

and other elements doped in different forms of WO3.

By modifying WO3, the photocatalytic performance

of WO3 is improved to a certain extent. Studies have

also shown that although doping a certain element

promotes the photocatalytic performance of WO3, the

morphological structure of WO3 has a greater effect

on degradation wastewater ability than the sup-

ported cocatalyst. Therefore, there is still much space

for improving the performance of WO3 photocatalyst.

(1) Surface modification and morphology control

have been demonstrated that can improve the

photocatalytic activity of WO3 photocatalysts.

But more simple and efficient method with low

cost is necessary to be developed for its realistic

employment.

(2) The combination of WO3 with another semi-

conductor for the formation of heterojunction is

a promising way to promote the photocatalytic

performance. However, whether binary or

ternary, or more complex composites of WO3-

based photocatalysts, the deep micro-scale

photocatalytic mechanism analysis is still a

challenge and the integration of experiment

and computational could be a good entry point.

(3) Many publications have been focused on ele-

ment doping and modification to enhance the

photocatalytic properties of WO3. In most cases,

noble elements or metals have been utilized,

which increases the cost of materials and

hinders its practical application. So highly

efficient cheap metal elements or non-metallic

elements modification method are urgently

needed.

(4) Surface defect or vacancy is a very novel and

effective methods in the study of other photo-

catalysts. However, about WO3, relative studies

are scarce, so some interests should be focused

on this field of WO3, which would be very

efficient in further improving the photocatalytic

activity of WO3-based materials.
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