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ABSTRACT

It is vital to exploit non-noblemetal catalysts with ample natural reserve and high

performance for reducing energy consumption during electrocatalytic water

splitting process. Herein, nanocoral-like bimetallic Co-Mo carbide/nitrogen-

doped carbon (Co-Mo2C/N-C) electrocatalysts have been successfully prepared

by high temperature pyrolysis of CoMoO4 and melamine for hydrogen evolution

reaction (HER).When themass ratio of CoMoO4 andmelamine is 1:15, nanocoral-

like Co-Mo2C/N-C electrocatalyst shows optimal electrocatalytic HER activity,

which just needs overpotentials of only 212 and 290 mVat the current density of 10

and 40 mA cm-2, respectively. Besides, it shows low charge transfer resistance

and surpassing stability for uninterrupted HER in 1.0 M KOH electrolyte. The

eximious electrochemical performance of Co-Mo2C/N-C is put down to the fact

that N-C can effectively disperse Co-Mo2C nanoparticles. The results suggest that

nanocoral-like Co-Mo2C/N-C with considerable catalytic activity and superior

durability is believed as promising candidate to substitute noble metal catalysts

for green and renewable hydrogen production by electrocatalytic water splitting.
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GRAPHICAL ABSTRACT

Introduction

With the excessive exhaustion of traditional energy

and the deterioration of ecological environment,

finding clean and renewable energy with high com-

bustion value has become the urgent demand of

human beings [1, 2]. As a promising substitute for

traditional energy, hydrogen with recyclability and

high energy density has drawn increasing interest

[3–5]. With the merits of high efficiency and no

environment pollution, electrochemical water split-

ting is considered as a prospective and reliable

technology for hydrogen production [6, 7]. In the

process of water splitting, exploiting highly efficient

and durable hydrogen evolution reaction (HER) cat-

alysts are critical to reduce the overpotential that

brings about excessive energy consumption [8–10].

Though Pt and Pt-based catalysts stick out from

various prominent HER catalysts, the fatal draw-

backs of exorbitant price and scarce reserves hinder

their commercial applications [11]. Thus, the vigor-

ous development of non-precious materials with high

activity and stability as HER catalysts is highly

imperative [12–14].

Recently, Mo-based catalysts, such as MoS2 [15],

MoN [16], Mo2C [17], MoB [18] and MoP [19] etc.,

have been reported with excellent electrocatalytic

HER performance. Among these catalysts, Mo2C

catalyst has attracted extensive attention because of

its impressive conductivity, strong corrosion resis-

tance and analogous d-band electronic structure with

Pt [20, 21]. Nevertheless, the catalytic performance of

Mo2C is still limited by its inherent shortage of large

unoccupied orbitals density and certain aggregation

[22, 23]. For reducing the density of unoccupied

orbitals of Mo2C, the design of bimetallic carbide as

HER catalysts by adding electron-rich group VIII

metal into Mo2C is an efficient strategy [24]. Hu et al.

have reported that Ni-Mo2CCB/CFP electrocatalysts

need overpotential of 121.4 mV at 10 mA cm-2 [25].

Lin et al. have prepared Fe3C-Mo2C/NC as HER

electrocatalysts with overpotential of 116 mV at

10 mA cm-2 [26].

As well known, the intimate conjugation between

Mo2C and carbonaceous materials promotes the

electrons transport, stabilizes the overall structure,

reduces hydrogen Gibbs adsorption free energy of

Mo2C to optimize the absorption of H* and inhibits

the aggregation of Mo2C nanoparticles to some

extent, which is propitious to enhance electrocatalytic

ability of catalysts [27–29]. Heteroatoms doping,

especially nitrogen atoms, can further enhance the

electrochemical performance by optimizing the elec-

tronic structure of carbon materials [30]. Among

carbon materials, nitrogen-doped carbon fabricated
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by high temperature pyrolysis of melamine has

sparked significant interest for its impressing con-

ductivity, low cost and simple preparation [31]. To

the best of our knowledge, there are few reports

concerning the application of bimetallic Co-Mo car-

bide compounding with nitrogen-doped carbon as

HER electrocatalysts. Taking these virtues into

account, we anticipate that bimetallic Co-Mo car-

bide/nitrogen-doped carbon (Co-Mo2C/N-C) can

serve as HER catalysts with low overpotential.

Herein, nanocoral-like Co-Mo2C/N–C electrocata-

lyst has been in-situ synthesized by high temperature

pyrolysis of CoMoO4 and melamine. As a result,

nanocoral-like CMCNC-3 catalyst only needs low

overpotentials of 212 and 290 mV at the current

density of 10 and 40 mA cm-2, respectively. In

addition, CMCNC-3 catalyst shows favorable stabil-

ity during durative hydrogen generation. The strat-

egy to fabricate efficient and stable Co-Mo2C/-C

catalyst offers a broad perspective for the exploitation

of metal-carbide-based catalysts toward HER.

Experimental

Chemicals and materials

Na2MoO4 2H2O, Co(NO3)2 6H2O, NaOH, melamine,

isopropanol and ethanol were obtained from Jiangsu

Yatai Chemical Co., Ltd. (Jiangsu, China). Nafion

solution (5 wt%) was provided by Sigma-Aldrich (St

Louis, USA).

Fabrication of Co-Mo2C/N-C materials

Scheme 1 presented the fabrication procedure for Co-

Mo2C/N-C materials. In the first step, as-obtained

CoMoO4 precursor was fabricated via hydrothermal

method. In detail, 2.0 mmol Na2MoO4 2H2O and

2.0 mmol Co(NO3)2 6H2O were added into 40 mL

distilled water with stirring for 15 min. Next, the

mixture was transferred into Teflon-lined autoclave

for hydrothermal treatment at 160 �C for 6 h. The

precipitate was washed several times with deionized

water and ethanol, and finally dried at 60 �C
overnight.

In the second step, Co-Mo2C/N-C materials were

fabricated via high temperature pyrolysis of CoMoO4

and melamine. In detail, 100 mg as-fabricated

CoMoO4 precursor and a certain mass of melamine

were fully mixed by grinding in an agate mortar.

Subsequently, the mixture above was transferred into

a tube furnace for pyrolysis at 850 �C for 3 h with a

heating rate of 5 �C min-1 in an argon atmosphere.

After pyrolysis, collected product was ground and

packaged to be used. The mass ratios between

CoMoO4 and melamine were 1:5, 1:10, 1:15 and 1:20,

and the corresponding samples were named as

CMCNC-1, CMCNC-2, CMCNC-3 and CMCNC-4,

respectively.

For comparison, CoMoO3 was fabricated following

the steps above without melamine.

Materials characterizations

Scanning electron microscope (SEM, Sigma 300, Carl

Zeiss SMT Pte Ltd., Germany) was operated to

analyse the morphology. In order to investigate the

structure of carbon components, Raman spectrometer

(inVia, Renishaw Instrument Co., Britain) was

employed. To study the crystal structures of as-fab-

ricated materials, X-ray diffraction (XRD) tests were

performed on X’ Pert PRO diffractometer (PANalyt-

ical, Netherlands) using Cu Ka radiation

(k = 0.154060 nm). X-ray photoelectron spectroscope

(XPS) tests were conducted on 5000 Versaprobe-II

photoelectron spectroscope (ULVAC-PHI, Japan)

with Al Ka (ht = 1486.6 eV) to investigate the surface

chemical states of materials.

Electrode fabrication and electrochemical
measurements

Fabrication of working electrodes

Before use, glassy carbon electrode was polished on

chamois leather using aluminum oxide powders and

washed thoroughly with ethanol and distilled water

and finally dried naturally.

As-fabricated active materials (5.0 mg) were ultra-

sonically dispersed in 1.0 mL of isopropanol/water

(Visopropanol/Vwater = 3:7) containing 5.0 lL Nafion

solution (5 wt%) to form homogeneous material ink.

Next, the ink above (5.0 lL) was dripped onto GCE,

and finally dried at ambient environment. The mass

loading of material on GCE was about 0.35 mg cm-2.
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Electrochemical measurements of as-fabricated materials

Polarization curves, electrochemical impedance

spectroscopy (EIS) and cyclic voltammetry (CV) were

operated on PARSTAT 2273 electrochemical work-

station (Princeton Applied Research, USA), and

chronoamperometry measurements were conducted

on DH7000 electrochemical workstation (Jiangsu

Donghua Analysis Instrument Co., Ltd., Jingjiang,

China) in 1.0 M KOH solution at ambient environ-

ment with a standard three-electrode system. Refer-

ence electrode, working electrode and counter

electrode were HgO/Hg electrode, as-fabricated

electrode and graphite rod, respectively. In this work,

all potentials measured were obtained after IR cor-

rection and converted to reversible hydrogen elec-

trode (RHE) according to the following formula:

ERHE = (EHgO/Hg ? 0.098 V) ? 0.059 pH. Before the

electrochemical measurements, all 1.0 M KOH elec-

trolytes were saturated with N2 for 1 h.

Results and discussion

Characterizations of structure, component
and morphology

Shown in Fig. 1 is the Raman spectrum of CMCNC-3

catalyst. Two peaks at 1317.2 and 1590.4 cm-1 are

ascribed to D and G bands, respectively, confirming

the presence of disordered carbon and graphitic

carbon in CMCNC-3 [32]. In addition, the calculated

intensity ratio of D band and G band value for

CMCNC-3 is 1.4, verifying that it possesses low

graphitized degree and a large number of structural

defects [33].

XRD tests are carried out to study crystal structure

of CoMoO4 (a), CoMoO3 (b) and CMCNC-3

(c) (Fig. 2). As for CoMoO4 (curve a), the peaks at

13.4�, 23.2�, 26.9�, 29.3�, 34.3� and 52.8� correspond to

(001), (021), (002), (310), (022) and (440) crystal planes

of CoMoO4 (JCPDS 21–0868) [34], respectively. As for

CoMoO3 (curve b), the peaks at 18.0�, 25.4�, 32.7�,
36.1�, 37.2�, 40.5�, 45.5�, 49.2�, 52.1�, 56.2�, 59.8�, 62.5�
and 64.6� are ascribed to (002), (102), (103), (200),

(004), (104), (203), (114), (204), (006), (205), (303) and

(220) crystal planes of CoMoO3 (JCPDS 21-0869) [35],

respectively. As for CMCNC-3 (curve c), a peak at

26.5� is typical (002) crystal plane of graphitic carbon

[36]. The peaks at 36.1�, 51.9�, 64.6�, 73.9� and 76.1�
are ascribed to (100), (102), (110), (112) and (201)

crystal planes of b-Mo2C (JCPDS 35–0787) [37]. The

peaks at 32.1o, 44.5o and 49.1o are ascribed to (400),

(511) and (442) crystal planes of Mo3Co3C (JCPDS

65-7128) [38]. The results prove the coexistence of b-
Mo2C, Mo3Co3C and graphitic carbon in CMCNC-3.

Scheme 1 Fabrication

procedure for Co–Mo2C/N-C

materials.

Figure 1 Raman spectrum of CMCNC-3 catalyst.
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The surface electronic states of CoMoO4, CoMoO3

and CMCNC-3 catalysts are investigated by XPS

analyses (Fig. 3). In Fig. 3a, Co 2p spectrum of

CoMoO4 exhibits five peaks at 780.9, 782.1, 787.1,

797.5 and 803.2 eV. Two peaks at 780.9 and 782.1 eV

belong to Co 2p3/2, and a peak at 797.5 eV belongs to

Co 2p1/2 [39, 40]. In addition, two peaks at 787.1 and

803.2 eV belong to satellite peaks [41]. Mo 3d spec-

trum of CoMoO4 (Fig. 3b) shows two peaks at 231.9

and 235.1 eV, which correspond to Mo 2d5/2 and Mo

2d3/2, respectively [42, 43]. In O 1 s spectrum of

CoMoO4 (Fig. 3c), a peak at 530.7 eV is related to

lattice oxygen, while a peak at 533.2 eV is attributed

to –OH on the surface of CoMoO4 [44].

In Fig. 3d, Co 2p spectrum of CoMoO3 shows two

peaks at 781.9 and 797.4 eV, which belong to Co 2p3/2

and Co 2p1/2, respectively. Additionally, two peaks

at 786.4 and 804.3 eV correspond to shake-up satellite

peaks [45]. In Mo 3d spectrum of CoMoO3 (Fig. 3e),

two peaks at 229.9 and 233.0 eV belong to Mo4?,

while two peaks at 231.7 and 234.7 eV are assigned to

Mo6? [46]. In Fig. 3f, O 1s spectrum of CoMoO3 dis-

plays two peaks at 530.6 and 532.3 eV, which belong

to lattice oxygen and –OH on the surface of CoMoO3,

respectively [47].

Co 2p spectrum of CMCNC-3 (Fig. 3g) exhibits the

peaks at 781.7 and 797.9 eV, which are assigned to

Co2? [48]. In addition, two peaks at 783.9 and

799.4 eV are assigned to Co3? [49]. The peaks at 787.6,

803.7 and 805.8 eV correspond to satellite peaks [50].

As displayed in Fig. 3h, Mo 3d spectrum of CMCNC-

3 exhibits six peaks at 228.4, 229.2, 231.6, 232.3, 232.9

and 235.6 eV. Two peaks at 228.4 and 231.6 eV are

attributed to Mo-C [51]. Two peaks at 229.2 and

232.9 eV belong to Mo4?, while two peaks at 232.3

and 235.6 eV belong to Mo6? [52]. In C 1 s spectrum

of CMCNC-3 (Fig. 3i), two peaks at 284.8 and

286.0 eV belong to C–C/C = C and C-N bond,

respectively [53]. In Fig. 3j, N 1s spectrum of

CMCNC-3 shows the peaks at 394.2, 397.7, 398.5 and

400.3 eV, which belong to Mo–N, pyridinic-N, pyr-

rolic-N and graphitic-N, respectively [54, 55].

SEM images of CoMoO4, CoMoO3 and CMCNC-3

are shown in Fig. 4a * c. CoMoO4 (Fig. 4a) displays

uneven nanorods morphology with certain agglom-

eration. CoMoO3 (Fig. 4b) shows nanocoral-like

morphology. However, its nonuniform and aggre-

gation impede the exposure of active sites to a certain

degree. After the addition of melamine in the pre-

cursor, CMCNC-3 catalyst (Fig. 4c) exhibits looser

nanocoral-like morphology assembled by numerous

more uniform nanoparticles in comparison with

CoMoO3, exposing enough electrocatalytic active

sites. EDS elemental mapping images of CMCNC-3

are exhibited in Fig. 4e*h, demonstrating that four

elements (Co, Mo, C and N) are uniformly dispersed

in CMCNC-3.

Electrochemical characterizations

Polarization curves of as-fabricated electrocatalysts

with a scan rate of 1 mV s-1 using a three-electrode

system in 1.0 M KOH electrolyte are presented in

Fig. 5a. Co-Mo2C/N–C catalyst displays improved

electrocatalytic performance with lower overpotential

toward HER in comparison with CoMoO3. Addi-

tionally, CMCNC-3 catalyst exhibits better electro-

catalytic activity with onset potential as low as

106 mV, while 257 mV, 237 mV, 175 mV and 221 mV

for CoMoO3, CMCNC-1, CMCNC-2 and CMCNC-4,

respectively. Clearly, CMCNC-3 catalyst manifests

lower overpotential (212 mV) than those of CoMoO3

(352 mV), CMCNC-1 (309 mV), CMCNC-2 (267 mV)

and CMCNC-4 (288 mV) at 10 mA cm-2. CMCNC-3

catalyst displays an overpotential of 290 mV at

40 mA cm-2, which is lower than CoMoO3 (440 mV),

CMCNC-1 (366 mV), CMCNC-2 (323 mV) and

CMCNC-4 (350 mV).

Figure 2 XRD patterns of CoMoO4 a, CoMoO3 b and CMCNC-

3 c.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3 XPS spectra of

CoMoO4 a–c, CoMoO3 d–

f and CMCNC-3 g–j.
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Co-Mo2C/N-C catalyst has looser structure than

CoMoO3, which exposes more catalytic active sites,

leading to excellent catalytic activity toward HER.

Besides, owing to the synergistic effect between

Mo2C, Mo3Co3C and N–C, CMCNC-3 catalyst shows

commendable HER activity.

In Fig. 5b, Tafel plots are used to study the HER

kinetics of as-fabricated catalysts. Tafel slope is

Figure 4 SEM images of

CoMoO4 a, CoMoO3 b and

CMCNC-3 catalysts c; SEM

image d and EDS elemental

mappings e–h of CMCNC-3

catalyst.
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Figure 5 Polarization curves

(a) and corresponding Tafel

plots (b) of CoMoO3,

CMCNC-1, CMCNC-2,

CMCNC-3 and CMCNC-4

catalysts.
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calculated by Tafel equations as follows:

g = a ? b log j, where g is overpotential, a the con-

stant, b the Tafel slope (mV dec-1) and j the current

density (mA cm-2) [6]. As observed, CoMoO3,

CMCNC-1, CMCNC-2, CMCNC-3 and CMCNC-4

catalysts show Tafel slope values of 99, 79, 68, 60 and

69 mV dec-1, respectively. Obviously, CMCNC-3

catalyst manifests smaller value of Tafel slope than

other four catalysts, suggesting faster kinetics for

electrocatalytic HER, which contributes to rapid

reaction on its surfaces. In addition, Tafel slopes of

118, 40 and 30 mV dec-1 correspond to Volmer,

Heyrovsky and Tafel reaction during HER process in

alkaline solutions, respectively [56, 57]. The results

indicate that rate-limiting mechanism of as-fabricated

catalysts is Volmer-Heyrovsky mechanism.

To further investigate HER electrocatalytic perfor-

mance of CoMoO3, CMCNC-1, CMCNC-2, CMCNC-

3 and CMCNC-4, the electrochemically active surface

areas (ECSA) are assessed by electrochemical double-

layer capacitance (Cdl). In Fig. 6a * e, CV tests of as-

fabricated catalysts are carried out in non-Faradaic

potential region (0.290 V * 0.390 V vs. RHE) with

diverse scan rates (40 mV s-1 * 200 mV s-1). As

shown in Fig. 6f, current density Dj (janode—jcathode) at

0.34 V vs. RHE against scan rate shows the linear

(a) (b)

(c) (d)

(e) (f)

Figure 6 CV curves of

CoMoO3 (a), CMCNC-1 (b),

CMCNC-2 (c), CMCNC-3

(d) and CMCNC-4 catalysts

(e) under different scan rates;

plots of the capacitive currents

as a function of scan rates (f).
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relationship. Meanwhile, it is clear that Cdl value of

CMCNC-3 (9.67 mF cm-2) is higher than those of

CoMoO3 (0.22 mF cm-2), CMCNC-1 (4.30 mF cm-2),

CMCNC-2(6.51 mF cm-2), CMCNC-4 (5.33 mF cm-2),

indicating higher ECSA and numerous exposed

active sites of CMCNC-3. The high electrocatalytic

activity of catalysts is positively related to the

enhancement of ECSA and active sites [58]. Thus,

nanocoral-like CMCNC-3 catalyst exhibits better

HER electrocatalytic performance than all other as-

fabricated catalysts.

EIS tests are carried out in the range of

106 * 10–1 Hz at open circuit potential with a mod-

ulation amplitude of 5 mV, and Nyquist plots are

displayed in Fig. 7. In equivalent circuit diagram (the

insert in Fig. 7), Rs is the uncompensated solution

resistance, Rct is the charge transfer resistance, Cdl is

the double-layer capacitance, and Zw is the Warburg

impedance. Furthermore, CoMoO3, CMCNC-1,

CMCNC-2, CMCNC-3 and CMCNC-4 catalysts show

Rct values (Table 1) of 9.96, 9.61, 7.37, 6.59 and 7.80 X,

respectively. The lower Rct value of CMCNC-3 indi-

cates faster electron transfer process.

As shown in Fig. 8, chronoamperometry tests of

CoMoO3 and CMCNC-3 catalysts are performed at

overpotential of 212 mV in 1.0 M KOH electrolyte.

CMCNC-3 catalyst exhibits higher current density

than that of CoMoO3 catalyst, indicating that

CMCNC-3 catalyst has better HER catalytic activity.

In addition, the current density of CMCNC-3 catalyst

decreases at firstly and then maintains steady rela-

tively during continuous hydrogen generation,

demonstrating eminent long-term durability of

CMCNC-3. The favorable HER electrocatalytic activ-

ity and stability of CMCNC-3 are ascribed to some

reasons as follows: (1) the addition of N-C produced

by pyrolysis of melamine, which increases the surface

activity and conductivity in theory; (2) the loose

nanocoral-like structure assembled by uniform

nanoparticles, which provides larger ECSA and

abundant ions transport channel; (3) the synergistic

effect between Mo2C, Mo3Co3C and N-C.

Conclusions

In summary, Co-Mo2C/N-C catalyst has been in-situ

synthesized by high temperature pyrolysis of

CoMoO4 and melamine. The nanocoral-like CMCNC-

3 needs overpotentials of only 212 and 290 mV at the

current density of 10 and 40 mA cm-2, respectively.

Figure 7 Nyquist plots of CoMoO3, CMCNC-1, CMCNC-2,

CMCNC-3 and CMCNC-4 catalysts.

Table 1 Fitted values of equivalent circuit elements based on

impedance spectra of as-fabricated catalysts

Catalysts Rs/X Cdl/lF Rct/X Zw 9 103/(S-sec^.5)

CoMoO3 2.95 0.069 9.96 3.88

CMCNC-1 3.16 0.106 9.61 1.54

CMCNC-2 2.79 0.079 7.37 1.15

CMCNC-3 2.85 0.106 6.59 2.56

CMCNC-4 2.75 0.078 7.80 0.88

Figure 8 Chronoamperometry tests of CoMoO3 and CMCNC-3

catalysts at overpotential of 212 mV for 30 h.
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Besides, CMCNC-3 shows low charge transfer resis-

tance and outstanding stability during continuous

hydrogen generation. The high catalytic activity of

CMCNC-3 originates from the efficient dispersion of

Co-Mo2C nanoparticles by N-C and the synergistic

effect between Mo2C, Mo3Co3C and N-C. The results

suggest that nanocoral-like Co-Mo2C/N-C with

excellent activity and long-term durability is

promising in renewable energy conversion system to

achieve massive hydrogen generation.
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