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ABSTRACT

A new carbon source, humic acid, has been used in fabricating graphene

quantum dots by a facial one-pot hydrothermal reaction. The morphology of the

cyan emission graphene quantum dots has been characterized by high-resolu-

tion transmission electron microscopy (HRTEM). The result showed well-dis-

played crystalline with a lattice spacing of 0.286 nm. X-ray photoelectron

spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) have

demonstrated the diverse functional groups on GQDs, like carboxylic groups,

which will cause significant fluorescence quenching by Cu2? because of the

strong chelating interactions. The optical properties of GQDs were characterized

by photoluminescence (PL) spectra and ultraviolet–visible (UV–Vis) spec-

troscopy; it showed that GQDs have an excitation-dependent fluorescence

behavior and a large stoke shift with maximum excitation/emission wavelength

at 360/470 nm. Furthermore, GQDs showed a good photostability by the kinetic

analysis of irradiation for 1500 s and a relatively high quantum yield of 20%,

which could be applied in bioimaging. Besides, the selectivity study of metal

ions indicates that the GQDs could be used in Cu2? detection. The linear range

is from 1 to 40 lM with the limit of detection (LOD) of 0.44 lM. Overall, this

work provided a simple method to produce GQDs with low-cost raw material

humic acid, which could be also used in Cu2? monitoring in river water.
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Introduction

Fluorescent nanomaterials, due to their unique

chemical, physical and optical properties, have been

proved to be pivotal tools in sensing, imaging and

some other biomedical applications [1–9]. In the past

few decades, a number of fluorescence nanomateri-

als, including organic nanomaterials and inorganic

nanomaterials, have been designed and synthesized

to serve as bioimaging agents instead of organic dyes.

Comparing with organic dyes, the excellent photo-

stability, bright fluorescence intensity and low syn-

thetic cost make fluorescent nanomaterials as

effective fluorescent probes for sensing and imaging

of biomolecules, cells, tissues and organisms [10–22].

For example, heavy metal-based semiconducting

quantum dots (QDs) such as CdSe, CdTe have been

successfully produced with broad adsorption, nar-

row, adjustable and bright fluorescence, which allow

QDs to be utilized in a number of biomedical appli-

cations [23]. However, the high cytotoxicity of their

heavy metal components constrains their biological

applications [24, 25]. Therefore, it is still necessary to

develop more biocompatible fluorescent nanomate-

rials for biosensing and bioimaging.

Graphene quantum dots (GQDs), a zero-dimen-

sional derivative from graphene, have been free from

the disadvantages of high toxicity due to its intrinsic

components of carbon and oxygen. Therefore, they

have attracted great attention as promising fluores-

cent probes for their unique features such as good

water solubility, excellent photoluminescence, low

toxicity, biocompatibility and high resistance to

photodegradation and photobleaching [26, 27]. In

general, GQDs are synthesized from carbon-based

materials. There are two main strategies to prepare

GQDs: top-down and bottom-up methods. The top-

down methods include acidic exfoliation, electro-

chemical oxidation and hydrothermal synthesis,

which break large-size carbon-based materials, such

as graphite and activated carbon, to small-size GQDs

[28, 29]. Physical treatments like sonication can

accelerate the formation of GQDs. The top-down

methods bring oxygen-containing functional groups

to the edges of GQDs, promoting the solubility and

functional sites for further bioconjugation [30].

However, the harsh reaction conditions as well as

their tedious purification procedures generate a lot of

burden to overcome before applying them for

biomedical applications. In contrast, bottom-up

methods utilized the small carbon-based precursors

to form GQDs [31]. A number of precursors, includ-

ing glucose, citric acid, polythiophene, have been

used for preparation of GQDs for different applica-

tions [32–34]. We recently developed a highly fluo-

rescent GQD for bioimaging using glutamic acid due

to its biocompatibility. Meanwhile, the bottom-up

approach provides an easy pathway to dope multiple

heteroatoms in GQDs to adjust their optical proper-

ties for further applications. For example, we pre-

pared a N, S-doped GQDs using aspartic acid and

cysteine as the carbon precursors and heteroatomic as

the nitrogen and sulfur sources for bioimaging [35].

Dan et al. fabricated an S, N co-doped GQD by using

citric acid as a carbon source and thiourea as a S and

N source in a facile solvothermal route for visible

light H2 production and bioimaging [36]. Moreover,

more wastes from the natural products have been

also utilized for preparation of GQDs, such as rick

husks, dead leaves, and biomass wastes. However,

compared with the organic precursors, it is still in the

very early stage to prepare GQDs from the natural

wastes. Therefore, the preparation of high-quality

GQDs from the cheap, nontoxic precursors is of

importance and urgent, especially for large-scale

production.

Humic acid is a natural carbon source of high

molecular weight organic compounds, which is

abundant in a broad range of raw materials such as

peat, soils, black coals, dystrophic lake, sea sediments

and other natural materials [37, 38]. Among all of the

sources of humic acid, coal, and in particular low-

rank coal like lignite or naturally oxidized lignite

(leonardite), is the most abundant and commercial-

ized source. For example, North Dakota leonardite

(named after A.G. Leonard, the first director of the

North Dakota Geological Survey) has the highest

humic acid (up to 86% dry and ash-free basis) content

among all sources worldwide [39]. In general, humic

acid is considered as a by-product of biological or

chemical decompositions of plant and animal resi-

dues. Thus, there are no specific structures of humic

acid due to the diversity of humification pathways. It

has been proposed that most humic acids have a lot

of aromatic ring structures as the core structure

substituted by multiple chemical reactive functional

groups such as carboxyl, phenolic, aldehydes,

ketones, alcoholic hydroxyls and quinones. The

dominant carboxyl and phenolate groups enable
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humic acid to form complexes with common cations

such as Mg2?, Ca2?, Fe2?, and Fe3? to create humic

colloids [40]. Comparing with graphene-based start-

ing materials, humic acid contains the similar high

conjugated sp2 carbon hybridization domains, aro-

matic and benzene ring structures. Therefore, humic

acid would be qualified to serve as a new carbon

source to synthesize graphene quantum dots [41]. In

the last few decades, the technology to extract humic

acid from industrial waste and straw has provided

sufficient feedstocks for the possible large-scale pro-

duction of GQDs [42].

In this work, we have successfully fabricated a

highly fluorescent GQD using lignite-derived humic

acid as the cost-effective precursor. The preparation

was conducted by the hydrothermal treatment of

humic acid in a basic solution with autoclave at

200 �C for 12 h. The characterization of GQDs

showed that a plentiful of functional groups were

presented on GQDs. Fluorescence and UV–Vis spec-

troscopy analysis showed that GQDs demonstrated

bright blue fluorescence with quantum yield of ca.

20%, and the fluorescence emission was excitation

dependent. Comparing with other precursors used to

prepare GQDs with the bottom-up method, this work

started with lignite-derived humic acid as a precur-

sor, which would largely reduce the cost for scale-up

production. Finally, we found that the fluorescence

GQDs showed fluorescence quench with the addition

of copper ions (Cu2?). With the optimal detection

conditions, the GQDs could detect Cu2? in the range

of 1 lM–40 lM with the limit of detection of 0.44 lM.

The sensing assay was also successfully presented to

be used for the detection of Cu2? in river water,

which demonstrates potential usage in environmen-

tal monitoring of the proposed GQDs.

Experimental

Chemicals

Humic acid was extracted and purified from North

Dakota lignite by the Institute for Energy Studies.

Ammonium hydroxide (NH4OH, 28.0%–30.0%), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), copper sulfate, and sodium hydroxide were

obtained from Sigma-Aldrich. Sterile syringe filter

(0.45 lm cellulose acetate) was provided by Ther-

moFisher Scientific. High-purity liquid argon and

ultra-high-purity helium gas obtained from Airgas

were used in the ICP-MS measurements. The

100 ppm Cu, Sc, and Rh stock solutions provided

from Inorganic Ventures were used during the ICP-

MS measurements. All chemicals were of analytical

grade unless specified. All buffer solutions were

prepared using ultrapure water (18 MX cm) from a

Millipore Milli-Q water purification system.

Synthesis of GQDs

The GQDs were produced by a simple hydrothermal

method. Briefly, 10.0 mg of humic acid was dispersed

in 8.0 mL 0.28%–0.30% (0.15 M) aqueous ammonium

hydroxide solution first, and then, the pH was opti-

mized by 1.0 mol/L NaOH solution to reach a final

volume of 10.0 mL and a final pH about 10. The black

solution was sonicated and transferred into a 25.0-mL

Teflon-lined stainless-steel autoclave. The synthesis

process was conducted in a 200 �C oven for 12 h.

After the autoclave was cooled down to room tem-

perature, the color of the solution turned to brown,

indicating the formation of GQDs. Finally, the solu-

tion was centrifuged at 10,000 rpm for 20 min to

remove the large particles. The supernatant was

further dialyzed in a dialysis bag (molecular weight

cutoff = 10,000) for 48 h against water to purify the

produced GQDs. Three portions of produced GQDs

were collected in the evaporation dish to remove

water and adjust the final stock solution to 2.0 mg/

mL.

Characterization of GQDs

A JEOL JEM-2100 high-resolution transmission elec-

tron microscope (HRTEM) (JEOL Ltd., Tokyo, Japan)

was used to take images of GQDs at 200 kV. A Hi-

tachi 7500 Transmission Electron Microscope (Hi-

tachi, Tokyo, Japan) was used to take images of

GQDs at 80 kV. The hydrodynamic diameter of

GQDs was recorded from Zetasizer Nano ZS (Mal-

vern, Worcestershire, UK). A PerkinElmer Lambda

1050 UV/VIS/NIR spectrometer (PerkinElmer, Santa

Clara, CA, USA) was used to obtain the absorption

spectra of GQDs. Fluorescence measurements were

taken with a RF-6000 fluorophotometer (SHI-

MADZU, Kyoto, Japan). The excitation wavelength

was set to be 360 nm, and the emission was recorded

from 380 to 700 nm. The fluorescence intensity at

470 nm was selected to evaluate the performance for
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copper ions detection. Both the widths of excitation

and emission slits were 10.0 nm. All the experiments

were carried out at 25 �C. A FTIR Spectrum ATR iD5

spectrometer (ThermoFisher Scientific, Waltham, UK)

was used to collect the Fourier transform infrared

(FTIR) spectra of GQDs. The X-ray photoelectron

spectroscopy (XPS) measurements were taken on a

PHI-5400 X-ray photoelectron spectrometer (ULVAC-

PHI, Japan) with 10–10 Torr base pressure. The Al Ka
(1486.6 eV) X-ray radiation was used as the X-ray

source, powered at 300 W for excitation. An X-ray

diffraction (XRD) profile was recorded on a Smartlab-

3KW X-ray diffractometer (Rigaku, Tokyo, Japan)

with CuKa as the X-ray radiation source at 40 kV and

44 mA. Teflon-lined hydrothermal synthesis auto-

clave reactor (APT, RI, USA) and PTFE-lined vessel

(25 mL) were used to synthesize GQDs. Symphony

vacuum oven (VWR, PA, USA) was utilized to heat

up the reaction system to 200 �C. An iCAP Qc ICP-

MS (Thermo Scientific, Bremen, Germany) combined

with a 4-channel 12-roller peristaltic pump and a

Teledyne CETAC ASX560 autosampler (Omaha, NE)

were used to determine the concentrations of Cu2? in

Red River water samples. The THERMO-4AREV

(Thermo Scientific) standard was run daily to opti-

mize the ICP-MS with maximum 59Co, 238U and

minimum 140Ce/140Ce oxide signal in the kinetic

energy discrimination. The ICP-MS measurements of

Cu2? concentrations were collected using the Qte-

graTM software (version 2.8.2944.202). The isotopes of
45Sc and 103Rh were used as internal standard in the

ICP-MS measurements.

Stability of GQDs over pH
and photostability

1.0 mL of 1.0 mg/mL GQDs solution was incubated

in different pH buffers, ranging from 1 to 12 for 1 h.

Then, the fluorescence intensity of the GQDs solution

at different pHs was recorded. In order to investigate

the photostability of GQDs, a time-based fluorescence

collection was performed with a 1.0 mL of GQDs

solution (1.0 mg/mL) for 1500 s. FITC was used as a

control group.

Quantum yield (QY) measurement

Quinine sulfate in 0.1 M H2SO4 (QY = 0.54 at

360 nm) was chosen as a standard for quantum yield

measurement. The quantum yield of GQDs was cal-

culated according to the following formula:

Ux ¼ Ust
Gradx

Gradst

� �
g2x
g2st

� �

Here, Ux is the quantum yield of GQDs. Grad is the

gradient from the plot of integrated fluorescence

intensity vs absorbance, and g is the refractive index

of the solvent (1.33 for water). The subscript ‘‘st’’

stands for the standard of quinine sulfate and ‘‘x’’

stands for GQDs. In order to minimize reabsorption

effects, absorbances of the samples were kept under

0.1 at the excitation wavelength (360 nm).

Copper (II) ion detection procedure

In order to investigate the quenching ability of Cu2?

on GQDs, we incubated the 1.0 mL of the final con-

centration of 0.4 mg/mL GQDs with different con-

centrations of Cu2? for 12 h. The fluorescence

intensity at 470 nm with excitation of 360 nm was

recorded for each concentration. The concentration of

Cu2? ranged from 0 to 300 lM.

Selectivity investigation

In order to investigate the selectivity of GQDs on

different metal ions, a final volume of 1.0 mL of

0.4 mg/mL GQDs solution was incubated with dif-

ferent metal ions, including, Ni2?, Ca2?, Co2?, Cd2?,

Mg2?, Cu2?, Zn2?, Fe3?, Mn2?, Na?, K?, Ag?, and

Pb2?. The concentration of each metal ion was 20 lM.

All the fluorescence intensities at 470 nm were

recorded at the excitation wavelength of 360 nm.

Results and discussion

Design and preparation of the highly
fluorescent GQDs

A simple bottom-up method was developed to fab-

ricate GQDs from humic acid by a one-pot

hydrothermal reaction. The formation of GQDs is

illustrated in Scheme 1. First, in order to enhance the

solubility of humic acid in the aqueous solution, the

pH of the solution with 10 mM humic acid was

adjusted to 10 by ammonia hydroxide. During this

process, humic acid was dissolved completely with

ultrasonication and a dark black solution was
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obtained. Afterward, an aliquot of 10.0 mL of the

above solution was transferred into an autoclave and

put into an oven at 200 �C for 12 h. After the purifi-

cation, the highly fluorescent GQDs were obtained.

Due to the abundant coverage of carboxyl groups on

the prepared GQDs, we proposed that the formed

GQDs might have specific response to Cu2?

(Scheme 1). The uniqueness of this high brightness

cyan emission GQDs is the starting material together

with simple preparation procedures. Compared with

the starting materials in Table 1, the carbon source of

this project is humic acid, which could be obtained

from natural products’ waste. Therefore, this GQD

with high quality could be obtained by a low-cost

and environmental-friendly process, especially for

large-scale production. The humic acid used by this

method could be obtained locally from low-rank coal

called lignite (North Dakota leonardite), which con-

tains high mass percent of humic acid (up to 86% dry

and ash-free basis) content. Therefore, this method

could provide a potential pathway to utilize the

abundant carbon source for commercial production

of GQDs in the future.

Characterization of graphene quantum dots

To characterize the morphology and diameter of the

GQDs, a high-resolution TEM was performed

(Fig. 1). The GQDs showed a spherical shape with

good mono-dispersity, whose diameter was in the

range of 3–10 nm. Meanwhile, the lattice spacing of

GQDs was measured to be about 0.286 nm, indicating

the characteristic structure of the graphitic carbon

[49]. The hydrodynamic diameter measured by DLS

was 6.5 ± 2.3 nM (Fig. 1d), which was slightly larger

than that measured from TEM.

The X-ray diffraction (XRD) was also performed to

characterize the graphitic nature of the GQDs. As

shown in Fig. 2a, there was a broad peak centered at

2h = 25�, corresponding to an interlayer spacing of

0.286 nm, and the result is smaller than that of gra-

phite (002), which is caused by the bending of inter-

layers [50]. To identify the formation and surface

Scheme 1 Schematic illustration of the formation of GQDs and its application for Cu2? detection.

Table 1 Comparison of the proposed methods with other methods

Methods Subclassification Starting material Size

(nm)

Color Yield

%

Reference

Top-down Acidic oxidation Carbon Black 18 Yellow 9 [43]

Hydrothermal GO 5–13 Blue 5 [44]

Microwave GO 2–7 Greenish yellow 11.7 [45]

Solvothermal GO 3–5 Blue to green 1.6 [46]

Bottom-up Microwave-assisted hydrothermal Glucose * 5 Blue 15 [47]

Precursor pyrolysis Citric acid 0.8–1.8 Blue 3.6 [48]

Hydrothermal Humic acid 3–10 Cyan 20 This work

J Mater Sci (2021) 56:4991–5005 4995



functional groups of GQDs, X-ray photoelectron

spectroscopy (XPS) and FTIR were conducted. The

results from XPS showed two main peaks at

285.25 eV, 532.5 eV, which were attributed to C 1 s, O

1 s, respectively (Fig. 2b). The atomic percentage of

the carbon and oxygen was calculated to be about

80% and 20%, respectively, which were the main

elements in the prepared GQDs. The C 1 s spectrum

of GQDs (Fig. 2c) showed five peaks at 284.2 eV,

284.9 eV, 286.2 eV, 288. 2 eV, and 288.9 eV, indicating

the presence of C = C, C–C/C–H, C–OH, C = O, and

–COOH, respectively. All these data from XPS anal-

yses suggested that the C and O atoms were the

major components of GQDs synthesized from humic

acid. FTIR was used to demonstrate the existence of

various functional groups on GQDs. As shown in

Fig. 2d, the peaks at 1250 cm-1 and 1400 cm-1

suggested the presence of the C–O–C and N–H

stretching in graphite structure. The presence of

hydroxyl groups was proved by the broad peak area

at 2970 cm-1, and the presence of carboxyl groups

was showed in the sharp peak at 1600 cm-1. Besides

the carbon-related functional groups, the amine N–H

functional group showed stretching vibrations of

amine N–H at 3000–3500 cm-1. These functional

groups on GQDs provided the potential reaction sites

for further modification.

Fluorescent properties of the GQDs

In addition, we investigated the fluorescent proper-

ties of the GQDs using fluorescence spectrometer.

Under the irradiation of 365-nm UV light, the GQDs

showed strong cyan fluorescence compared with
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Figure 1 a–b TEM images of the GQDs. c HRTEM image of the GQDs (0.286 nm). d The size distribution of the GQDs detected by

DLS.
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humic acid (Fig. 3a), indicating the formation of the

fluorescent GQDs. As shown in Fig. 3b, the UV–Vis

absorption spectrum of the GQD aqueous solution

exhibited a typically optical absorption in the ultra-

violet (UV) region with a long tail expanding into the

visible range. There is no obvious peak except the

peak near 260 nm, which is corresponding to a p-to-
p* transition of aromatic C = C bonds. In contrast,

there is no obvious absorption peak for humic acid.

The excitation and emission spectra of GQDs are

measured and demonstrated in Fig. 3c. The strongest

fluorescence emission at 470 nm was obtained when

the excitation wavelength was set to 360 nm. In

consistent with other similar graphene quantum dots

or carbon nanodots, the developed GQDs here also

showed excitation-dependent emission (Fig. 3d).

When the excitation wavelength increased from 260

to 560 nm, the emission wavelength increased from

440 to 590 nm.

Photostability and pH effect

To be used for bioimaging and biosensing, the pho-

tostability and pH effect of GQDs were investigated.

Using fluorescein (FITC) as a control, GQDs showed

a superior photostability. It was observed that no

photobleaching appeared at a long irradiation period

of 1500 s (Fig. 4a). Furthermore, we investigated the

effect of pH on the fluorescence of GQDs. As shown

in Fig. 4b, the fluorescence intensity of GQDs signif-

icantly gradually increased when the pH of the GQDs

solution increased from 1.00 to 6.00. Between pH

ranges of 6.00–10.00, the fluorescence intensity of

GQDs showed negligible changes, indicating the

excellent stability of GQDs in this range. The GQDs

are promising for biomedical applications because

this pH range covers most of the physiological envi-

ronment. Under strong basic condition from pH 10 to

pH 12, the fluorescence intensity declined.

Fluorescence stability of GQDs on metal
ions

From screening the effect of metal ions on the fluo-

rescence of GQDs, we found a significant fluores-

cence quenching effect of Cu2?on the GQDs. As

shown in Fig. 5, a series of different metal ions were

tested at the concentration of 20 lM. The results

showed that the addition of Cu2? significantly

decreased the fluorescence intensity of GQDs, while

other metal ions had no or slightly impact on the

fluorescence of GQDs, which could be explained by

Irving–Williams series [51]. Therefore, the developed

GQDs could be used for monitoring the concentra-

tion of Cu2?.

Feasibility and characteristic investigation
of Cu21 detection

In order to give the approval to the feasibility, we

investigated the fluorescence intensity response of

GQDs before and after the addition of Cu2?. As

shown in Fig. 6a, the fluorescence intensity of GQDs

decreased by about 71% in the presence of 300 lM
Cu2?. Thus, GQDs could be used as a fluorescent

sensing probe for Cu2? detection. Figure 6a shows a

lower fluorescence intensity of GQDs corresponding

to a higher Cu2? concentration. Besides, the TEM

images of the same samples of GQDs before and after

the addition of Cu2? are shown in Fig. 6b and (c),
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compared with the TEM images of GQDs in the

absence(b) or presence(c) of Cu2?, and GQDs were

significantly aggregated in the presence of Cu2?

(Fig. 6c), which confirmed the proposed theory of

aggregation-induced fluorescence quenching in

Scheme 1. On the other hand, we also further

strengthen the conclusion by monitoring the absorp-

tion spectrum of GQDs with or without the treatment

of Cu2?. The result is included as Fig. 6d. For the

spectrum of GQDs, there is a peak at 260 nm, which

belongs to the absorption peak of the fluorescent

GQDs. In the spectrum of GQDs added with Cu2?, no

obvious peak near 260 nm was observed. Therefore,

in the presence of Cu2?, the aggregation of GQDs

occurred corresponding to the decreased absorption

peak and elevated baseline, which directly affect the

fluorescence properties.

Detection of Cu21

Copper, as a transition metal, is involved in various

physiological functions in biological activities, espe-

cially in cell generation and enzymatic processes

[52–56]. However, copper exhibits high toxicity if

over-ingested. For example, through the food chain,

it will be a direct reason to cause multiple serious

neurodegenerative diseases, such as Wilson and

Parkinson’s. Therefore, copper pollution has been
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Figure 6 a Fluorescence

spectra of GQDs incubation

with two different

concentrations of Cu2? in

20 mM HEPES (pH 5.0).
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Cu2? (300 lM). d UV–Vis

absorption spectra of

GQDs ? Cu2? (Orange) and

GQDs (blue).
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considered as a serious safety issue due to its wide

and long-term effect. Fast and sensitive detection of

copper ions in river lake and other nature resources is

highly significant. The mechanism of this GQD-based

sensing system is based on efficient chelating inter-

actions between Cu(II) and carboxylic groups on the

nanoparticles, which causes a significant fluorescence

quenching. This could be explained by Irving–Wil-

liams series. Comparing with other transition metals,

Cu2? tends to form more stable bonding interactions

with the abundant carboxylic groups as electron

donors on the GQDs, which would cause aggregation

accompanied with self-fluorescence quenching. It has

been reported that carboxylic functional group-

modified semiconducting polymer nanoparticles

could also be quenched by Cu2? through the same

mechanism of strong interaction-induced self-

quenching [57]. In order to optimize the reaction

conditions for detecting Cu2?, the effect of the con-

centration of GQDs, the pH, and the reaction time

was investigated to obtain the largest signal-to-noise

ratio. As shown in Fig. 7a, a series of concentrations

of GQDs were incubated with 50 lM Cu2? in 20 mM

HEPES at pH 5.0 overnight, and the fluorescence

intensity of the above solutions was recorded and

designated as F. As a control, the same concentration

of GQD solutions without Cu2? in 20 mM HEPES

was kept stirring overnight. The fluorescence inten-

sities of these control groups were defined as F0. The

corresponding ratios between F and F0 reached the

minimum value at the concentration of 0.40 mg/mL

of GQDs, indicating the optimal concentration of

GQDs for sensing Cu2?. Therefore, we utilized the

concentration GQDs at 0.40 mg/mL for the following

experiments.

Additionally, the optimal pH and reaction time

were investigated to obtain the best performance of

the sensor. As shown in Fig. 7b, with the increase in

pH from 5.0 to 9.0, the ratio of F to F0 increased sig-

nificantly, which indicated that the quenching effi-

ciency of Cu2? was declined. To obtain the best

analytical performance, pH 5.0 was chosen as the

optimal pH of the reaction solution. Furthermore, the

reaction time is critical because the interaction

between GQDs and Cu2? needs sufficient reaction

time to complete. Therefore, we investigated the

impact of reaction on the fluorescence quenching

ability of Cu2? to GQDs. As shown in Fig. 7c, the
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ratio of F to F0 decreased in the first 8 h quickly and

reached the plateau after 12 h. Consequently, the

reaction time was optimized to 12 h.

To analyze the sensitivity of the GQDs toward

Cu2?, under the optimized reaction conditions

(0.40 mg/mL in 20 mM HEPES buffer, pH = 5.0, 12 h

reaction time), different concentrations of Cu2? were

incubated with GQDs and followed by the mea-

surements of the fluorescence spectra. As shown in

Fig. 8a, the fluorescence intensity of GQDs decreased

as the concentration of Cu2? increased from 0 lM to

300 lM. Figure 8b shows the relationship between

the fluorescence quenching value DF = F0—F (F0 and

F represent the fluorescence intensity of GQDs in the

absence and presence of Cu2?, respectively) and the

concentration of Cu2?. The curve showed that the

dynamic range of the sensor was from 0 to 300 lM,

with a linear range between 0 to 40 lM (inset of

Fig. 8b). The calibration curve demonstrated a

regression equation of DF = 90.21C ? 63.59 with a

correlation coefficient of 0.9984, where C stands for

the concentration of Cu2?. The limit of detection

(LOD) for the detection of Cu2? was calculated to be

0.44 lM based on the slope of Eq. (3r/s), where r is

the standard deviation of three blank signals and s is

the slope of the calibration curve. We added Table 2

as shown below to compared with other methods

[59–62]; the detection limit of GQD-based system

toward Cu2? is much lower than the above-reported

methods (Table 2), which might contribute to the

carboxylic group-functionalized GQDs having better

binding efficiency to the divalent Cu2?. Moreover,

compared with other reported systems, the sensing

materials of this work were GQDs produced by

humic acid, which is less expensive and easy to

prepare. The LOD of this work is 0.44 lM and the

linear range is from 1 to 40 lM; this LOD could

ensure the feasibility to apply this sensor to monitor

Cu2? in drinking water, because the Environmental

Protection Agency (EPA) has required the highest

concentration level of Cu2? in drinking water to be

20 lM [58].

Analysis of spiked sample

To validate the applicability of GQDs to be utilized

for Cu2? detection, river water samples were spiked

with two different levels of Cu2? (10 lM and 20 lM),

(a) (b)

Figure 8 a Fluorescence spectra of GQDs incubation with

different concentrations of Cu2? in 20 mM HEPES (pH 5.0).

b. The plot of the fluorescence quenching values DF vs the

concentrations of Cu2?. The inset graph in (b) shows the

calibration curve of the sensor for Cu2? detection.

kex = 360 nm, kem = 470 nm. The error bar represents standard

deviation of the mean, n = 3 for each concentration.

Table 2 Comparison of the

proposed sensor with other

methods

Sensing material LOD Linear range Method Reference

Au nanoparticles 20 lM 20–100 lM Colorimetric [59]

Silver nanoclusters 5 lM 5–150 lM Fluorometric [60]

AuNps-DDTC 14.9 lM 1.0–10 mM Colorimetric [61]

Proline, PVBC polymer 0.7 lM 5–200 lM IAS [62]

GQDs 0.44 lM 1–40 lM Fluorometric This work
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followed by detecting both fluorescence signal and

conventional ICPMS signal. Red River water was

obtained from Grand Forks, North Dakota, USA. The

spike recovery results from these two methods are

shown in Table 3. Both the fluorometric method and

conventional ICPMS methods showed decent recov-

eries; the recoveries of all samples from fluorometric

assay were 102% and 94% at these two different

concentrations, respectively, indicating that this new

developed GQD would be applicable to the detection

of Cu2? in environmental waters. Besides, comparing

with conventional ICP-MS method, the fluorometric

method is less cost and simpler.

Conclusions

In summary, we have developed a strong cyan

emission graphene quantum dots with excellent flu-

orescence properties using raw materials of humic

acid from an abundant source—low-rank coal lignite.

The procedure was a one-pot synthesis. The fluores-

cence intensity of this new developed GQD showed

proportional response to the concentration of Cu2?

due to the fluorescence quenching by the strong

chelating interactions between carboxylic groups and

Cu2?. The analysis showed a linear range from 1 to

40 lM Cu2? and a limit of detection (LOD) 0.44 lM.

Moreover, the method was also used to test Cu2? in

river water, demonstrating its applicability in com-

plex environment.
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