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ABSTRACT

In the past few decades, due to the rapid development of industry and the rapid

growth of population, emissions of pollutants to the environment have increased

dramatically, and the demand for drinkingwater is also increasing.Water treatment

is a matter of concern because it is directly related to the health of humans and

wildlife. Graphene and its derivatives have potential applications in seawater

desalination andwastewater treatment due to their unique pore structure and ionic

molecular sieving separation capabilities. Graphene, graphene oxide (GO), and

reduced graphene oxide (rGO) can be formulated into nanoporous materials and

composites with tunable properties that can be optimized for water filtration.

Methods for perforating graphene include ion etching/ion bombardment and

electron beam nanometer engraving, which are briefly introduced in this paper.

Graphene-based composites further expand the capabilities of graphene in seawater

desalination andwastewater treatment, by introducingnew features andproperties.

In this review, the performance improvement of graphene-based separation mem-

branes in decontamination and desalination in recent years is reviewed in detail.

This review focuses on improving the performance of graphene-based membranes

for separation, decontamination, and seawater desalination applications, by dis-

cussing how various modifications and preparation methods impact important

performance properties, includingwater permeance, selectivity, rejection of solutes,

membranemechanical strength, and antifouling characteristics.We also discuss the

outlook for future development of graphene-based membranes.
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Introduction

Two-dimensional (2D) materials with excellent

chemical stability, advantageous dimensional selec-

tion characteristics and high aspect ratio are often

used in the manufacture of filtration membranes. [1]

Graphene is a two-dimensional material with carbon

atoms in the sp2 hybridization, which has extremely

high thermal conductivity and stiffness, and is able to

reconcile the contradictory properties of brittleness

and ductility. [2, 3] Graphene oxide (GO) is an oxi-

dized derivative of graphene, which maintains the

unique two-dimensional structure, and is rich in

oxygen-containing functional groups, such as

hydroxyl, epoxy, and carboxyl groups. [4] GO has

chemical stability and convenient size control char-

acteristics [5], high mechanical strength, and chemi-

cal adaptability. [6, 7] GO has been widely used as a

material for membrane manufacture. [8] GO-con-

taining membranes have been proposed for a wide

range applications, such as water desalination [9–14],

dye removal [15–19], oil–water separation [20–22],

gas separations [23–27], luminescence [28], and elec-

trochemical applications [29–31]. Graphene materials

can perform as molecular sieves if pore sizes can be

controlled through perforation or through preparing

intercalated layers and composite membranes. [5]

High-performance membranes for water purifica-

tion should achieve high flux, high rejection, high

stability in aqueous media, mechanical strength, and

high fouling resistance. GO membranes have desir-

able ion selectivity, but suffer from poor structural

stability and low flux. [32] Their stability can be

improved through strong interactions, such as

chemical cross-linking, but these modifications

greatly affect the water permeability of dense GO

membranes. On the other hand, GO membranes with

weak and stable interactions (hydrophobic or p–p
interactions) may not be strong enough to withstand

actual water filtration operation. [11] Therefore,

combining GO with nanoparticles and polymer car-

riers to prepare GO-based composite membranes is

an attractive approach. [33–35] In fact, these strate-

gies can improve the water flux while also improving

mechanical strength and preserving the screening

performance of the GO membrane. [36–38]

In our previous reviews [39–42], we summarized

the status of GO-based composite membranes and

the manufacture and application of graphene-based

materials in membrane science. We also provided a

summary of the theory and simulation of restricted

substance transport. As sketched in Fig. 1, a single

layer of perfect graphene can be used to form GO and

porous graphene composites by a variety of strate-

gies. [43] Methods for perforating graphene include

ion etching/ion bombardment and electron beam

nanometer engraving, which are briefly introduced in

this paper. Graphene-based composites further

expand the capabilities of graphene in seawater

desalination and wastewater treatment, by introduc-

ing new features and properties. Graphene-based

composites contain metal–organic frameworks

(MOF), nanotubes and other nanomaterials interca-

lated into layers of graphene oxide (GO) and can

achieve the effect of sieving molecules of different

sizes by regulating the layer spacing of GO. Com-

posites with polymers can improve the membrane

strength and desalination performance. The perfor-

mance of GO-based membranes can be improved by

adjusting the membrane spacing and membrane

surface functional groups. This article reviews the

performance improvement of GO-based composite

membranes for desalination and decontamination

applications. The most important forms of GO-based

membranes include composites of GO with

nanoparticles and polymers.

Improved strategies for preparation
of graphene separation membranes

Graphene-based materials include both nanoporous

graphene and membranes in which GO and various

materials are compounded with each other. [44]

Based on the resulting microstructure, graphene-

based membranes can be broadly classified into three

types, as shown in Fig. 2.

The preparation technology of graphene is rela-

tively mature, with low cost and high yield, so that

graphene can be widely used. There are many ways

to prepare graphene, such as liquid-phase exfoliation

[45], mechanical exfoliation [46], epitaxial growth

[47], chemical vapor deposition, and decomposition

of carbon nanotubes to obtain two-dimensional gra-

phene sheets. [48] [49] In recent years, the most

commonly used method for preparing large-area

high-quality graphene is chemical vapor deposition

(CVD). CVD uses hydrocarbon gas as the main car-

bon source to grow graphene on a metal substrate.
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Different reaction pressures and temperatures are

selected according to the different properties of the

carbon source to prepare large-area high-quality

graphene. [50, 51]

The sp2 electronic structure of graphene provides a

high electron density and enables graphene to

strongly repel both water molecules and many other

molecules in the gas phase. [52] Therefore, there are

basically only three methods to achieve molecular

sieving for graphene-based membranes as shown in

Fig. 2. For type I, the graphene sheet is perforated to

form nanopores, and the sieving of different

molecules can be achieved by controlling the pore

size. For type II, graphene sheets are stacked or

laminated. For type III, the graphene serves as a

composite filler combined with other matrix materi-

als. The filtration mechanism of the latter two meth-

ods is the same, both of which achieve the sieving of

different molecules by changing the interlayer dis-

tance of the graphene-based membrane. Because GO

contains more oxidized groups, is more hydrophilic,

and has improved chemical properties, GO is also

commonly used to form the type II and type III

composite materials. [53]

Figure 1 Schematic diagram of graphene-based materials used for water desalination and decontamination.

Figure 2 Main types of graphene-based membranes: type I. single porous graphene layers; type II. assembled graphene laminates; type

III. graphene-based composites. [5].
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Porous graphene membranes

By controlling the introduction of defects into gra-

phene through physical and chemical methods, uni-

form nanoscale pores can be formed on the surface of

the graphene membrane, resulting in excellent

selectivity in gas mixture separation, seawater

desalination, and other applications. In addition,

porous graphene, with its ultra-thin membrane

thickness and unique pore structure, obtains a very

high permeability compared to other materials. The

pore size is a critical design parameter for desalina-

tion applications. As shown in Fig. 3a, a suitable pore

size can exclude ions, allowing only water to pass

through. [54] In recent years, several methods of

introducing nanopores into graphene have been

studied and reported.

Ion etching/ Ion bombardment

For practical applications permeability and selectivity

must be imparted by introducing many pores at

sufficient density acting in parallel over macroscopic

areas of graphene. To form porous membranes by ion

etching or ion bombardment, graphene first under-

goes ion bombardment to form defects and is then

oxidized and etched. The etching reagents preferen-

tially corrode the defects, so as to achieve controllable

pore size. [55] Figure 3b shows the simple process of

preparing nanopores. Kemal et al. [57] developed an

effective method of drilling quickly without etching

through physical methods. As shown in Fig. 4, the

researchers first overlap the two graphene layers by a

special method and then drill using a focused ion

beam. This method is fast and accurate and also

prevents the formation of cracks.

Block copolymer lithography

Bai et al. [56] used block copolymer photolithography

to prepare graphene nanomeshes with high-density

nanohole arrays, which can withstand large currents

and have improved electronic properties. Figure 3c

shows the preparation process of the nanomesh. The

initial preparation of graphene sheets is similar to

CVD. The graphene sheets are then placed in a tem-

plate, and holes are etched by oxygen ions. It is worth

noting that in this method, the size of the graphene

network only depends on the size of the graphene

nanosheets, and theoretically, a large amount of

porous graphene can be prepared.

Electron Beam Nanosculpting

Electron beam nanoengraving can also be used to

prepare nanoholes. In this method, a suspended

multilayer graphene sheet is nanoengraved by a

focused electron beam in a transmission electron

microscope (TEM), which can prepare nanoholes in a

short time. [58] Figure 3d is a TEM image of a

nanohole engraved by an electron beam, with a

diameter of about 8 nm and a thickness of about

2 nm. Conductivity measurements on membranes

prepared with electron beam methods demonstrate

that ions can pass through the pores of graphene. [59]

Assembled graphene or GO laminates

A more common method than perforation is to use

stacked GO nanosheets to form membranes. In this

method, the interlayer spacing between the sheets is

controlled to achieve molecular sieving. The thick-

ness of the graphene nanoflake itself is only on the

order of a single atom, but the tile size is as high as

tens of microns. When the graphene is oxidized to

GO, its original sp2 structure is destroyed. This cau-

ses the GO layers to adopt wrinkles, making them

easier to stack with increased layer spacing, [4, 60],

resulting in the type II membrane shown in Fig. 2.

When the GO membrane is used for water treatment,

this layer spacing plays a role in sieving molecules.

Furthermore, the charge on the GO can repel charged

dyes and other pollutants. [61]

Vacuum-assisted filtration

The vacuum filtration method, shown in Fig. 5a, is

the most widely used method for preparing gra-

phene-based membranes. In this method, a solution

of graphene nanosheets is forced through a micro-

filtration support membrane using a filter suction

apparatus under vacuum. [62] The vacuum suction

method produces a thin membrane with a layered

structure of ordered lamella, with a very high degree

of orientation. The p–p interactions between gra-

phene sheets provide mechanical stability to the

resulting membrane. When GO is used, the resulting

membrane contains a very high density of oxygen-

functional groups. The vacuum suction method is
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very simple to perform and can produce membranes

ranging in thickness from transparent membranes

only a few nanometers thick to membranes that are

tens of microns thick.

Layer-by-layer assembly

Layer assembly methods include the layer-by-layer

(LbL) self-assembly and Langmuir–Blodgett (LB)

self-assembly methods. High-quality and large-area

graphene sheets can be assembled by both LbL and

LB methods. In the LbL method, layers are deposited

sequentially and are stabilized by hydrogen bond,

electrostatic, dipole–dipole, or covalent bond inter-

actions. Because the surface of GO is rich in nega-

tively charged functional groups, LbL assembly using

GO can be achieved by combining GO with cationic

small molecules and with cationic polymers. GO

membranes prepared by the LbL method have high

toughness and elastic modulus. Different

microstructures of the resulting GO sheets are

obtained depending upon the forces used to stabilize

the LbL assembly (Fig. 5b). [63] LB technology has

also been proposed for the production of GO sheets

Figure 3 Schematic diagram of porous nanofilm sieve separator.

a [54] Preparation of controllable graphene nanopores by ion

bombardment and etching. b [55] Schematic of fabrication of a

graphene nanomesh. c [56] TEM image of nanohole engraved in

graphene by an electron beam. d.
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and results in membranes that contain fewer wrin-

kles [64, 65].

Continuous centrifugal casting (CCC)

Continuous centrifugal casting (CCC) is an efficient

method for preparing GO nanosheets. Zhong et al.

prepared dense GO membranes in a short time

through CCC. The membranes produced have a

thickness on the order of 10 lm, which is generally

thicker than the membranes produced by other

methods. Figure 5a depicts the CCC process for

preparation of GO nanosheets. The centrifugal force

and shear force generated during the rotation process

are transferred into the GO dispersion, so that the GO

membrane is compressed both in the radial direction

and the tangential direction, thereby obtaining a

smooth and dense GO membrane (Fig. 5d, e). [66]

The methods described above may all be classified

as lamination methods, as they are various approa-

ches for generating laminated graphene or GO

structures. These methods have shortcomings with

respect to their ability to provide control of the pore

structure and surface chemistry. GO membranes

formed by lamination methods are susceptible to

disintegration in contact with aqueous environments,

due to poor bonding between GO sheets within the

membrane. Several methods described below have

been developed to further enhance the stability,

improve the mechanical properties, and/or provide

greater control of the pore size.

Weak reduction

Weak reduction methods change the surface chem-

istry of GO, by reducing the oxygen-containing

functional groups, to form rGO. This moderates the

hydrophilicity of the membrane. Weak reduction also

inhibits the dissociation of the membrane in solution

and thereby increases membrane stability. However,

reduction can also damage the membrane, so

appropriate reductants must be carefully chosen. [67]

Figure 4 Membrane fabrication and pore diameter distribution, achieved using drilling with a focused ion beam. [57].
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Proper weak reduction treatment can not only

increase the number of sp2 regions in GO and thus

improve the water flux of the membrane, but also

effectively improve the structural stability of the

membrane upon exposure to aqueous solutions.

Cross-linking methods

Cross-linking can suppress GO membrane swelling

and dissociation in solution and improve structural

stability. Cross-linking methods include both cova-

lent and non-covalent methods. Covalent cross-link-

ing can enhance the stability and sieving ability of

graphene-based membranes, while non-covalent

cross-linking generally helps the dispersion of gra-

phene-based materials [68–70]. Non-covalent cross-

linking can maintain the inherent properties of gra-

phene-based materials, and the modification of gra-

phene-based materials is mainly achieved through

the interaction of anion and cation, hydrogen bonds,

surfactants, and stacking interactions [68]. Covalent

methods include the use of UV activation chemistry,

small molecule cross-linking agents and thermally

induced reactions, etc. [71]. Covalent cross-linking

can cause defects in graphene, reduce the inherent

properties of graphene-based materials [72], and

bring many different properties to graphene-based

films. For example, the hydrophobicity of the gra-

phene-based film can be greatly enhanced by the

amidation reaction of the coupling agent [73], and the

graphene-based material functionalized by amine

and carboxyl groups is covalently attached to the

polymer matrix containing anhydride; the film is

realized Super hydrophilic. [74] Or the conjugated

structure modification of graphene itself realizes the

preparation of amphiphilic materials. The coordina-

tion of divalent metal ions with oxygen-containing

functional groups in GO can greatly improve the

mechanical properties of the membrane [75]. And,

Cross-linking using small molecules can reduce the

internal concentration polarization that occurs during

forward osmosis and can greatly improve the flexi-

bility of the membrane synthesis process. [76] Ther-

mal annealing can induce cross-polymerization of

acetylene groups. [77] When heated, the ethynyl

group has an exothermic transformation, and the

isoimide in the ethynyl group is rearranged into

imide. The mechanism of cross-linking reaction is

very complex, most of the acetylene dimer becomes

enyne structure, and a small part trimerizes to form

Figure 5 Schematic diagram of GO membrane preparation by

vacuum-assisted filtration a [62]; schematic representation of

fabrication and assembly of freestanding GO-LBL membrane

b [63]; schematic of the CCC production process c; a GO film with

a thickness of * 100 lm and size of * 30 9 10 cm2 d; cross-

sectional scanning electron microscopy (SEM) image of a GO

film, showing highly aligned and compact layered structure

e. [66].
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benzene ring. [78, 79] Typically, cross-linking

increases the solvent stability, but has no effect on gas

separation performance [80].

Large molecule intercalation

Since GO nanosheets have very high specific surface

area, the electrostatic repulsion between layers can

generate strong destabilizing forces within GO

membranes. The addition of large molecules that

intercalate between layers can effectively reduce the

electrostatic repulsion within the GO membrane,

thereby stabilizing the structure. Large molecule

intercalation can also be used to modify membrane

performance by controlling interlayer spacing to

enhance molecular separation [81].

Graphene-based and GO-based composites

The combination of GO with nanoparticles to form

composite membranes can achieve both excellent

permeability and selectivity. The oxygen-containing

functional groups in GO can be used to bind nano-

materials between layers of GO through coordination

forces, forming submicron GO composites with

excellent mechanical stability and precise molecular

sieve properties [82]. Polymers can also be used to

adjust layer spacing in GO membranes. GO/polymer

membranes have been proposed for use in seawater

desalination and wastewater treatment and may

contribute to alleviating water shortages and envi-

ronmental problems. GO/polymer composite mem-

branes are often impermeable to water in the dry

state, making them also suitable for gas sieving

applications [83].

Significant advances in next-generation separation

membranes based on graphene and GO take advan-

tage of a number of novel transport properties of

these materials. [84, 85] GO fragments are stacked

layer-by-layer to form a compact stacked structure.

Although there are gaps between the layers, these are

not sufficient to achieve selectivity in separations.

However, by rebuilding two-dimensional nanochan-

nels between graphene sheets, the separation ability

can be effectively improved, to enable sieving of

molecules of specific sizes. [86, 87] Graphene-based

membranes, including GO, rGO, and doped gra-

phene, have also been used for catalytic degradation

of harmful pollutants and dyes. [88–91]

Table 1 summarizes the modification methods of

some graphene-based membranes and their proper-

ties after modification. Composite membranes from

graphene and its derivatives have led to new appli-

cations in water purification and desalination.

Although most graphene-based water membrane

technologies are still in the development stage, they

have promising prospects for the future. In particu-

lar, the GO-based membranes are expected to have

greater direct market potential due to their relatively

low cost and the ease with which they can be

implemented in existing membrane-based opera-

tions. The combination of GO with macromolecules,

such as polymers, makes the GO membrane more

ductile while increasing water flux. The combination

with nanoparticles, such as nanotubes, TiO2

nanoparticles, and MOF, can also improve the water

flux, desalination rate and decontamination capabil-

ities of GO-based membranes.[92–95]

Improved performance of graphene-based
membranes in decontamination
applications

Compared with the pure GO water purification

membranes with fixed layer spacing, composite

membranes formed by combining GO with various

materials have important enhancements in properties

and performance. Performance enhancements are

achieved by changing the GO membrane layer spac-

ing, the membrane surface charge, and the chemistry

of the oxygen-containing groups on the membrane.

Decontamination performance is often demonstrated

by the removal a model dye compound from water.

Commonly used cationic dyes include methylene

blue (MB) and rhodamine B (RB); anionic dyes

include methyl orange (MO), rhodamine WT (R-WT).

Nanomaterial intercalation to modify GO
membranes

The nanomaterials used for intercalation can be

divided into three categories, based on their dimen-

sionality. Zero-dimensional nanoparticles include

MOFs [107] and carbon quantum dots [108], one-di-

mensional nanoparticles include carbon nanotubes

[109], and two-dimensional nanomaterials include

WS2 nanosheets [110].
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Nanoparticles

Liangliang Dong et al. [111] introduced NH2-Fe3O4

through the vacuum filtration strategy to prepare

high water flux GO/NH2-Fe3O4 nanofiltration mem-

branes (Fig. 6a). Addition of the NH2-Fe3O4

nanoparticles increases the GO layer spacing signifi-

cantly, thus sacrificing ion sieving performance, but

at the same time, the water flux and dye rejection

increase (Fig. 6b). The NH2-Fe3O4 also acts as a cross-

linking agent to stabilize the composite membrane.

Therefore, GO/NH2-Fe3O4 composite membranes

may be used in the treatment of dye/salt mixed

wastewater.

Nanoporous MOFs have attracted increased

attention in the field of decontamination and desali-

nation due to their special porous structures. [112]

Guanet et al. [94] produced rGO, which increases the

stability, and reduces the interlayer spacing and

water flux, compared to GO. They then formed rGO

composite membranes containing nanoporous crys-

tals of UIO-66 and Prussian blue (PB). The prepared

composite membranes have increased interlayer

spacing, and screening performance. The pore size of

UIO-66 is between 0.6 and 1.1 nm, the pore size of PB

is around 0.4 nm, and the average diameter of water

is 0.32 nm. The composite containing the porous

MOF nanoparticles has greatly increased the water

flux. Figure 7a-c illustrates the transmission path of

water in the composite membrane. Two screenings,

provided by both the rGO layer spacing and the

intercalating MOF, also greatly increase the rejection

of the a model dye compound. As shown in Fig. 7d,

as the content of UIO-66 increases the rejection

remains above 90%. Increasing the nanoparticle

content will not continuously increase the interlayer

spacing of rGO, but will result in more densely

packed nanoparticles. Thus, the increase in water flux

is also due in part to the better water permeability of

porous MOF materials. [94]

Other MOFs have been used as intercalation

materials to control the interlayer spacing of GO

membranes. Calculations have predicted good com-

patibility between GO and ZIF-8. [114] As a porous

nanomaterial, ZIF-8 also has the advantages of high

specific surface area and large functional pore size.

MOF grown on the GO membrane can effectively

improve the weak compatibility between the

Table 1 Examples of performance of graphene-, GO- and rGO-based composite separation membranes

Materialsa Preparation methods Water permeance (L

m-2 h-1 bar-1)

Salt rejection (%)

NaCl

Ref.

PVDF/graphene Electrospun nanofibrous 150 kg �m-2�h-1 [96]

PMMA/graphene/PET Ion-track nanotechnology chemical

etching

5.4 ± 2.3 [97]

GO/graphene (80wt%) Vacuum-assisted filter 7.2 88.3% [98]

LIG/PVA Cross-link\ 225 [99]

GO-TFN (0.015 wt%) Coating method 2.871 93.8 ± 0.6 [100]

GO-PSBMA/PES (22.0

wt%)

Interfacial polymerization 11.98 4.3 ± 0.3 [101]

GO@PAN Filter method 8.20 9.8 [102]

PSF-GO (0.30 wt%) Coating method 2.45 59.5 [103]

rGO–CNT-AAO Vacuum-assisted filter 31.5 42 ± 0.6 [95]

GO - OCMC/PSF LbL self-assembly 1.78 ± 0.02 62 [104]

GO-PSf Coating method 5.47 33.01 [92]

rGO/TiO2-PSf (0.01 wt%) Coating method 6.14 36.61 [92]

rGO/TiO2 (0.02 wt%) Interfacial polymerization 3.42 99.45 [93]

GO-TFC Interfacial polymerization 1.07 99.5 ± 0.3 [105]

GO-ZIF8/PEI Vacuum-assisted assembly 3.5 99.1 [106]

aPVDF—polyvinylidene fluoride; LIG—laser-induced graphene; PVA—polyvinyl alcohol; TFN—thin-film nanocomposite; PSBMA —

poly(sulfobetaine methacrylate); PES—polyethersulfone; PAN—polyacrylonitrile; PSF—polysulfone; AAO—anodic aluminum oxide;

OCMC—O-(carboxymethyl)-chitosan; TFC—thin-film composite; PEI—polyethyleneimine
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nanoparticles and the polymer and prevent the

aggregation of MOF on the polymer. [106, 113] Fig-

ure 7e is a schematic diagram of ZIF-8 growing on

GO.

In addition to porous nanomaterials, other

nanoparticles can also be used as intercalation

materials to compound with GO. Zhao et al. [108]

prepared GO composite membranes containing GO

quantum dots (GO QDs). Compounding with GO

QDs improves the hydrophilicity and water flux

without affecting the rejection of pollutants. Fig-

ure 8a illustrates the preparation of the composite

membrane, which is prepared into a membrane by a

the vacuum filtration method. When the content of

GO QDs increases, the interlayer spacing also

increases, and the quantum dots scattered on the

outer surface of the membrane can improve the

membrane hydrophilicity, thereby improving the

water flux. The left picture in Fig. 8b shows the test of

the composite film on MO, and the right picture

shows the test on DY. It can be clearly seen that as the

content of GO QDs increases, the water permeability

increases steadily and the rejection rate can be well

maintained. Similarly, Peng et al. [115] used a simple

deposition method to compound rGO with SiO2

(Fig. 8c) which improved the water permeability of

GO base film and retained the high rejection rate. In

order to solve the problem of the stability of GO base

Figure 6 Mechanisms of transport process of GO and GO/NH2-Fe3O4membranes. a. Water flux and single dye and salt rejection of GO/

NH2-Fe3O4 membranes. b [111].
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membrane, the author also introduced PDA, which

not only made the composite membrane strong, but

also improved its hydrophilicity. And, as shown in

Fig. 8d, as the ratio of GO to SiO2 increases, the water

permeability greatly increases and the MB rejection

rate is not significantly affected.

Nanotubes

Two-dimensional carbon nanotubes have good com-

patibility with GO and precise diameter. Han et al.

[116] combined rGO with multi-walled carbon nan-

otubes (MWCNTs) on a porous substrate to obtain a

composite membrane. The addition of the nanotubes

doubles water permeability while maintaining the

dye rejection above 95%. Figure 9 shows a schematic

diagram of the GO-MWNTs composite membrane.

MWNTs widen the interlayer spacing and increase

the membrane roughness. The resulting membrane is

hydrophilic, with improved resistance to fouling. The

improved antifouling performance greatly increases

the value of the composite membrane. After discov-

ering the antifouling property of the composite of

GO-MWNT, Yuan et al. [117] modified PVDF mem-

branes by a facile phase inversion method. The

composite PVDF/MWCNT/GO mixed matrix mem-

brane not only exhibited increased the water flux, but

also permitted electrical conductivity measurements

for real-time monitoring of the degree of membrane

pollution. While these modifications reduced the

mechanical strength of the original PVDF membrane,

these new membranes still have good application

potential.

In addition to carbon nanotubes, other nanotubes

can also be used to compound with GO. Zhan et al.

[118] embedded halloysite nanotubes (HNTs) in GO

(a) (d)

(b) (c)

2D channel 3D channel

(e)

Figure 7 Schematics of water transport through a nanocrystals

rGO composite membranes, b stacked rGO sheets, and

c nanoporous crystal. d Filtration performance of UiO-66-rGO

membranes with different amounts of the MOF. [94] Schematic

diagram of fabrication of ZGO/ polyether block amide (PEBA)

membranes. e [113].
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to obtain a high-throughput, high-rejection antifoul-

ing composite membrane, for oil–water separation.

HNTs are low-cost and environmentally friendly

nanomaterials. [119] HNTs increase the layer spacing

of the GO membrane, reduce the roughness, and

significantly improve the antifouling performance. In

the same year, Liu et al. [120] also published an

article on HNT modified GO. As shown in Fig. 10,

the rGO/HNTs composite membrane is vacuum fil-

tered to a support membrane with the help of poly-

dopamine, and the performance in oil–water

separation is improved.

After GO is compounded with nanotubes, the

general antifouling performance has been improved.

This may be because commonly used nanotubes

MWCNT and HNT have many hydrophilic groups

that improve the membrane hydrophilicity. In addi-

tion, reports mention that the insertion of nanotubes

can reduce the surface roughness of the membrane. It

is generally believed that lower roughness imparts

improved antifouling performance.

Nanosheets

2D nanomaterials have large specific surface area,

stability after membrane formation, and both edge-

to-edge and face-to-face interactions. These proper-

ties make 2D nanomaterials ideal for preparing var-

ious functional membranes. Incorporation of 2D

nanosheets into graphene-based membranes can

achieve property and performance enhancements.

Misato et al. [121] mixed niobate nanosheets (NbNs)

and GO to prepare NbN-GO composite membranes

by vacuum filtration. As can be seen from Fig. 11a,

based on the tight channel structure of NbN, the

loose accumulation of voids after mixing with a small

amount of GO forms a larger nanochannel, resulting

in high porosity and high water permeability of the

Figure 8 Schematic illustration of the preparation process of GO

QDs-intercalated GO membranes. a Water flux and rejection rates

when separating two model dye aqueous solutions by the

membranes fabricated with varying GO QDs contents. b [108]

Schematic depiction of the preparation of PVDF/RGO@SiO2/

PDA membrane. c Pure water flux and removal ratio. d [115].

Figure 9 Schematic representation of the structure and water transport path for (left) graphene nanomembrane (GNm) and (right)

graphene–carbon nanotube membrane (G-CNTm). [116].
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membrane structure of NbN-GO. When the mass

ratio of NbN to GO is 55:45, the composite achieves a

higher water flux and particle retention, with no

effect on the rejection of a model dye (Fig. 11b). Chen

et al. [110] also reported that transition metal diha-

lide, (TMDs) WS2 was compounded with GO, and a

hybrid membrane with high flux and high rejection

was prepared by simple vacuum filtration (Fig. 12a).

The unmodified GO membrane is easy to swell, but

has good retention function, while WS2 has the

advantages of good stability, and high flux, but poor

retention performance. When GO is compounded

with WS2, the performance is best when the mass

fraction of GO is 15%, and the rejection of dye is more

than doubled.

The GO and nanosheet composite membranes

mentioned above are all prepared with GO as the

filler. Ma et al. [122] used MoS2 as the filler to

Figure 10 The preparation procedures of polydopamine (PDA)/RGO/HNTs membranes [120].

Figure 11 Schematic diagram of channel structures in NbN-GO composite membranes. a Permeability and rejection of EB, Na2SO4 and

NaCl for NbN100, GO100 and NbN-GO composite membranes. b [121].
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compound with GO. As shown in Fig. 12b, a

stable GO/MoS2 composite membrane was prepared.

MoS2 is hydrophobic and can promote strong van der

Waals interactions between MoS2 and GO, so the

stability of the composite membrane in water

increases. Moreover, the expansion of the interlayer

spacing by MoS2 still increases the flux of the com-

posite membrane.

Other methods to modify GO membranes

The performance of GO-based membranes can be

improved by adjusting the properties via alternative

preparation techniques. Potential improvement

strategies include designing the spacing between GO

layers by incorporating cross-linking agents of dif-

ferent sizes and modifying membrane charges by

functionalizing GO. As shown in Fig. 13, 1, 3,

5-benzenetricarbonyl trichloride (TMC)-cross-linked

GO has improved water flux and dye rejection. Fur-

thermore, cross-linking greatly improves the stability

of GO membrane. [61] In this work, the authors also

considered the adsorption performance of GO when

testing dye rejection. Before collecting the trapped

dye, the experimental samples were equilibrated for

two hours to completely eliminate the influence of

adsorption.

Swelling of GO membranes in water is a persistent

problem, as it increases the layer spacing, thereby

reducing retention performance. [123, 124] Jingqiu

Sun et al. [125] reduced the oxygen-containing func-

tional groups of GO to form rGO and then subse-

quently modified the surfaces with additional GO, to

obtain a layered structure of O-rGO membranes

(Fig. 14a). These layered membranes have improved

hydrophilicity and water permeability, compared to

rGO membranes. Reduction of the oxygen-containing

functional groups reduces the swelling, while addi-

tion of GO further alters charge density on the sur-

face, thereby improving antifouling performance. As

shown in Fig. 14b, the resulting modified O-rGO

membrane has improved rejection of dye molecules

with different charges.

For decontamination, the adsorption effect, the

electrostatic repulsion effect, and the physical sieving

effect of the nanochannels are all phenomena that can

be improved. The adsorption of contaminants is most

frequently ignored or not evaluated in many reports.

The inherent adsorption capacity of GO may affect

the retention performance of composite membranes.

The intercalation of nanomaterials mainly achieves

the effect of increasing flux and rejection by changing

the interlayer spacing. Nanotubes can also improve

the antifouling performance when used as intercala-

tion materials. However, in most cases, the

improvement of flux is accompanied by a decrease in

retention, or it is difficult to greatly improve both the

flux and the retention performance at the same time.

Table 2 summarizes the water flux and retention of

modified GO substrates after modification.

Figure 12 Illustration of the fabrication process of hybrid WS2/GO membrane and its regulatory mechanism. a [110] Preparation of

MoS2/GO composite membranes. b [122].
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Improved performance of graphene-based
membranes in seawater desalination
applications

Membrane technology has become one of the

important means of water purification and desalina-

tion. Desalination technology can contribute solu-

tions to water shortages in coastal areas. [132]

Membrane technology can be classified according to

the pore size of membrane materials, and commonly

used commercial membranes can be divided into

reverse osmosis (RO), nanofiltration (NF), ultrafil-

tration (UF) and microfiltration (MF). The intercep-

tion of various membranes for different solutes in

water is shown in Fig. 15. RO can achieve 98–99.8%

interception of Na? and Cl- monovalent ions in

solution. [133] The rejection of larger ions such as

Ca2?, Mg2?, and other divalent ions exceeds 90% for

NF membranes. So NF membranes can soften water

quality, but the rejection of smaller ions such as Na?

will be reduced. [134] Table 3 summarizes the pore

sizes of different types of membranes and the

Figure 13 Schematic diagram of TMC-cross-linked separation membrane and water flux of different GO layers and rejection rate of

organic dyes. [61].
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corresponding materials and solutes that can be

screened by microfiltration (MF), ultrafiltration (UF),

reverse osmosis (RO), forward osmosis (FO), and

nanofiltration (NF) membranes.

Surwade et al. [54] prepared nanoscale holes in a

graphene layer with a thickness of one atom by an

oxygen plasma etching process and showed that the

size of the holes can be adjusted (Fig. 16a). Experi-

ments demonstrated that porous graphene is capable

of desalination while maintaining high permeability.

They demonstrated that it is possible to precisely

control the pore size of the graphene membrane to

achieve selective screening of different ions

(Fig. 16b).

The salt rejection of nanoporous graphene can

reach 100%. [54] Most GO membranes achieve ion

sieving by adjusting the layer spacing. If the advan-

tages of nanoporous graphene and GO membranes

Figure 14 Schematic of the O-rGOM fabrication strategy. a O-

rGOM on the rejection of dyes with different charges. b [125].

Table 2 Performance of modified GO membranes for decontamination

Materialsa Water permeance

(L/m2�h�bar)
Rejection performance Ref

NaCl Na2SO4 MB (?) MO(-) R-WT(-) EBT RB (?)

GO/TMC 8–27.6 6–19% 26–46% 46–66% 93–95% …… …… [61]

GO/nylon 6–13 11.15 27.6% 56.5% [ 95% [ 99% …… …… …… [126]

GO/TiO2/CA 68.1 33.0% 57.1% 99.3% 99.3% …… …… …… [127]

GO/MB 7.67 …… [ 70% …… 93.3% …… …… 82.6% [128]

SG/GO 33 …… …… …… …… …… 98.0% …… [129]

GO/PBI (coated with

a PDA layer)

91.3 ± 3.4 The oil removal efficiency: 100% [20]

NbN/GO45 20 15.0% 60.0% Evans blue: nearly 100% …… …… …… [121]

GO15WS2/Nylon 156.3 …… …… 96.3% …… …… …… 97.7% [110]

rPGMs 5.3 …… 71.2% …… [ 97.5% …… …… …… [130]

GO/GO QD 48.59 28.4% 74.9% …… 98.6% …… …… …… [108]

SiO2-GO/psf 0.3wt% 185 …… …… …… …… …… …… …… [131]

rGO/UiO-66 27 …… …… 98.7% …… …… …… 95.0% [94]

O-rGOM 3.22 …… …… 74.4% …… …… …… 98.2% [125]

GO/TiO2 68.1 33.0% 57.1% 99.3% 99.3% …… …… 99.4% [127]

aCA— cellulose acetate); SG—solvent green; PBI—polybenzimidazole; QD—quantum dots;

Figure 15 Range of nominal pore diameters for commercially

available membranes. [135].
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are combined, this could lead to substantial

improvements in water purification. [138]

Nanomaterial/GO composite membranes

The oxygen-containing groups on the surface of GO

introduce multiple functionalities. Adjusting the

oxygen-containing groups on GO can alter the per-

formance of the membrane without addition of other

materials. Yuan et al. [139] mixed glycine with GO

under alkaline conditions and irreversibly bound

carboxylic acids to the surface of GO films by

nucleophilic substitution, and formed membranes by

vacuum filtration (Fig. 17a). As shown in Fig. 17b the

permeability and salt rejection of the membrane is

improved by introducing a large number of carboxyl

groups. The high permeability may be attributed to

the increase in hydrophilicity. The introduction of a

large number of carboxyl groups makes the mem-

brane more negatively charged, resulting in a higher

salt rejection rate. The rejection of divalent anions in

Fig. 17b is twice that of monovalent anions, which

also illustrates the enhancement of electronegativity

of the carboxylated GO.

Porous reduced graphene oxide (PRGO) formed by

perforating GO after reduction can solve the problem

of GO aggregation while maintaining its flux and

retention performance. PRGO has been used in dye

removal, desalination and other fields. [95, 140] Zhu

et al. [141] used poly (sodium-p-styrenesulfonate)

(PSS) and modified halloysite nanotubes (HNTs)

intercalated PRGO to obtain a composite membrane

with significantly improved flux. Figure 18 is a

schematic diagram of the composite membrane

preparation and filtration simulation. After interca-

lation, the interlayer spacing of PRGO increases, and

the removal rate of dye is over 97%. The removal rate

of monovalent and divalent ions is less than 10%. The

composite membranes can therefore be used for

separations of dye form salt in mixed solutions.

The rigid nanosphere NH2-Fe3O4 intercalated GO

mentioned above also achieves separation of mixed

dye/salt solutions. [111] The nanomaterial composite

GO membrane can separate molecules with a larger

size than the salt ions due to the increase of the

interlayer spacing. To achieve the removal of salt ions

in water, composites are formed with polymers,

which will be discussed below.

Polymer/GO composite membranes

Anion exchange membranes (AEM) are commonly

used in desalination. [142] Li et al. [143] modified

AEMwith polydopamine and GO composite not only

Table 3 Categorization of membranes according to mean pore radius and molecular weight cut-off

Process Mean pore radius (nm) Molecular weight cut-off Intercepted materials Ref

MF 0.1-1 lm … Suspended solids, bacteria, microparticles [53]

UF 20–50 [ 500 Da Protein, enzyme, bacteria latex, microparticles, viruses [53]

FO 0.25–0.37 … Inorganic salts, sugars, amino acids, etc. [53, 136]

RO 0.5–10 [ 100 Da Inorganic salts, sugars, amino acids, etc. [53]

NF &1 150-500 Da Inorganic salts, sugars, amino acids, etc. [53, 137]

Figure 16 Characterization of

nanoporous graphene.

a Average salt rejection as a

function of pore type and

pressure differential. b [54].
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to increase the salt rejection but also to greatly

increase the antifouling performance. The

hydrophilicity, electronegativity, and surface rough-

ness of the membrane are all related to the antifoul-

ing performance of the membrane. [144] The GO

imparts excellent hydrophilicity, electronegativity,

and screening performance to AEM, but its stability is

poor. The introduction of polydopamine acts as a

cross-linking agent to enhance the stability of the

membrane and provide a degree of hydrophilicity.

Polydopamine also provides electronegativity when

pH[ 4. The modified membrane has increased

hydrophilicity, increased electronegativity, and

reduced roughness, achieving a dual improvement in

desalination performance and antifouling

performance.

Karkooti et al. used the non-solvent induced phase

separation (NIPS) method to prepare GO/

Figure 17 Schematic illustration of carboxylation reaction. a Performance comparisons of GO and GO-COOH membranes. b [139].
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polyethersulfone (GO/PES) composite membranes,

which exploit the hydrophilicity and electronegative

properties of GO, and greatly improve the membrane

performance, while maintaining desalination perfor-

mance and antifouling performance. [145]

GO nanocomposites are also often used to optimize

polymer-based membranes. For example, Safarpour

et al. [93] reported a new type of RO membrane. They

interfacially polymerize and insert nano-rGO and

TiO2 into the polyamide (PA) layer. Due to the

uneven structure of GO, TiO2 is uniformly dis-

tributed on the surface of the GO film, and the

exposed RO film is not affected by the embedded

rGO/TiO2 nanocomposite material (Fig. 19a). The

hydrophilicity and electronegativity introduced by

the composite material greatly improve the flux and

antifouling performance of the PA membrane. Fig-

ure 19b shows the flux and desalination results of the

prepared new reverse osmosis membrane. The water

flux and desalination performance of the membrane

reach the maximum when the mass ratio of

nanocomposite material is 0.02 wt%. However, only

monovalent salt ions were tested in the article, and

the salt solution concentration used for testing was

low, so the desalination performance of the new

membrane was not fully demonstrated.

Interfacial polymerization is a mature method for

the preparation of NF membranes. Wang et al. [146]

used the interfacial polymerization method with

polyethyleneimine (PEI) as the water phase monomer

and trimesoyl chloride (TMC) as the organic phase

monomer to incorporate exfoliated

hydrotalcite/graphene oxide (EHT/GO) hybrid

nanosheets into a polyamide (PA) membrane. Both

flux and desalination performance are improved

(Fig. 20b). It is worth noting that EHT/GO will pos-

itively charge the membrane, which can effectively

intercept Mg2?, which is important for water soften-

ing. Figure 20a is a diagram of the electrostatic

repulsion mechanism of the membrane.

Composite membranes used for desalination are

mostly polymer membranes doped with GO or GO

composite materials, but the polymer can also be

used as an intercalation material inserted between

GO layers. As mentioned earlier, when GO is com-

pounded with nanomaterials, the layer spacing is too

large for desalination; although there is a large water

flux, small ion rejection cannot be obtained. How-

ever, when polymer intercalation is used, while

obtaining high nanometer-scale water channels, the

cross-linked network of the polymer can also prevent

the passage of salt ions. Jiawei Sun et al. [147] pre-

pared GO membranes embedded with and cross-

linked by PVA and supported on cellulose microfil-

tration membranes, by pressure-assisted filtration for

total evaporative desalination of high-salinity water.

Figure 21 is a schematic diagram of the preparation

of the GO-based composite membrane. The authors

demonstrated adjusting the transmission channel by

appropriately adjusting the intercalation of the PVA,

to achieve excellent stability of the membrane

through covalent cross-linking.

In addition, the selection of a supporting substrate

can improve desalination performance. For example,

Figure 18 Schematic diagram of the preparation and retention of PRGO/HNTs-PSS composite membrane. [141].
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the performance of a PSF substrate has been

improved by adding highly hydrophilic and nega-

tively charged graphene oxide nanosheets. Several

studies have demonstrated high water permeance

and desalination by combination of GO and PSF

membranes. [103, 148, 149]

For desalination applications, multiple polymers

have been combined with GO-based materials.

Compared with nanoparticle composites, which may

be useful for dye/ion separations, polymer-based GO

composite membranes are more suitable for desali-

nation due to their control over the interlayer spac-

ing, and the ability of the polymer network to

provide additional screening. Polymer/GO compos-

ites can also achieve similar stability and antifouling

properties as nanoparticle/GO composites. However,

Figure 19 rGO / TiO2 EDX image and rGO / TiO 2 / RO scan cross-section image. a Water flux and salt rejection of the rGO/TiO2

membranes. b [93].

Figure 20 Separation schematic diagram of EHT/GO nanofiltration membranes. [146].
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by comparing Table 3 and Table 4, we find, not sur-

prisingly, that performance for desalination may

sacrifice water flux. Table 4 summarizes some GO/

polymer and GO/nanoparticle/polymer composite

materials with improved desalination performance

and their performance parameters.

Conclusions and outlook

Graphene-based and GO-based membranes exhibit

extraordinary permeability properties, opening the

door to the ultra-fast and highly selective transport of

water and gas molecules. Graphene and its deriva-

tives have excellent mechanical properties, single

atomic layer structure, large specific surface area, and

abundant modification methods which provide many

opportunities for separations, desalination, and water

purification.,

The modification of graphene-based membranes

can be divided into three methods. The first is to

directly perforate the graphene and to achieve parti-

cle screening performance by controlling the size of

the holes. Perforation methods have been briefly

reviewed: drilling holes in graphene membranes is a

difficult process making it is expensive and compli-

cated. Drilling may result in uneven pores and is not

easy to scale to large quantities of material or large

surface areas.

The second category of methods is embedding of

nanomaterial and polymers between graphene and

GO sheets. This intercalating method is used to con-

trol the interlayer spacing of the GO membrane to

realize the screening of different substances. The

primary nanomaterials used for intercalation include

nanoparticles (e.g., MOF, COF, NH2-Fe3O4, and Ag

nanoparticles) and nanotubes (carbon nanotubes,

TiO2 nanotubes, and HNT). When forming GO/

polymer composites, composite materials are usually

doped with polymer membranes as fillers. GO-based

polymer composites impart high hydrophilicity, high

electronegativity, and unexpected antifouling prop-

erties. When the polymer is used as an intercalation

material between GO layers, its unique cross-linking

characteristics greatly improve the stability of the GO

membrane.

The third method is to modify GO or graphene

itself through introduction of charged and oxygen-

containing functional groups to achieve performance

enhancement. While, this method has poor scalabil-

ity, it is a relatively simple method to improve

performance.

On the basis of this review, these following four

points should be addressed in future research on

Figure 21 Schematic diagram of PVA/GO composite membrane fabrication. [147].

J Mater Sci (2021) 56:9545–9574 9565



improving the performance of GO-based materials

for desalination and decontamination:

1. When preparing GO-based composite membrane

materials, while improving water flux and solute

rejection, the membrane mechanical strength

cannot be ignored. This important property

determines whether the prepared membrane will

survive practical application. This is particularly

important when GO is compounded with nano-

materials. Although a higher water flux and

rejection rate are often obtained, this should not

require compromising the strength of the mem-

brane. When a polymer substrate is added or

when GO is compounded with a polymer,

although the strength of the membrane may be

increased, this should not be at the expense of

water flux and rejection properties. Cross-linking

using small-molecule chemistries may provide

better way to provide simultaneous control over

size exclusion and membrane durability.

Suitable cross-linking methods that can improve

stability without affecting flux and retention

remain an open area of exploration.

2. In most solvents, GO spontaneously aggregates,

and it is difficult to obtain effective dispersion.

Researchers are working hard to overcome these

difficulties. However, the impact of graphene-

based membranes will continue to be at the

forefront of research because of the potential for

further development.

3. In rejection tests, the rejection of anionic dyes is

generally better than the rejection of cationic

dyes, which may be attributed to the negative

surface charge of GO. Some researchers have

addressed this by changing the surface charge of

the membrane, which affects other performance

properties. Additional strategies aimed at

addressing this issue should be pursued.

4. Membrane fouling remains as a persistent chal-

lenge for the successful application of membrane

technology in the field of water treatment. With-

out major breakthroughs in prevention of mem-

brane fouling, many otherwise promising

Table 4 Performance of GO/polymer and GO/nanoparticle/polymer composite membranes for desalination

Materialsa Water permeance (l/m2•h•bar) Rejection performance Ref

NaCl Na2SO4 MgCl2 Mg2SO4

GO-PVA 98.1 kg/m2�h 99.99% …… …… …… [147]

PES-GO 16.9 …… …… …… [145]

CDA-GOCM 20.1 99.90% …… …… …… [150]

pPDA-GOCM 10.7 99.80% …… …… …… [150]

GO-PSS/PAN 16.8 97.10% …… …… [151]

GO-TiO2-PSS/PAN 56.8 93.90% …… …… [151]

GO-TMC/PDA-PSf 30 29.00% 26.00% …… …… [61]

GO-PAN 1.8 9.80% 56.70% …… …… [102]

GO/PSf 11 25.00% 65.00% …… …… [148]

GO-MWCNT/PVDF 11.3 39.70% 81.00% …… …… [116]

GO-MoS2/PVDF 10.2 43.20% 65.20% …… …… [152]

GO-PDA/PSf 18.5 4.00% 28.00% …… …… [153]

GO/PSf 2.5 58.00% 72.00% …… …… [149]

PVDF-f-G \ 1 99.0% …… …… …… [154]

Psf/GO 0.3wt% 353 59.50% 95.20% 62.10% 91.10% [103]

GO/PA 2.97 93.80% 97.30% …… [100]

PRGO-HNT(PSS) 8.8 6.80% 14.30% 4.70% 4.70% [141]

CFGO/PA 11.2 28.70% &83% &20% &70% [155]

RGO/TiO2/PA 3.42 99.45%

GO/EHT/PA 15 &40% &30% &90% &40%

GQDs/PEI 12.9 L/m2•h …… …… …… …… [156]

aCDA—1, 4-cyclohyxanediamine; pPDA—p-phenylenediamine;
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technologies may never be translated from labo-

ratory development to industrial application.
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