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ABSTRACT

An innovative crystal plasticity model was developed by incorporating the

dislocation density-based hardening law, in which the grain-level hardening

behavior is dependent on the evolution of the dislocation density in the cell

walls and cell interiors and the evolution of the volume fraction of the cell walls.

The large plastic deformations of OFHC copper single crystals and polycrystals

were simulated by the two crystal plasticity models in conjunction with the

dislocation density-based hardening law and the classic saturation-type phe-

nomenological hardening law, respectively. A comprehensive comparison study

on the 2 hardening laws was accordingly carried out in terms of the stress–strain

responses and texture evolutions. The simulation results of the two crystal

plasticity models conjuncted with the different hardening laws have a good

consistency, and both of them are generally in good agreement with the

experimental data, which therefore validate the developed crystal plasticity

model incorporated with the dislocation density-based hardening law. The

Taylor-type mean-field model and Voronoi-type full-field model were, respec-

tively, used as the homogenization schemes to calculate the macroscopic stress–

strain responses of the polycrystalline aggregate, and the two kinds of calculated

results were compared and analyzed in detail. By using the Taylor-type mean-

field crystal plasticity finite element method (CPFEM), the processes of single

shot impact along the different impact angles were numerically simulated; the

macroscopic plastic deformations, microscopic texture evolutions and disloca-

tion density evolutions were resultantly investigated, which would conduce to

the further study on the microscopic strengthening mechanisms of shot peening
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or surface mechanical attrition treatment, and the rise of the new ideas for

relevant modeling.

Introduction

Since the twentieth century, with the rapid develop-

ment of industrial technology, especially in the fields

of micro-electromechanical system (MEMS) and

electrical devices, the demand and requirement for

materials have been increasing accordingly. In order

to take full advantage of the metallic material capa-

bility, it has been more and more necessary to

understand the heterogeneous plastic deformation

mechanisms, and to establish the models linking the

microstructure evolution with the macroscopic

mechanical performance that are used to characterize

the corresponding deformation behavior in service

under complex loading conditions.

The crystal plasticity theory has increasingly

attracted considerable interests as it has the capability

of describing the heterogeneous mechanical respon-

ses of metallic materials by reproducing the grain-

scale microstructural features and incorporating

microscale deformation physics and mechanisms [1].

Sachs [2] proposed the first crystal plasticity model

based on the iso-stress assumption that the resolved

stresses of all the deformed grains are identical and

are equal to the macroscopically imposed stresses.

The second crystal plasticity model was proposed by

Taylor [3] based on the iso-strain assumption that all

grains accommodate the same plastic strain equal to

the macroscopically imposed strain. Hill and Rice

[4–6] then established the models used for describing

the geometry and kinematics of crystal plastic

deformation, and applied the models to analyze the

rate-independent elastic–plastic deformation. Based

on the crystal plasticity theory, Asaro [7, 8] and Peirce

[9] further developed the numerical computation

frame of crystal plastic constitutive model, and the

rate-dependent elasto-viscoplastic deformation

behavior was analyzed accordingly. In recent years,

with the development of finite element method, the

numerical implementation of crystal plasticity by

taking the advantage of the finite element method

(CPFEM) has been conducted by many researchers

[10–16], and a large number of open source codes and

software were developed resultantly [17–21]. The

wide applications of these codes and software have

considerably improved the developments of crystal

plasticity theory.

Within the framework of crystal plasticity finite

element method (CPFEM), a single-crystal plasticity

constitutive model is developed firstly to describe the

elastic–plastic deformation at the grain level.

According to the classic plasticity theory, the plastic

deformation of materials is attributed to the crystal-

lographic slip of dislocation on the discrete slip sys-

tems. Schmid [22] proposed a criterion for starting

the slip systems that the plastic slip occurs when the

resolved shear stress on a glide plane reaches the

critical resolved shear stress (CRSS). As a result, the

plastic deformation of crystals is related to the ori-

entation of the crystal lattice relative to the loading

axis; crystallographic slip may occur on one or more

slip systems. Besides the dislocation slipping, there

are some other mechanisms of the plastic deforma-

tion, such as twinning and phase transformation,

which are not taken into consideration in this work.

Similar to the conventional macroscopic plasticity

theory, the material mechanical responses described

by the crystal plasticity constitutive model are also

based on the flow rule, the hardening law and the

evolution of internal state variable. The flow rule

establishes the relation between the resolved shear

stress and the shear strain rate, such as the well-

known power law [23] and thermally activated for-

mula [24]. The hardening law expresses the evolution

of slip resistance, which can be generally divided into

two categories: the phenomenological model and the

physically based model. The typical phenomenolog-

ical hardening laws include: Peirce–Asaro–Needle-

man (PAN) hardening law [25], Anand–Kalidindi

hardening law [26], Voce hardening law [27, 28], etc.

In the phenomenological hardening law, the hard-

ening effects are generally dominated by two parts:

self-hardening and latent hardening [29, 30], and the

latent hardening is usually taken into consideration

by a latent-hardening factor defined by the ratio

between the latent-hardening rate and self-hardening

rate. The different hardening laws would have a

significant impact on the predictability of the crystal

plasticity model in terms of the stress–strain
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responses and texture evolutions [31]. Guo et al. [32]

employed the Taylor model and Affine model to

study the large strain behavior of OFHC copper in

terms of stress–strain responses and deformed tex-

tures, and the role of latent hardening was compre-

hensively investigated resultantly.

When compared with the physically based hard-

ening law, the crystal plasticity models in conjunction

with the phenomenological hardening laws are

computationally more efficient, since these hardening

laws are not related to any physical processes asso-

ciated with the plastic deformation. In order to cap-

ture the microstructural evolution that develops in

the process of the large plastic deformation, a large

number of physically based hardening laws have

been developed for taking into account the

microstructural evolutions of metallic materials

[33, 34].

Most recently, many microstructurally based crys-

tal plasticity models have been focused on the hard-

ening laws by developing the internal state variables

such as dislocation densities [35–37]. According to

the physical mechanism of the plastic deformation,

the mechanical responses of materials are dependent

on the competition between the multiplication, stor-

age, rearrangement and annihilation of dislocations

[38], the plastic flow is mainly due to the movement

of mobile dislocations, and the work-hardening

intrinsically is the increase in required stress to acti-

vate the motion of the stored dislocations. In the

process of the plastic deformation dominated by the

dislocations slipping, the dislocation evolution tends

to pattern the well-known cellular substructures or

subgrains, which consist of cell walls with higher

dislocation density and cell interiors with lower dis-

location density [39, 40]. Estrin et al. [41–43] consid-

ered the fundamental microstructural feature as a

dislocation cell structure, the metallic materials are

accordingly dealt with as a ‘‘composite’’ two-phase

structure, i.e., cell walls and cell interiors, and the

work hardening is related to the evolution of the

dislocation densities in the two ‘‘phases.’’ Roters and

Gottstein et al. [44, 45] developed a hardening law

based on the mobile and immobile dislocation den-

sity in the cell walls and cell interiors. Zhang et al.

[46] developed a unified physically based crystal

plasticity model, which takes into account the mobile

dislocation density, immobile dislocation densities in

the cell walls and interiors, to describe the plastic

deformation of FCC materials over a wide range of

temperatures and strain rates.

On the other hand, the polycrystalline aggregate

comprises many single crystals with the different

crystallographic orientations, and the initial orienta-

tions can be obtained from experimental characteri-

zations by using electron backscatter diffraction

(EBSD) technique [47]. There are generally two ways

to create the finite element model of polycrystalline

aggregate: (1) each element represents a set of grains,

i.e., the mean-field crystal plasticity model, (2) several

elements describe an individual grain, i.e., the full-

field crystal plasticity model. There is a special case

that each element represents an individual grain,

which can be obtained by both the two ways [48, 49].

For the finite element calculation of polycrystal

plasticity, the mechanical response of each grain

within the polycrystalline aggregate is calculated by

employing the single-crystal plasticity constitutive

model, and the macroscopic mechanical response of

the polycrystalline aggregate is generally obtained by

using a homogenization scheme, rather than the

direct full-field crystal plasticity finite element cal-

culation of the polycrystalline aggregate which are

too computationally expensive to simulate labora-

tory-scale components with complete microstructural

information. The homogenization scheme is capable

to take into account the influences of the single-

crystal properties and the texture and is similar to the

concept of representative volume element (RVE). The

homogenization ideas of the polycrystal plasticity

were firstly taken from the pioneer work of Taylor

[3], and Hill and Rice [4–6] developed the precise

mathematical implementation. The homogenization

scheme is widely used in the crystal plasticity finite

element method (CPFEM) to improve the computa-

tion efficiency and satisfy the equilibrium and com-

patibility with the FEM framework. Nowadays, there

are a considerable number of homogenization

schemes that have been developed to calculate the

macroscopic mechanical response of a polycrystalline

aggregate by incorporating the evolutions of the

texture and microstructure, including the classic

Taylor-type model [50], fast Fourier transform (FFT)

models [51, 52], crystal plasticity finite element

models [53], self-consistent [54] and grain-cluster

homogenization scheme [55, 56].

Due to the rapid development and wide applica-

tion of the high-performance computing, material

identification equipment and experimental
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technology, there are increasing efforts to study the

crystal plasticity models in conjunction with either

the phenomenological hardening law or the physi-

cally based hardening law so far. In this work, an

innovative crystal plasticity model in conjunction

with the dislocation density-based hardening law

was developed and implemented into the finite ele-

ment codes, the classic crystal plasticity model

incorporated with the saturation-type phenomeno-

logical hardening law was employed as well, to

simulate the large plastic deformation of OFHC

copper single crystals and polycrystals, and then a

comprehensive comparison study on the two hard-

ening laws was accordingly carried out in terms of

the stress–strain responses and texture evolutions. By

using the crystal plasticity finite element method,

attempts have been made to apply the Taylor-type

mean-field crystal plasticity models to simulate the

process of single shot impact and to investigate the

microstructural evolutions and mechanical responses

of the impacted surface, which would be conducive

to providing a significant insight into the microscopic

strengthening mechanisms of shot peening or surface

mechanical attrition treatment and the new ideas for

relevant modeling.

Crystal plasticity model

According to the crystal plasticity theory on the

crystallographic slip of dislocation, consisting of

dislocation motion and crystal rotation, as shown in

Fig. 1, the deformation gradient (F ¼ oX=oY, wherein

X and Y are the two vectors representing the coor-

dinates in the current and initial configurations,

respectively, and X ¼ X Y; tð Þ, and t represents the

time.) can be multiplicatively decomposed into the

elastic and plastic components

F ¼ FeFp ð1Þ

Where Fp represents the inelastic shear deformation

along the crystalline slip planes, mapping the initial

configuration into the intermediate configuration; Fe

represents the rotation and elastic distortion of the

lattice, mapping the intermediate configuration into

the current configuration.

The velocity gradient can be expressed with

deformation gradient

L ¼ _FF
�1 ¼ _F

e
Fe�1 þ Fe _F

p
Fp�1Fe�1 ð2Þ

where Lp ¼ _F
p
Fp�1 represents the plastic velocity

gradient which is dependent on the sum of shear

strain rates on all slip systems, i.e.,

Lp ¼
XNs

a

_cama � na ð3Þ

where Ns represents the number of slip systems and

Ns ¼ 12 for the face-centered cubic (fcc) metals, _ca is

the slip rate of the a slip system, the unit vectors ma

and na are the slip direction and normal to the slip

plane, respectively, and the symbol � represents the

dyadic product. In the initial configuration

Lp
0 ¼

PNs

a
_cama

0 � na0, and ma ¼ Fema
0 and na ¼ na0F

e�1.

mα
0

nα
0

B0

mα
0

nα
0

mα = Fe mα
0

nα = nα
0 Fe-1

m
α

nα

Figure 1 Multiplicative

decomposition of deformation

gradient.
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For the rate-dependent crystal plasticity model, the

well-known power-law flow rule was used to estab-

lish the relation between the shear strain rate and the

resolved shear stress.

_ca ¼ _c0

sa

ga

����

����
1=m

sgn sað Þ ð4Þ

where _c0 represents the reference shear strain rate, sa

is the resolved shear stress on the a slip system, ga is

the slip resistance on the a slip system, m is the rate-

sensitivity exponent.

The resolved shear stress (sa on the a slip system) is

calculated from the Cauchy stress

sa ¼ r : ðma � naÞ ð5Þ

The Cauchy stress is correlated to the 2nd Piola–

Kirchhoff stress through the relationship as

r ¼ FeTFeT
�
detðFÞ ð6Þ

For the hyperelastic law, the 2nd Piola–Kirchhoff

stress can be calculated as

T ¼ < : Ee ð7Þ

where < is the elastic matrix consisting of C11, C12

and C44, Ee is the Green strain and is calculated as

Ee ¼ FeTFe � I
� ��

2.

Phenomenological hardening law

The evolution of ga has the general form

_ga ¼
XNs

b

hab _cb
�� �� ð8Þ

where ga0 is the initial hardness and is assumed to be a

constant, hab is the hardening modulus and is

described phenomenologically by a saturation-type

law [26, 57]

hab ¼ h0 qþ 1 � qð Þdab
� �

� 1 � gb

gs

����

����
a

�sgn 1 � gb

gs

� 	
ð9Þ

where h0, a and gs are the slip system hardening

parameters which are taken to be identical for all slip

systems, h0 is the initial hardening rate and gs is the

saturation value of the slip resistance, q is the ratio of

the latent hardening rate to the self-hardening rate,

q ¼ 1 for coplanar slip system and q ¼ 1:4 for non-

coplanar slip systems. The relevant material param-

eters of the crystal plasticity model incorporated with

the saturation-type phenomenological hardening law

are listed in Table 1 [58].

Dislocation density-based hardening law

For the dislocation density-based hardening law, an

equivalent slip resistance (g) was used. The simplest

form of g is an isotropic hardening model which

assumes that the slip resistances on all slip systems

are identical, it indicates that the latent hardening

rate is equal to the self-hardening rate, i.e., q ¼ 1, and

some works have indicated that the better prediction

of the plastic deformation behavior of OFHC copper

could be obtained by using q ¼ 1 rather than using

others [31]. One classic example of isotropic harden-

ing models is the power-law hardening model

[59],g ¼ a1 þ a2 epð Þn
�
, where a1, a2 and n� are the

hardening parameters and ep represents the equiva-

lent plastic strain. Based on the dislocation density-

based material model [41–43], the equivalent slip

resistance (g), which is related to the resolved shear

strain (cr) and resolved shear strain rate ( _cr), can be

explicitly expressed as

g ¼ gGb f
ffiffiffiffiffiffi
qw

p þ 1 � fð Þ ffiffiffiffiffi
qc

p� �
� _cr

_c0

� 	1=m�

ð10Þ

where G is the shear modulus, g is a material con-

stant, b is the magnitude of the Burgers vector, _c0 is a

reference shear rate, 1=m� is a strain rate-sensitivity

parameter, _cr is the resolved shear strain rate and is

correlated to the equivalent strain ( _ep) via the Taylor

factor, _cr ¼ M _ep, M is the Taylor factor, qw and qc,
respectively, represent the dislocation densities in the

cell walls and the cell interiors, and f represents the

volume fraction of the cell walls. The total dislocation

density is calculated by qt ¼ fqw þ 1 � fð Þqc, and the

evolutions of _ep, f, qw and qc are, respectively,

expressed as [41–43].

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_ep : _ep

r
; _ep ¼

XNs

a

_ca ma � na þ na �mað Þ=2

ð11Þ

f ¼ f1 þ f0 � f1ð Þ exp �cr=~crð Þ ð12Þ
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_qw ¼
ffiffiffi
3

p
b� _cr 1 � fð Þ ffiffiffiffiffiffi

qw
p

fb
þ 6b� _cr 1 � fð Þ2=3

bdf

� k0 _c
rqw

_cr

_c0

� 	�1=n

ð13Þ

_qc ¼
a� _cr

ffiffiffiffiffiffi
qw

p
ffiffiffi
3

p
b

� 6b� _cr

bd 1 � fð Þ1=3
� k0 _c

rqc
_cr

_c0

� 	�1=n

ð14Þ

where f0 and f1, respectively, represent the initial and

saturation values of f, f0 [ f1, f decreases monotoni-

cally from the initial value to the saturation value

with shear deformation increasing, which implies

that the dislocation cell walls become sharper and

more narrow with plastic deformation, and the

parameter ~cr is a constant that quantifies the descent

rate of the values of f [41–43], the coefficients a�, b�

and k0 are the three material constants, which are,

respectively, related to the generation, motion and

annihilation of dislocations in the process of plastic

deformation, and the exponent n is a constant based

on the assumption of the isothermal treatment

processes.

The average cell size is inversely proportional to

the square root of the total dislocation density, i.e.,

d ¼ K
ffiffiffiffiffi
qt

p ð15Þ

where K is a material constant. More detailed

descriptions about the dislocation density-based

material model can be found from the works of Estrin

et al. [41–43]. The relevant material parameters of the

crystal plasticity model in conjunction with the dis-

location-based hardening law are listed in Table 2

[41–43, 60].

Numerical implementation in ABAQUS/
Explicit

Based on the Green–Naghdi material co-rotational

coordinate system in the ABAQUS/Explicit codes,

which is a set of moving coordinate systems in which

the basis systems rotate with the material, the

deformation gradient is then represented as Fcor, and

Fcor ¼ Fe
corF

p. According to the polar decomposition

of the deformation gradient (F ¼ RU), it can be

obtained that Fcor ¼ U since the rotation component is

taken into account in the Green–Naghdi material co-

rotational coordinate system. Therefore, the follow-

ing equation is further obtained

Fe
corF

p ¼ U ð16Þ

where Fe
cor is the elastic component of deformation

gradient in the Green–Naghdi material co-rotational

coordinate system, and Fe
cor ¼ UFp�1 according to

Eq. (16).

Combining Eqs. (5), (6), (7) and (16), the 2nd Piola–

Kirchhoff stress (T), the co-rotational stress (r_) and

resolved stress on the a slip system (sa) can be

rewritten as

T ¼ < : FeT
corF

e
cor � I

� ��
2 ¼ < : Fp�TUUFp�1 � I

� ��
2

ð17Þ

r_ ¼ UFp�1TFp�TU
�
detðUÞ ð18Þ

sa ¼ ðFp�TUUFp�1TÞ : ma
0 � na0

� �
ð19Þ

According to the evolution of Fp,

Table 1 Parameters of crystal

plasticity model incorporated

with the saturation-type

phenomenological hardening

law for OFHC copper [58]

C11(GPa) C12(GPa) C44(GPa) _c0(s
-1) g0(MPa) gs(MPa) h0(MPa) m a

170 124 75 0.001 16 148 180 0.012 2.25

Table 2 Parameters of

dislocation-based hardening

law for OFHC copper

[41–43, 60]

Material a� b� k0 m� n _c0 f0 f1

Copper 0.04 0.01 6.2 * 9.2 250 50 0.001 0.25 0.06

Material K M ~cr qw0 mm�2
� �

qc0 mm�2
� �

b(mm) a

Copper 10 3.06 3.2 5e6 2.5e6 2.56e-7 0.25
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_F
p
Fp�1 ¼

PNs

a
_ca � ma

0 � na0
� �

, the value of Fp at the time

of tþ Dt can be calculated as

Fp
tþDt ¼ exp Dt � Lp

0

� �
� Fp

t ð20Þ
where the subscript t and tþ Dt, respectively, repre-

sent the end and start of an increment, and the

unknown tensor Fp
tþDt is accordingly expressed by the

known tensor Fp
t . Therefore, Eq. (19) can be rewritten

as

s að Þ
tþDt ¼ I�

XNs

a

DcaSaT0

 !
Fp�T
t UtþDtUtþDtF

p�1
t

"

I�
XNs

a

DcaSa0

 !#
� < : Fp�TUUFp�1 � I

� ��
2

� �
: Sa0

ð21Þ

where Sa0 ¼ ma
0 � na0.

The Bunge’s Euler angles u1; U; u2f g were

employed to define the crystallographic orientation

Q ¼
cosu1 cosu2 � sinu1 sinu2 cosU sinu1 cosu2 þ cosu1 sinu2 cosU sinu2 sinU
� cosu1 sinu2 � sinu1 cosu2 cosU � sinu1 sinu2 þ cosu1 cosu2 cosU cosu2 sinU
sinu1 sinU � cosu1 sinU cosU

2
4

3
5

ð22Þ

The current crystallographic orientation can be

updated by

Q ¼ ReQ0 ð23Þ

where Q0 is the initial crystallographic orientation, Re

is a lattice rotation tensor resulting from the polar

decomposition of Fe. The updated Q is used for tex-

ture analysis.

Based on the Green–Naghdi material co-rotational

coordinate frame in ABAQUS/Explicit, the crystal

plasticity models in conjunction with the saturation-

type phenomenological hardening law and the dis-

location density-based hardening law were, respec-

tively, implemented into the finite element codes by

developing the user material subroutines VUMAT for

finite element computation, and detailed description

for the numerical implementation method and the

relevant explicit integration algorithm of VUMAT

can be seen in the literature [49, 57].

Results and discussion

Deformation of single crystals

By using the crystal plasticity models in conjunction

with the saturation-type phenomenological harden-

ing law and the dislocation density-based hardening

law, the uniaxial compression tests of the copper

cylindrical single-crystal specimens taken from the

literature [61] were simulated. As shown in Fig. 2, the

cylindrical single-crystal specimen was compressed

along its axis direction by two platens of the testing

machine, and the contacts between the cylindrical

single-crystal specimen and platens were considered

to be frictionless. The two platens were treated as

rigid bodies, the fixed constraint was applied on the

reference point of the lower platen, and a velocity

load was applied on the reference point of the upper

platen. Four cylindrical single-crystal specimens with

different geometrical dimensions and crystallo-

graphic orientations were used to simulate the large

plastic deformation behavior of copper single crystals

under the uniaxial compression. Each cylindrical

single-crystal specimen associated with the identical

initial crystallographic orientation was meshed by

C3D8R elements (three-dimensional eight-node lin-

ear brick elements with reduced integration and

hourglass control), which were assigned the crystal

plastic constitutive models by the user material sub-

routines (VUMAT in ABAQUS/Explicit). The ele-

ment size used for meshing the cylindrical single-

Figure 2 Finite element model of the cylindrical single-crystal

specimen for the uniaxial compression.
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crystal specimen was determined as 0.44 mm by the

trail calculations. Table 3 presents the dimensions

and orientations of the four copper cylindrical single-

crystal specimens, and the symbols of S1, S2, S3 and

S4 in the table denote the specimen numbers. The

detailed experimental description of the uniaxial

compressions of the cylindrical single-crystal speci-

mens can be seen in the literature [61].

The predicted macroscopic mechanical responses

of the copper cylindrical single-crystal specimens

under the uniaxial compression loads are shown in

Fig. 3. In general, the predicted relations between the

‘‘Load/Initial Cross section’’ and ‘‘Crosshead dis-

placement/Initial length’’ (i.e., macroscopic stress–

strain responses) of the four cylindrical single-crystal

specimens are consistent with the experimental

measurement results, especially for the specimen of

S1, the predicted macroscopic stress–strain response

is in good agreement with the experimental results by

using the crystal plasticity model in conjunction with

the saturation-type phenomenological hardening

law.

Compared with the predictions results of the

crystal plasticity model incorporated with the satu-

ration-type phenomenological hardening law, when

Table 3 Dimensions and Euler angles of the copper cylindrical

single-crystal specimens [61]

Crystal Dimensions (mm) Euler angles (�)

Diameter Height Phi1 Phi Phi2

S1 2.96 4.41 18.43 5.12 355.96

S2 3.93 5.88 226.41 32.96 144.35

S3 3.92 5.50 225.38 24.90 132.10

S4 2.32 2.38 105.15 26.61 216.92

(c) S3

(a) S1 (b) S2

(d) S4
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Figure 3 Predictions and experimental results [61] of the mechanical responses of the copper cylindrical single-crystal specimens under

the uniaxial compression loads.
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the macroscopic strain is smaller than 0.2 for S1, 0.23

for S2, 0.25 for S3 and 0.24 for S4, the larger macro-

scopic stresses are predicted by the crystal plasticity

model in conjunction with the dislocation density-

based hardening law, whereas after the macroscopic

strains exceed these critical values, the predicted

macroscopic stresses by the dislocation density-based

hardening law become smaller. The reasons are

related to the dislocation evolution. In the plastic

deformation process, the cell walls are increasingly

sharpening, and the cell sizes and the relative volume

fraction of the cell walls decrease. As more and more

dislocations are confined into the less and less space,

the storage process of dislocations gradually changes

in the cell walls. Zehetbauer et al. [62] suggested the

gradual change of the character of the dislocation cell

walls from the polarized dipole walls to the polarized

tilted walls. However, the process, which develops

the increasing misorientations between adjacent cells,

has not been yet incorporated into the present dislo-

cation density-based hardening law [63].

As seen in Fig. 3, in the cases of specimens S2, S3

and S4, the predicted macroscopic stresses are larger

than the experimental data with respect to the same

macroscopic strains; the reason for explaining the

deviation between the prediction results and experi-

mental data is mainly attributed to the influence of

non-Schmid effects. For some orientations, non-Sch-

mid stresses favor the formation of constriction and

promote cross-slip resulting in higher macroscopic

flow stress; while for other orientations, non-Schmid

stresses hinder cross-slip resulting in lower macro-

scopic flow stress [61]. The non-Schmid effects can be

quantitatively analyzed by the ratio (Rns) between saeff
and sas as suggested by Patra et al. [64]. Paik et al. [61]

estimated the values of Rns are 1.112, 0.922, 0.967,

0.944 at the point of initial yield and 1.05, 0.93, 0.93,

0.84 at the macroscopic compressive strain of 0.4 for

the specimens of S1, S2, S3 and S4, respectively,

which deviate from 1.0 for all the specimens. As a

result, the predictions resulting from the crystal

plasticity model based on the Schmid’s law deviate

the experimentally measured mechanical responses

of copper single crystals. Additionally, since the

values of Rns are smaller than 1.0 for the specimens of

S2, S3 and S4, the predicted macroscopic stresses by

the crystal plasticity models in conjunction with the

saturation-type phenomenological hardening law

and the dislocation density-based hardening law,

which do not take into account the influences of non-

Schmid effects in this work, are over-estimated

therefore.

Figure 4 compares the simulated and experimental

crystallographic textures of copper single crystals for

the cylindrical specimens of S1, S2, S3 and S4 at a

macroscopic compressive strain of 0.4. The crystal-

lographic textures were calculated according to the

Euler angles by using the open source codes (MTEX).

As seen from the figures, the predicted pole fig-

ures accord well with the experimental measurement

results [61] on the whole, which provides indirect

support for the validations of the numerical compu-

tation of the crystal plasticity model in conjunction

with the saturation-type phenomenological harden-

ing law and the dislocation density-based hardening

law (VUMAT). However, careful observation reveals

that there are some differences between them. The

differences mainly come from two aspects: (1) the

crystal plasticity models in conjunction with the sat-

uration-type phenomenological hardening law and

the dislocation density-based hardening law do not

take into consideration the influences of non-Schmid

effects; (2) the finite element computation was carried

out by using the explicit dynamic finite element

algorithm (ABAQUS/Explicit codes), and it is diffi-

cult to simulate the uniaxial compression process

associated with a quasi-static strain rate ranging from

2:83 � 10�4s�1 to 4:93 � 10�4s�1. In order to improve

the calculation’s rate and efficiency of the explicit

finite element method, the loading strain rate of 50s�1

was then used to simulate the uniaxial compression

processes of the cylindrical single-crystal copper

associate with a quasi-static rate. The differences

between the loading strain rate of 50s�1 used in the

finite element simulation and the quasi-static rates

used in experiments could have an impact on the

simulated crystallographic textures, but the influence

was not taken into account in this work due to the

consideration of the computation cost.

Deformation of polycrystalline aggregate

In order to study the plastic deformation behavior of

copper polycrystals, two homogenization schemes

were employed to conduct the transition from the

microscopic mechanical response of the individual

grains to the macroscopic mechanical response of the

polycrystalline aggregate:
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Experimental measurement results [62]

Phenomenological hardening law

Dislocation density based hardening law

(a) S1

Experimental measurement results [62]

Phenomenological hardening law

Dislocation  density based hardening law

(b) S2

Figure 4 Predicted crystallographic textures of the copper cylindrical single-crystal specimens at a uniaxial compression engineering

strain of 0.4.
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Experimental measurement results [62]

Phenomenological hardening law

Dislocation density based hardening law
(c) S3

Experimental measurement results [62]

Phenomenological hardening law

Dislocation density based hardening law
(d) S4

Figure 4 continued.
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(1) Taylor-type model, which belongs to the mean-

field crystal plasticity model and assumes that

all grains accommodate the same plastic strain

equal to the macroscopically imposed strain,

and with the assumption in this work that the

volumes of all grains are the same, the volume

average of co-rotational stress in a material

point with respect to an element can be simpli-

fied as

r_ ¼ 1

Ng

XNg

g¼1

gr_ ð24Þ

where Ng denotes the number of grains in a

material point and gr_ represents the co-rota-

tional stress of a grain.

(2) Voronoi-type model, which belongs to the full-

field crystal plasticity model and uses the MPT

codes in MATLAB to create Voronoi tessella-

tions at first, the geometrical coordinate infor-

mation of the Voronoi tessellations is then

transferred into ABAQUS/CAE, and the finite

element model of polycrystalline aggregate is

accordingly created by a routine written by

Python, as a result, individual grains are

discretized by many finite elements.

The Taylor-type mean-field homogenization

scheme satisfies the deformation compatibility con-

dition, but the stress equilibrium at the grain

boundaries cannot be guaranteed, the microstructure

is represented in a statistical way where each grain is

considered to be homogeneous, thus disregarding

realistic microstructural in-grain morphologies and

specific local grain interactions. Compared with the

Taylor-type mean-field model, the Voronoi-type full-

field model is capable to take into account the inter-

action between grains and the effects of grain

boundaries, grain sizes and grain shapes, whereas

these crystal plasticity models are too computation-

ally expensive to simulate laboratory-scale compo-

nents with complete microstructural information.

The Taylor-type and Voronoi-type models with the

same dimensions of 1 9 1 9 1 mm are created, as

shown in Fig. 5. A single element (C3D8R) was used

to mesh the Taylor-type model, and the single

material point consisted of 10 grains with initial

random orientation, as shown in Fig. 5a. The Vor-

onoi-type model was created by MPT codes and was

discretized into 1000 elements, and was also com-

posed of 10 grains with initial random orientation, as

shown in Fig. 5b. The element size of 0.1 mm in the

Voronoi-type model was determined by the trail

calculations. The bottom surfaces of the Taylor-type

and Voronoi-type models were constrained com-

pletely, and the same velocity load was imposed on

the top surfaces of the two cubic finite element

models.

Figure 6 shows the plastic deformations and

mechanical responses of Taylor-type and Voronoi-

type models under the uniaxial tensile load, in which

the symbols of S33 and LE33 represent the stress

component of rz and the logarithmic strain compo-

nent of ez, respectively, and the z-axial direction is the

loading direction. As seen in Fig. 6a and b, which are

corresponding to the Taylor-type models conjuncted

with the saturation-type phenomenological harden-

ing law and the dislocation density-based hardening

law, respectively, the dimensions of the top surfaces

Figure 5 Cubic finite element models consisting of 10 grains.
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Figure 6 Plastic deformations

and mechanical responses of

Taylor-type and Voronoi-type

models under the uniaxial

tensile load.
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of the cubic finite element models decrease under the

uniaxial tensile load, and a square pyramid is resul-

tantly produced. However, as seen in Fig. 6c and d,

which corresponds to the Voronoi-type models con-

juncted with the saturation-type phenomenological

hardening law and the dislocation density-based

hardening law, respectively, the significant inhomo-

geneous plastic deformation can be found owing to

the interaction between grains and the effects of grain

boundaries, grain sizes, grain shapes, and the

directional necking occurs due to the relative position

relation between the initial crystallographic orienta-

tion and the loading direction.

The similar phenomena can be observed in Fig. 7,

which shows the plastic deformations and mechani-

cal responses of Taylor-type and Voronoi-type mod-

els under the uniaxial compression load. As seen in

Fig. 7a and b, the relative regular plastic deformation

can be obtained by the Taylor-type model, and the

single element and single material point are

Figure 7 Plastic deformations

and mechanical responses of

Taylor-type and Voronoi-type

models under the uniaxial

compression load.
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responsible for the relative regular plastic deforma-

tion. However, for the Voronoi-type model, the sig-

nificant inhomogeneous plastic deformation can be

seen from Fig. 7c and d, which is also mainly attrib-

uted to the interaction between grains and the effects

of grain boundaries, grain sizes, grain shapes and

initial crystallographic orientations.

Figure 8 compares the stress–strain relations

resulting from Taylor-type and Voronoi-type models.

As seen in the figures, when compared with Taylor-

type model, the stress–strain relations predicted by

Voronoi-type model are closer to the experimental

data [58], and the predictions resulting from Voronoi-

type model incorporated with the dislocation den-

sity-based hardening law are in good agreement with

the experimental data [58]. Since Taylor-type model

does not take into account the interaction between

grains and the effects of grain boundaries, grain sizes

and grain shapes, the predictions resulting from

Taylor-type model are larger than that resulting from

Voronoi-type model with respect to the same strain.

In order to further investigate the effects of grain

number on the Taylor-type homogenization scheme,

the Taylor-type cubic finite element model was dis-

cretized into 23, 33, 43, 53 and 63 elements (C3D8R),

and the material point in each element consisted of 10

grains; as a result, the number of the total grains

within Taylor-type model is corresponding to 80, 270,

640, 1250 and 2160, respectively. Figure 9 shows the

stress–strain relations resulting from Taylor-type

model associated with different grain numbers under

the uniaxial tensile load. As seen in Fig. 9a, which

makes the use of the crystal plasticity model incor-

porated with the saturation-type phenomenological

hardening law, with the increase in total grain

number, the stress–strain relations tend to be

(a) (b)

Figure 8 Stress–strain relations resulting from the Taylor-type and Voronoi-type models.

(a) (b)

Figure 9 Stress–strain relations resulting from Taylor-type model considering different grain numbers.
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stable gradually, and the same conclusion can be

obtained for the crystal plasticity model incorporated

with the dislocation density-based hardening law, as

shown in Fig. 9b. By comparing Fig. 9a and b, it

reveals that both the predictions of the stress–strain

relations resulting from Taylor-type models con-

juncted with the saturation-type phenomenological

hardening law and dislocation density-based hard-

ening law agree well with the experimental data [58]

when the cubic finite element model consists a large

number of grains, and the sensitivity of stress–strain

relations to grain number is relatively smaller for the

dislocation density-based hardening law than the

saturation-type phenomenological hardening law.

Figure 10 compares the simulated crystallographic

textures by Taylor-type model incorporated with the

saturation-type phenomenological hardening law

and the dislocation density-based hardening law at

the uniaxial tensile strain of 0.37. The two resultant

simulation textures are visually similar for the same

total grain number, and with the increase in total

grain number, the simulated textures become closer

and closer to the experimental measurement results

[58]. As seen from Figs. 9 and 10, the stress–strain

responses and crystallographic textures of the

homogenized polycrystalline aggregate are no longer

dependent on the grain number if a sufficient number

of grains with random crystallographic orientation

distribution are used [65].

Modeling of single shot impact

Shot peening (SP) and surface mechanical attrition

treatment (SMAT) are two well-known surface

modification techniques of metallic materials; the

surface strengthening layers produced by SP and

SMAT are attributed to the severe plastic deforma-

tion induced by shot impact. In order to study the

shot impact-induced plastic deformation mechanism,

which is very significant for the developments of SP

and SMAT techniques, the single impact experiments

of OFHC copper along a given direction were carried

out, and the crystal plasticity models in conjunction

with the saturation-type phenomenological harden-

ing law and the dislocation density-based hardening

law were used to simulate the process of single shot

impact on the copper polycrystalline aggregate,

respectively.

A cylinder-shaped impactor made of high-speed

steel, with the diameter of 6 mm and height of

10 mm, was accelerated by an electromagnetic driver,

as shown in Fig. 11. The impact velocity was mea-

sured by magnetic inductive method, and the impact

angle was adjusted by the multi-axial rotatable fix-

ture. Three impact experiments were carried out that

the velocity of impactor remained a constant of 8 m/

s, while the impact angles were, respectively, set to

70�, 80� and 90�. The resultant indentation profiles

were measured by Keynes 3D microscopic system.

The front of the impactor was processed into a

hemisphere with a diameter of 1 mm, as shown in

Fig. 11. An analytical rigid shot with the diameter of

1 mm was modeled to impact the OFHC copper

target instead of the cylinder-shaped impactor in the

finite element model of single impact. The mass of the

analytical rigid shot was equal to the mass of cylin-

der-shaped impactor, and the shot impact velocity

was also equal to the measured velocity of cylinder-

shaped impactor. The initial velocity of 8 m/s was

applied on the reference point of the analytical rigid

shot, which was located at the sphere center of rigid

shot. The contact between the shot and the target

surface was numerically computed by using the

penalty method with Coulomb friction coefficient of

0.3 [66, 67]. In the case of single shot impact, three

impact angles of 70�, 80� and 90� were taken into

consideration.

In order to reduce the computation cost, a sym-

metrical finite element model of the target to be

impacting was created, as shown in Fig. 12. The

geometrical dimensions of target model are 5 mm

length, 2.5 mm width and 5 mm height. The elements

of C3D8R in ABAQUS/Explicit codes were adopted

to mesh the target model, and the finest elements size

of 40lm were used to mesh the shot-impacted region.

The Taylor-type mean-field model, in which each

material point of the target model consists of 10

grains, was used to homogenize the calculation

results of the copper polycrystalline aggregate. The

center local region of the target model with the

dimension of 1.5 9 0.75 9 1.5 mm was regarded as

the reference region for analyzing the calculation

results, as shown in Fig. 12.

As seen in Fig. 13, under the single shot impact, the

predicted indentation profiles by the dislocation

density-based hardening law are well consistent with

the predictions resulting from the saturation-type

phenomenological hardening law. Therefore, the
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Figure 10 Crystallographic

textures simulated by Taylor-

type model at the uniaxial

tensile strain of 0.37.
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dislocation density-based hardening law is validated

by the saturation-type phenomenological hardening

law. However, no matter for the dislocation density-

based hardening law or for the saturation-type phe-

nomenological hardening law, the predicted depths

of the indentations are larger than the experimentally

measured data. The reasons for explaining the dif-

ferences between the predicted indentation profiles

and the experimental results can be concluded that:

(1) the Taylor-type mean-field model used to

homogenize the OFHC copper polycrystalline

aggregate does not take into account the effects of

Figure 10 continued.
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grain boundaries, grain sizes, grain shapes and the

interaction between grains, which could cause the

reduction of plastic deformation resistance for the

target model; (2) the differences in geometries

between the cylinder-shaped impactor used for

experiments and the rigid shot simplified for finite

element simulations could result in the different

distributions of the contact stresses imposing on the

target surface; (3) there could be some dispersion and

error in the experimental measurement.

Figure 14 presents the crystallographic textures of

the impacted surface; the data of Euler angles used

for plotting the crystallographic textures were all

taken from the first element layer of the reference

region as shown in Fig. 12. It can be seen from Fig. 14

that the simulated textures by crystal plasticity model

conjuncted with the saturation-type phenomenologi-

cal hardening law and the dislocation density-based

hardening law look similar for all the impact condi-

tions. However, careful observation can be found that

the maximum texture intensity decreases with the

increase in the impact angle from 70� to 90�. The

crystallographic textures are used to characterize the

plastic deformation behaviors, which are dependent

Figure 11 Schematic diagram of single shot impact experiment and simplified finite element model.

Figure 12 Finite element

model of single shot impact on

OFHC copper polycrystalline

aggregate.
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on the evolution of dislocation density. Figure 15

shows the dislocation densities resulting from the

single shot impact associated with the different

impact angles. The larger dislocation densities are

located in the subsurface layer and the local surface

region close to the indentation edge, as shown in

Fig. 15a, b and c. Figure 15d shows the in-depth

dislocation densities of the reference region, and the

‘‘area-averaged’’ method [68, 69] was used to calcu-

late the average value of the resultant dislocation

density with respect to the thickness direction of the

reference region. It can be concluded that the aver-

aged dislocation density in the impacted surface

decreases with the increase in the impact angle from

70� to 90�, which accord well with the maximum

texture intensity as shown in Fig. 14. However, for

the depth larger than 0.2 mm, as seen in Fig. 15d, the

averaged dislocation density with respect to the same

depth is smallest for the impact angle of 70�, and the

averaged dislocation density in the case of 90� impact

angle is slightly larger than that in the case of 80�
impact angle. The refined cell sizes are inversely

proportional to the square root of the increased dis-

location density, as shown in Fig. 15d.

Conclusions

In this paper, based on the two crystal plasticity

models in conjunction with the saturation-type phe-

nomenological hardening law and the dislocation

density-based hardening law, a comparative study on

the large plastic deformation behaviors of OFHC

copper single crystals and polycrystals in terms of

stress–strain responses and texture evolutions was

carried out. The two crystal plasticity models incor-

porated with the saturation-type phenomenological

hardening law and the dislocation density-based

hardening law were implemented into the finite ele-

ment codes (ABAQUS/Explicit) as the user material

(a) (b)

(c)

Figure 13 Comparison between the predicted indentation profiles and experimental results.
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subroutine (VUMAT). The three-dimensional finite

element models of the cylindrical specimens were

created to simulate the uniaxial compression-induced

plastic deformation behaviors of copper single

crystals associated with the different geometrical

dimensions and initial crystallographic orientations.

Two homogenization schemes, Taylor-type mean-

field model and Voronoi-type full-field model, were

Figure 14 Crystallographic textures of the impacted surface of the copper polycrystalline aggregate.
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used to calculate the macroscopic mechanical

responses of the polycrystalline aggregate of copper

under the uniaxial compression and uniaxial tension

loads. The process of single shot impact was further

simulated and analyzed by using the Taylor-type

mean-field homogenization scheme. From the simu-

lation results, the obtained conclusions can be drawn

as follows:

(1) The simulated stress–strain responses and tex-

ture evolutions by the developed crystal plas-

ticity model in conjunction with the dislocation

density-based hardening law accord well with

the simulation results of the crystal plasticity

model incorporated with the classic saturation-

type phenomenological hardening law, and

both the predictions of the two crystal plasticity

models agree well with the experimental results

whether for OFHC copper single crystals or for

polycrystalline aggregate in general.

(2) The calculations resulting from the Voronoi-

type full-field homogenization are more close to

the experimental results than the results of the

Taylor-type mean-field homogenization for the

polycrystalline aggregate of OFHC copper

under the uniaxial compression and tension

loads.

(3) With the increase in grain number, the mechan-

ical responses of the homogenized polycrys-

talline aggregate become stable gradually and

closer to the experimental results for the Taylor-

type mean-field model.

(4) Both the dislocation density and the maximum

texture intensity in the single shot impacted

surface increase with the decrease in the impact

angle from 90� to 70�.
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