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ABSTRACT

Luffa spp. is readily available and widely grown in Asia and Africa and is a rich

source of natural fibres for composite development. This paper reviews research

findings on Luffa fibres and their composites. The progress of research, novel

findings that affect the paradigm of the research area, recent trends, knowledge

gaps and future perspectives are evaluated. It was found that the average

chemical composition of Luffa fibres ranges from 57–74% cellulose, 14–30% of

hemicellulose, 1–22% of lignin and 0–12.8% of the other components. Luffa fibres

were usually extracted by drying. Furthermore, the most common modification

technique was found to be by alkali mercerisation. About 53% of the research

studies made use of epoxy resins for their base polymer making it the most

popular polymer type for Luffa fibre reinforced composites. The composites are

fabricated usually by manual mixing and hand layup and the most common

curing technique was found to be compression moulding (about 63% of the

research studies). The mechanical, thermal, crystalline and other properties of

the composites are also considered in this review. Further interesting areas

suggested for future work include investigation of the effect of drying, more

trials with L. acutangula and utilisation of multi-resin ternary systems. It is

concluded that Luffa is a promising material for composite development and

based on its favourable properties is likely to continue playing an important role

for the years to come.

Introduction

In the era of modern engineering materials, degrad-

ability is an important property to be considered in

the selecting materials to use [1]. Recently,

researchers have focused on tackling global warming

with biodegradable composites [2]. Natural fibre

composites are advantageous due to some of their

physical, chemical and mechanical properties and

unique lightweight [3, 4]. Luffa spp. fibres are ones of
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the most popular natural fibres in composites

development.

Based on the scientific classification, Luffa belongs

to the Order—Cucurbitales and Family—Cucurbitaceae

[5, 6]. It is a sub-tropical herbal plant that requires

warm temperature [7]. Seeds from the pod are usu-

ally black in colour and have an oblong shape with a

bitter taste [5]. The flower is usually yellowish in

colour and primes in August–September [8]. The fruit

is brownish in colour when mature and dries to

develop a sponge-like structures that have a fibrous

vascular system [9] and [10]. The fruits produced are

cylindrical in shape and smooth [6]. Luffa is generally

recognised as sponge gourd, vegetable sponge, loofa,

dish-cloth gourd or bath sponge. The genus Luffa

comprises species 5–7 on average but only Luffa

cylindrica and Luffa acutangula are widely used

domestically [11]. Luffa c. is readily available and

widely grown in Asia and Africa where it has been

observed to have medicinal benefits [12]. Based on its

phytochemical analysis, the fruit and the leaf contain

triterpenoid saponins and the seed has some

polypeptides [6]. Luffa is a rich source of natural

fibres (shown in Fig. 1a, b) for composite

developments.

In industry, natural fibre reinforced composite

materials are currently in focus [15–17]. Natural fibre

reinforced polymer-composites possess extraordi-

narily high strength to weight ratio, high impact and

corrosion resistance, are non-conductive and exhibit

low maintenance requirements [18]. The use of nat-

ural fibres to reinforce polymers has become more

and more attractive due to their low density,

renewability and availability [12, 19]. Polymer-based

fibre reinforced composite materials are applied in

the areas of roof making, home appliances, automo-

tive [20], architectural design, etc. [21]. and others

[22–24]. The fibres can be treated by both physical

and chemical means, to increase their adhesion to

polymeric matrices when used in composites [25].

Because of the poor compatibility between the fibres

and the polymer matrix, surface treatment should be

applied to natural fibres to increase their bonding at

the fibre-polymer interface [26].

The hydroxyl and carboxyl group relates with the

water molecules through hydrogen bonding due to

the presence of the cellulose and hemicellulose; the

utmost constituents of natural fibres. This relation

results in instability and reduction in the mechanical

performance because of the presence of moisture in

its wet state [12]. The effect of moisture is a crucial

research centre-point for natural fibres. There is a

hefty reduction in the mechanical performance

operation when fully saturated [27]. During the wet

state of the plant (Fig. 1a), the fruit is covered with

green husk on the outside [28]. The wet leaves could

be used as vegetables. The fruits can be used in the

Asia continent as curry. In the dry state of the plant,

the green husk starts to parched when the maturing

time-frame of the fibres inside the husk is completed

(Fig. 1b). At maturity the fruit becomes more fibrous

[13].

Synthetic fibres usually have higher tensile

strength than natural fibres, but their tensile modulus

is of equal order of magnitude [29]. However, the

natural fibres show higher value of specific modulus

compared to the synthetic fibres [30]. Some mechan-

ical properties of the natural fibres are inferior to the

synthetic ones which is a great hindrance to their

applications. Therefore, blending nano-fillers with

natural fibres in a polymer matrix can lead to high-

performance materials with good strength of bio-

degradability [31]. For a polymeric matrix material to

be effectively used during the reinforcing phase, the

surface of the filler needs to be modified to reduce its

intrinsic hydrophilic nature and advance its

Figure 1 Luffa Cylindrica

plant [13] (a) and fibre [14]

(b).
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dispersion in a polymer which is usually hydropho-

bic [32]. However, the use of both fibre surface

treatment (coupling agents) and modification of the

polymer matrix resin (maleated poly-olefins) caught

the attention of researchers because those factors are

efficient in modifying the bonding between the

components [33].

Over the years, researchers have investigated the

properties of Luffa fibres and their composites. These

were focused on the production process, treatment

method, mechanical, thermal, structural, chemical

and morphological properties of the fibres as well as

the composites. There is no comprehensive review on

Luffa fibres and their composites. Hence, there is a

need to bridge this gap in knowledge and summarize

the findings in this research area. This paper reviews

the research findings on Luffa fibres and their com-

posites. This was done to evaluate the progress of

research, identify novel findings that have affected

the paradigm of the research area, discuss recent

trends and knowledge gaps and propose future

perspectives.

Luffa fibre composition

The extent to which Luffa fibres will perform when

used in a composite is dependent on their chemical

composition. Like other biomass, the major compo-

nent of Luffa fibres is cellulose, hemicellulose and

lignin [34]. Cellulose is the desired component in the

fibres used for reinforcement of polymer composites.

High levels of hemicellulose and lignin usually lead

to poor mechanical properties of the fibres and their

composites. Luffa fibres come from different species,

such as L. acutangular, L. cylindrica, L. aegyptiaca, L.

sepium, L. operculata etc. Of all these species, Luffa c. is

the most popularly studied and applied. Table 1

shows that raw Luffa fibres are primarily made up of

cellulose, hemicellulose and lignin, although they

also contains some other components. From the table,

it is seen that the average chemical composition of

Luffa fibres ranges 57–74% of cellulose, 14–30% of

hemicellulose, 1–22% of lignin and 0–12.8% of the

other components. There were huge differences in the

lignin contents of the Luffa spp. studied because the

contents and compositions of the species differs nat-

urally at different levels of plant growth which could

be influenced by environment factors occurring at

different cellular levels because they are cell specific.

The other components include ash and extractives.

The cellulose content is similar to that of flax fibre

(62–72%) [35], hemp fibre (67–75%) [36] and sisal

fibre (65–4%) [37, 38]. However, it is comparatively

higher than that of sugarcane fibre (32–55%) [39, 40],

kenaf fibre (31–57%) [35] and oil palm fibres 44% [36].

This suggests that Luffa fibres are as good as most

other fibres for utilisation in reinforced composites

especially in terms of the compositional qualities.

Differences in lignin content might be due to the

intrinsic nature of the fibres. Furthermore, differences

might also be due to fibre extraction and processing

technique before characterising.

Luffa fibre physical properties

The physical properties of the fibres play an impor-

tant role in the mechanical performance of the final

composites. The physical properties of Luffa spp. are

summarised in Table 2. The values reported for the

physical properties are usually for the dried state. It is

unconventional to report wet fibre properties espe-

cially in view of composite development. These

include tensile strength, tensile modulus, elongation

at break, the fibre diameter and density. The values

from different studies are slightly different as varia-

tions occur from one species to the other due to the

nature of the plant, source of the fibre, cultivation

region, plant duration, location, nature of the soil,

climate conditions and treatment method. A wide

range of fibre densities from as low as 0.353 g/cm3

[49] to as high as 2.2 g/cm3 [17] was reported. Denser

fibres tend to exert more mechanical toughness. For

the tensile properties, tensile strength was mostly

between 10 and 50 MPa though as low as 0.49 MPa

[9] and as high as 385 MPa [7, 47] have been

observed. The elongation at break is a representation

of the percentage elongation of the fibre before it

breaks. The elongations have been observed to range

from 0.48% [28] to 20% [50] for L. cylindrica and as

high as 54.1 MPa [51] for L. acutangula. The range of

these values is generally acceptable for potential

reinforcements in polymer composites.
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Table 1 Composition of Luffa

spp Cellulose (%) Hemicellulose (%) Lignin (%) Others (%) Refs

63.0 14.4 1.6 21 [7]

65.5 17.5 15.2 3.8 [41]

62.34 – 14.04 0.37 [9]

59.1 19.9 8.2 12.8 [42]

57.51 29.47 20.45 – [43]

57.03 29.87 19.67 – [44]

73.92 – – – [45]

73.92 – 21.85 – [46]

73.92 – 21.85 – [8]

67.0 – 8.1 7.2 [47]

63.0 19.4 11.2 3.1 [48]

Table 2 Physical properties of Luffa spp. fibres

Fibre Density (g/cm3) Tensile strength (MPa) Tensile modulus (GPa) Elongation at break (%) Diameter (lmÞ Refs

L. cylindrica 0.719–0.721 0.41–0.69 5.495–4.548 12.30–18.80 – [9]

L. acutangular 0.82–0.92 12.40–13.56 23.14–73.29 54.1 – [51]

L. aegyptiaca 2.2 3 0.004 7 – [25]

L. cylindrica – 9–20 0.0015–0.0140 – – [52]

L. cylindrica 1.15–1.50 9.13–17.97 0.446–1.331 – – [53]

L. cylindrica 0.8–0.9 1.7–20.5 0.9–1.8 1.1–2.2 – [28]

L. cylindrica 1.1 – 1–12 – – [54]

L. cylindrica 1.1–1.5 178.20–192.70 4.263–5.184 1.86–3.12 – [14]

L. cylindrica – 20–33 0.4–0.5 2 – [55]

L. cylindrica 0.82–0.92 68:1� 24 2:4� 0:215 4:5� 2:7 0:055 [41]

L. cylindrica – 17.628 0.076 3.681 – [56]

L. cylindrica 0.82–0.92 4.875–8.029 1.287–1.697 5.04 – [57]

L. cylindrica – 7.65 0.021 – – [58]

L. cylindrica 0.92 ± 0.05 16–19 3.4 0.48 631 [59]

L. cylindrica 0.84–0.92 50.25 – 4–7 220 [60]

L. cylindrica 1.33 15.9 ± 1.3 – 4.3 – [33]

L. cylindrica 1.06 18.7 0.042 – – [61]

L. cylindrica 1.14 20–25 0.070 – – [62]

L. cylindrica 0.56 20–40 – – 226 [63]

L. cylindrica 1.38 31 0.072 – 200 [64]

L. cylindrica 0.92 ± 0.05 385 ± 10.52 12 ± 1.02 2.65 ± 0.05 631 [47]

L. cylindrica – 385 ± 10.52 12.2 ± 1.02 2.65 ± 0.05 – [7]

L. cylindrica 1.26 17.4 0.354 20 – [50]

L. cylindrica 1.2 ± 0.1 202.3 4.5 2.5 ± 0.2 150 ± 20 [65]

L. cylindrica 0.353 11.1 1.332 – [49]

L. cylindrica 0.91 9.4 12–13 2–3 20–270 [66]

L. cylindrica 0.56 17 0.750 – 270 ± 20 [67]

L. cylindrica – 385 12.2 3 10–20 [68]

L. cylindrica 0.82–0.92 6.7 – 11 – [69]
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Extraction and treatment of Luffa fibres

In this section, the methods of extraction and treat-

ment of Luffa fibres or composite development are

discussed. Table 3 gives a summary of the extraction

and modification of Luffa spp. The conventional

techniques used for the extraction of natural fibres

rely on decortication and water retting [18, 70].

However, it is observed that Luffa fibres are not

extracted in this way. When dried, Luffa fibres usu-

ally become easy to separate from the other parts of

the pod. Extraction is therefore done by sun-drying

or by natural air drying [13, 33, 62, 64, 71]. When

dried, the hard-outer layer is cut off to remove the

seed from the pod. The sap colour can then be

removed by soaking in water [72]. Drying of the Luffa

c. plant is the most common method of extracting

fibres from the plant [1, 27, 69] although some

researchers purchased the fibres directly from a

particular source [48, 73], others did not give the

specifics of the fibres used in their research [74].

Fibres are chemically modified because their

hydrophilic nature makes them adhere poorly to

polymer matrix [75]. Thus, they are chemically trea-

ted to improve their mechanical properties and

structural responses. Mercerisation with NaOH is the

most popular fibre treatment technique as seen from

the table. Untreated fibres have their surface covered

with pectin, lignin and other impurities which are

removed by treatment with NaOH, while increasing

the surface roughness of the fibre [72]. This treatment

also reduces the fibre diameter and increases inter-

facial bonding between the Luffa fibres and the

polymer matrix. Other modifications used are ben-

zoylation (using benzoyl chloride), acetylation (using

acetic acid), and oxidation (using potassium per-

manganate or hydrogen peroxide). The concentration

of the solution, temperature and the duration at

which the treatment is carried out influences the

strength of the treated fibres [69]. Most of the treat-

ments were carried out at room temperature for

15 min to 6 h; however, the temperatures ranging

between 80 and 120 �C were also used by some

researchers. Also, the treatment time as long as 12, 24

or 48 h were also applied (Table 3). Concentration

varied between 1 and 20%, although treatment with

acetic acid, or H2SO4 at the concentration as high as

100% and 66%, respectively, were also used. After

treatment, the fibres were generally washed with

distilled water and dried (either in an oven or

naturally in sun) to remove moisture contents before

they were used for the composites.

Luffa composite preparation techniques

In this section, different preparation strategies and

polymers utilised in the development of Luffa rein-

forced polymer composites are discussed. As shown

in Fig. 2, epoxy resin is the most common polymer

used for preparing Luffa composites. About 53% of

the research studies made use of epoxides for their

polymer matrix. This is due to exceptional mechani-

cal properties, high adhesion to many substrates, and

good heat and chemical resistance of epoxy poly-

mers. They are used across a wide range of fields as

fibre reinforced materials, general-purpose adhe-

sives, high-performance coatings, and encapsulating

materials [91]. The use of polyester resins [46, 59, 92]

is about 16%, polypropylene [3, 89] and polyethylene

[93, 94] is 7%, vinyl ester [47, 60] is 6% while other

polymers, including polyurethane [25], resorcinol/

formaldehyde resins [82], polylactic acid [90], poly

caprolactone [32], starch [95], and polybutylene suc-

cinate-co-lactate copolymer [50] contribute about 12%

to the Luffa fibre composites.

Composites have been fabricated by conventional

methods called hand lay-up. This method has been

widely explored to fabricate composites, because of

its flexibility, cost-effectiveness and simplicity. It is

economically suitable for developing countries and

less financially supported colleges and universities

[96]. From Fig. 3, manual mixing and hand lay-up

[12, 13, 62] is seen as the most popular method of

mixing and lay-up. Another method commonly used

is mechanically mixing. This can be done using dif-

ferent mechanically designed devices like torque

rheometer at 60 rpm for 10 min at an elevated tem-

perature of 190 �C [55], intermeshing twin-screw

extruder [73], micro compounding equipment [30].

Magnetic stirring was also used [47].

Compression moulding is a high-pressure, high-

volume moulding process which is recommended for

thermoplastic polymers. It is very advantageous in

that it is relatively inexpensive, takes short cycle time,

is good for high volume production, and delivers

good dimensional accuracy, uniform density and

improved impact strength of the final product [18].

Hot compression moulding usually was done at an

elevated temperature such as 70 �C [59], 80 �C
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Table 3 Chemical Treatment of Luffa spp. fibres

Chemical Reagent Temp (oC) Concentration Time (hrs) Refs

NaOH 80 6 M 24.00 [64]

NaOH Room 2% w/v 1.00 [71]

NaOH 80 5% w/v 2.00 [62]

NaOH Room 5% w/v 4.00 [13]

NaOH Room 2% w/v 2.00 [33]

NaOH, H2O2 85 5% w/v 1.00 [43, 76]

NaOH, CH3COOH 40 10% w/v, 20vol% 0.50 [43, 76]

NaOH, CO(NH2)2 80 18% w/v, 1.6% w/v 0.50 [43, 76]

NaOH, H2O2 85 5% w/v 1.00 [44]

NaOH, CH3COOH 40 10% w/v, 20vol% 0.50 [44]

NaOH, CO(NH2)2 80 18% w/v, 1.6% w/v 0.5 [44]

NaOH 80 2–10% w/v 6.00–24.00 [69]

NaOH Boiling 0.1 M 0.30 [55]

NaOH Boiling 0.1 M 0.30 [77]

NaOH 60 5 M 4.00 [66]

NaOH 80–120 4–12% w/v 1.00–3.00 [78]

NaOH, H2O2 100–120 2–10% w/v, 5–15vol% 1.00–3.00 [78]

NaOH 100 4% w/v 2.00 [26]

NaOH, H2O2 100 4% w/v, 10vol% 2.00 [26]

NaOH 25 1 N, 10% w/v 2.00 [1]

NaOH Room 20% w/v 12.00–24.00 [27]

NaOH 25 5% w/v 48.00 [72]

NaOH 25 1 N 1.00 [45]

Ca(OH)2 25 1 N 1.00 [45]

Tri-chloro-vinyl silane 25 0.3vol% 1.00 [45]

NaOH 25 1 mol/L 1.00 [46]

HCOOH 20 99vol% 0.70 [79]

CH3COOH 40 100vol% 0.70 [79]

NaOH 25 2% w/v 1.00 [80]

NaOH 25 5% w/v 2.00 [53]

NaOH 25 5% w/v – [81]

NaOH Room 1% w/v 1.00 [50]

NaOH 25 8% w/v 24.00 [12]

NaOH 25 5% w/v 48.00 [25]

Benzoyl chloride, NaOH 110 15 mL, 40% w/v 48.00 [25]

NaOH Room 5% w/v 4.00 [67]

Benzoyl chloride Room – 0.25 [67]

KMnO4 Room 0.05% w/v 0.30 [67]

NaOH 25 1–7% w/v 2,4,6 [63]

NaOH 25 2% w/v 0.50 [61]

Acetone 37 – 6.00 [73]

Acetone, HCOOH 37 1 wt% 6.00 [73]

Acetone, CH3COOH 37 1 wt% 6.00 [73]

CH3CN:(CH3CO)2CO 37 3 wt% 6.00 [73]

NaOH, H2O2 37 1 M 6.00 [73]

NaOH, H2O2, CH3CN:(CH3CO)2CO 37 1 M, 3 wt% 6.00 [73]

CaCl2, Na2HPO4 Room 2 mol/L 12.00 [82]

CaCl2, Na2CO3 Room 2 mol/L 12.00 [82]

CaCl2 Room 3 mol/L 12.00 [82]

NaOH 80 5% w/v 1.00 [30, 83–86]

NaClO 80 2% w/v 2.00 [30, 83–86]
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[66, 97], 100 �C [14] and as high as 190 �C [55]. Koruk

and Genc [20] used a hot hydraulic press. On the

other hand, cold compression moulding was com-

monly done at room temperature [72, 92, 96]. About

62% of the research studies used this method. Open

moulding also known as laminate method or casting

process is a general technique used for making

thermoset and other composites products. The resin

and reinforcement material are placed on an open

mould surface and the composite is then allowed to

cure at room temperature. Although this process is

very advantageous for large scale production and for

complex materials with little equipment investment,

it is labour intensive, generates high waste, takes long

time to cure and there can be non-uniformities in the

products obtained [18]. About 17% of research stud-

ies used this method for preparation of the compos-

ites [26, 27, 98]. 7% of research studies used extrusion

moulding [93, 94] and 7% used injection moulding

[50, 89]. Others methods included micro compound-

ing moulding [90], resin transfer moulding [99],

closed moulding [82] and multimode microwave

Table 3 continued

Chemical Reagent Temp (oC) Concentration Time (hrs) Refs

H2SO4 45 60vol% 2.00 [30, 83–86]

NaOH Room 5% w/v 0.5–2.5 [87]

NaOH 25 2% w/v 1.50 [88]

NaOH 25 1 N 2.00 [31]

NaOH 25 0.1 N 1.00 [74]

NaOH 25 10% w/v – [89]

NaOH 50 5% w/v 2.00 [14]

ClO2, Furfuryl alcohol 100 1.88 mmol, 11.35 g 2.00 [14]

NaOH 25 5% w/v 2.00 [65]

NaOH 25 2% w/v 1.00 [7]

NaOH 80 4% w/v 2.00 [41]

NaClO2 80 1.7 wt% 2.00 [41]

NaOH Room 2% w/v 2.00 [47]

PDMA 55 0.25 g 24 [47]

NaOH 25 2% w/w 0.17–1.50 [48]

Methacrylamide 25 1–3% w/v 1, 2, 3 [48]

NaOH 80 5% w/v 1.00 [90]

NaClO 80 2% w/v 2.00 [90]

NaOH Room 2–10% w/v 24.00 [58]

Figure 2 Polymer used for preparing Luffa fibre reinforced

composites.
Figure 3 Processes used for preparing Luffa fibre reinforced

composites.
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technique [1]. The preparation techniques for the

Luffa composites are summarised in Table 4.

Mechanical properties of Luffa fibre-
reinforced composites

This section focuses mainly on the mechanical prop-

erties of different Luffa fibre-reinforced composites.

Mechanical properties are the most studied proper-

ties of reinforced polymer composites. For Luffa

composites, mechanical properties in the domain of

impact, tensile and flexural properties have been

investigated. Tensile samples were investigated

based on the ASTM D638 standard and were tested

using a universal testing machine

[51, 52, 57, 74, 85, 86]. The impact strength tests were

conducted using the Charpy set up parameters

according to the ASTM D6110-10 standard. Hardness

characteristic of a material is a measure of the mate-

rial resistance to confined deformation. Rockwell

hardness tester was used to analyse the hardness

number and to evaluate the hardness of each of the

composites using ASTM E92 standard [51]. The water

absorption capacity tests of Luffa fibre-reinforced

composite were carried out following ASTM D-570

standard [52]. Furthermore, samples were also pre-

pared according to ISO 14,125 standard to examine

the flexural properties, ultimate tensile strength,

Young’s modulus and elongation-at-break of the

composites, using a Universal Testing Machine.

Table 5 shows that the average tensile strength of the

Luffa fibre-reinforced epoxy composites values vary

between 3 and 80 MPa. Highest flexural strength

values were observed when Luffa fibres were used for

reinforcement of epoxy composites. Impact strength

of the Luffa fibre composite indicates the highest

energy required to disrupt the material and it ranges

between 22.60 and 68.42 kJ/m2 and 1.3 to 9 J,

respectively. Stiffness of the composite materials

(Young’s modulus) was higher in polyester materials

compared to other composite materials. Flexural

modulus which measures the resistance to bending

when a perpendicular force is applied to the side of

the composite reached the highest value of 4858 MPa

[80]. On average, the water absorption of the Luffa

fibre composite materials varies between 1 and 14%.

Moreover, it was reported that tensile and flexural

properties decreased as the fibre/polymer ratio

increased.

Thermal and crystalline properties of Luffa
fibre-reinforced composites

A simple and accurate method for investigating the

decomposition pattern and thermal stability of com-

posites is thermogravimetric analysis (TGA) [95].

Chemical constituents of fibres (cellulose, hemicellu-

lose, and lignin) are the determinants of thermal

stability of natural fibre reinforced composites [67]. A

summary of the thermal properties of Luffa reinforced

composites is given in Table 6. Ibrahim, Rajkumar [1]

used decomposition characteristics to compare con-

ventionally cured and microwave cured samples and

their extent of cure. The samples were heated in TA

Instruments TGA to 600 �C at a heating rate of 10 �C/
min in N2 atmosphere. It was observed that at 40%

filler concentration, the initial and final degradation

temperature of Luffa-epoxy composites cured at room

temperature were 363 and 600 �C, while that of the

microwave cured were 388 �C and 600 �C, respec-

tively. The result of TGA and DTGA obtained by

Kaewtatip and Thongmee [95] showed that Luffa

fibres improved the thermal stability of starch rein-

forced composites. The thermogravimetric curves of

composite with 10 wt% and 20 wt% were similar.

Weight loss was noticed to have occurred within the

temperature range of 100–200 �C which could be due

to evaporation of water and glycerol. The maximum

temperature of weight loss was 336 �C and 343 �C for

the composites with 10 wt% and 20 wt% of Luffa

fibres, respectively, which could be due to decom-

position of starch and cellulose.

Mohanta and Acharya [67] observed that the ther-

mal stability of chemically treated fibres was higher

than that of the untreated ones. At about 313 �C, the
maximum decomposition occurred for untreated

fibres. At 417 �C, the thermal decomposition for both

alkali-treated and the untreated fibres was com-

pleted. The weight loss of untreated fibres was 9.77

and 97.38% at 100 and 500 �C, respectively. A crys-

tallinity of 0.39 was observed. Siqueira, et al. [32]

performed differential scanning calorimetry (DSC)

experiment on poly caprolactone-based nanocom-

posite. In order to minimize oxidative degradation,

6 mg and 10 mg samples were placed in hermetically

closed DSC dishes under nitrogen atmosphere. The

glass transition temperature (Tg) was found to be -

58.8 �C and 0.56 was the degree of crystallinity

determined from DSC thermograms with the heating

and cooling cycles carried out from -100 �C to
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Table 4 Preparation techniques used for Luffa composites

Polymer Mixing and lay-up Curing Refs

Epoxy resin Mechanical stirring and hand lay-up Compression moulding (room

temperature, 5 MPa, 24 h)

[71]

Epoxy resin Manual mixing and hand lay-up Compression moulding (72 h) [100]

Epoxy resin Manual mixing and hand lay-up Open moulding [62]

Epoxy resin Manual mixing and hand lay-up Compression moulding (room

temperature,72 h)

[13]

Vinylester Mechanical stirring at 100 rpm Open moulding (room temperature, 2 h) [33]

Epoxy resin Manual stirring and hand lay-up Compression moulding (room

temperature, 24 h)

[69]

Epoxy resin Manual stirring and hand lay-up Compression moulding (72 h) [12]

Polypropylene Torque rheometer (190 �C, 60 rpm, 10 min) Compression moulding (190 �C, 100 bar,

10 min)

[55]

Epoxy resin Mixed using an overhead stirrer Compression moulding (20 kg/cm2,

80 �C, 1 h)

[66]

Polyester Mechanical stirring and hand lay-up Compression moulding (room

temperature, 24 h)

[92]

Polyethylene Mechanically mixed Twin-screw extrusion (300 rpm) [94]

Polyethylene Mechanically mixed Twin-screw extrusion (30 rpm, 24 h,

60 �C)
[2]

Epoxy resin Mechanically mixed Compression moulding (5 bars, 80 �C,
5 h)

[54]

Epoxy resin Mechanically mixed Compression moulding (500 kPa, 80 �C,
5 h)

[101]

Epoxy resin Mechanically mixed Multimode microwave (1200 W) [1]

Epoxy resin Manual mixing and hand lay-up Open moulding (air-cure 24 h) [27]

Polyethylene Rheomix mixer 600 instruments (32 rpm,

160 �C, 3 min)

Compression moulding (5 tons, 175 �C,
3 min)

[102]

Epoxy resin – Compression moulding (7 MPa, 24 h) [72]

Starch Mechanically mixed Compression moulding (200 kg/cm2,

150 �C, 10 min)

[95]

Unsaturated polyester Manual mixing and hand lay-up Open moulding [26]

Unsaturated Polyester Hand lay-up Compression moulding (room

temperature, 15 MPa, 4 h)

[45]

Unsaturated polyester Hand lay-up Compression moulding (30 �C, 5 MPa,

12 h)

[46]

Unsaturated polyester Mechanically mixed Compression moulding (17 MPa, 24 h) [8]

Unsaturated polyester – Compression moulding (room

temperature, 5 MPa, 24 h)

[21]

Epoxy resin – Compressed with hot Hydraulic press [20]

Epoxy resin Hand lay-up Compression moulding (24 h) [103]

Epoxy resin Manual mixing and hand lay-up Open moulding (28 �C, 24 h) [19]

Epoxy resin Hand lay-up Compression moulding (24 h) [80]

Epoxy resin Manual mixing and hand lay-up Open moulding (room temperature, 24 h) [53]

Epoxy resin Manual mixing and hand lay-up Compression moulding (24 h) [81]

Poly (butylene

succinate -co-

lactate)

Intermeshing twin -screw extruder (360 rpm,

90–120 �C)
Injection moulding [50]

Epoxy resin Manual mixing and hand lay-up Compression moulding (72 h) [63, 67, 104, 105]

Polyurethane Hand lay-up Compression moulding (60 �C, 1.9 MPa,

6 h)

[25]

Epoxy resin Hand lay-up Compression moulding [104]
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100 �C and from 100 �C to -100 �C, respectively, at
the rate of 10 �C/ min. It was noticed that addition of

cellulose nanocrystals slightly increased Tg value

however upon varying the filler content, no signifi-

cant modification was observed, which could confirm

that the Luffa c. nanocrystals restricted the rotational

motions of the poly caprolactone polymer chain by

establishing hydrogen bonding forces.

Other properties and applications

Several other properties and applications have been

explored for Luffa fibre reinforced composites. Genc

and Körük [54] studied the sound absorption coeffi-

cient of the Luffa composite sample, which was

measured as a function of frequency using two-mi-

crophone impedance tube. They observed that sound

absorption coefficient and sound transmission loss of

the Luffa composite generally increased with increase

Table 4 continued

Polymer Mixing and lay-up Curing Refs

Unsaturated polyester Mixed with stirrer Compression moulding (3 h) [60]

Epoxy resin Mixed with roller and hand lay-up Compression moulding (24 h) [52, 61]

Epoxy resin Hand lay-up Compression moulding [73]

Resorcinol–

formaldehyde

Manual mixing Closed moulding (60 �C, 4 h) [82, 84–86]

Poly lactic acid Mechanically mixed with micro-compounding

moulding equipment (100 rpm)

Injection moulding [30, 83]

Unsaturated polyester Mechanically stirred and hand lay-up Compression moulding (room

temperature, 24 h)

[96]

Epoxy resin Mechanically mixed and hand lay-up Compression moulding (room

temperature, 5 MPa)

[88]

Epoxy resin Manually mixed and hand lay-up Compression moulding (24 h) [56]

Epoxy resin Manually mixed and hand lay-up Compression moulding (24 h) [31]

Epoxy resin Manually mixed and hand lay-up Open moulding [74]

Polypropylene Mechanically mixed Injection moulding [89]

Epoxy resin Hand lay-up Compression moulding (100 �C, 5 MPa,

1 h)

[14]

Epoxy resin Hand lay-up Resin transfer moulding (600 kg/cm2,

12 h)

[65]

Unsaturated polyester Hand lay-up Compression moulding (room

temperature, 110 bar, 90 min)

[7]

Vinyl ester Mechanically stirred (100 rpm) Compression moulding [47]

Polycaprolactone Magnetically stirred Open moulding (room temperature) [32]

Epoxy resin Hand lay-up Open moulding [98]

Unsaturated polyester Hand lay-up Open moulding [98]

Epoxy resin Mechanically mixed Compression moulding (80 �C, 5 bars,

5 h)

[97]

Polyethylene Mechanically mixed Extrusion moulding (15 rpm) and

injection moulding (1400 bar)

[93]

Unsaturated polyester Mechanically mixed Compression moulding (70 �C, 3.6 MPa,

2 h)

[59]

Polypropylene Mechanically mixed Injection moulding [3]

Poly lactic acid Mechanically mixed Micro-compounding moulding equipment

(170 �C, 100 rpm, 10 min)

[90]

Polypropylene Mechanically mixed Twin-screw extrusion moulding [57]
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Table 5 Mechanical properties of Luffa fibre reinforced composites

Polymer

(ternary

component)

Fibre-resin

ratio (wt%

or Vf
*)

Impact

strength

(kJ/m2)

Tensile

strength

(MPa)

Flexural

strength

(MPa)

Young’s

modulus

(MPa)

Flexural

modulus

(MPa)

Water

Absorption

(%)

Elongation

at break

(%)

Hardness

number

(shore D*)

Refs

Epoxy – 1.689 24.00 59.00 – – 5.00 – – [74]

Epoxy (Boron

Carbide)

10:90 40.10 13.56 – 73.29 – – – 91.00 [51]

Polyurethane – – 3.00 – 22.00 – 14.00 75.00 – [25]

Epoxy 40:60 1.289 20.00 140.0 – – – – – [52]

Epoxy 25:75 – 17.97 106.7 1331 4858 – – – [80]

Poly lactic acid 2:98 28.10 36.45 48.64 2828 3624 – – – [30]

Epoxy 40:60 1.289 20.00 140.0 – – – – – [31]

Epoxy 30:70 1.10 22.64 – 58.66 – 11.21 1.74 13.30 [14]

Resorcinol–

formaldehyde

50:50 – 14.88 80.67 680.0 3338 – – – [82]

Polypropylene 15:85 – 19.50 – 750.0 – 2.80 17.00 – [55]

Epoxy 40:60 1.778 18.20 105.0 – – – – – [1]

Polyester 30:70 0.996 – – – – – – – [106]

Cellulose – – – 68.10 2410 – – 4.50 – [41]

Epoxy – 68.00 57.00 635.0 – – – – – [53]

Epoxy 15:85 – 13.56 41.36 72.29 72.25 – – 83.00* [56]

Epoxy 13:87 – 16.76 24.83 – – – – – [105]

Polypropylene 55:45 31.29 7.089 19.40 1697 2.742 – 8.85 – [57]

LDPE 20:80 5.644 7.650 17.08 21.08 705.9 – – 85.33 [58]

Polyester 42.6: 57.4* 0.889 19.40 – 5200 – – 0.48 – [59]

Starch 10:90 – 1.240 – – – 32.00 17.00 – [95]

Epoxy 67:33 – 80.00 90.00 – – 10.36 – 100.2 [27]

Epoxy 20:80 – 24.00 – – – – – – [72]

Polyester 50:50 – 30.03 31.59 – – – – 74.00 [8]

Vinyl ester 30:70 1.156 50.25 29.41 – – – 5.50 – [60]

HDPE 40:60 34.70 20.80 37.70 2082 – – – – [2]

Polyester 41:59 8.00 31.50 – – – 2.25 – 13.30 [92]

Epoxy 50:50 1.156 20.00 70.00 – – 5.50 – – [61]

Polyester 15:85 – 21.20 – – 4.30 – [33]

Epoxy – 68.42 56.66 58.96 – – – – – [19]

Epoxy 10:90 – 14.35 111.3 – – 5.00 – – [62]

Epoxy 19:81 – – 25.00 – – – – – [63]

Polypropylene 20:80 5.333 24.00 10.00 – – 1.00 – 55.00 [89]

Geopolymer 10:90 – – 14.20 63.00 883.0 – – – [64]

LDPE 25:75 – 13.10 – 165.9 – – 11.30 – [102]

Resorcinol–

formaldehyde

20:80 – 29.44 – 1662 4479 – – – [84]

Polyester - – 49.70 81.10 2860 2500 – 2.65 – [7]

Poly (butylene

succinate-co-

lactate

30:70 22.60 – – 354.0 818.0 5.00 39.00 – [50]

Polyester 50:50 29.32 46.47 57.36 3576 2270 – 5.00 79.00 [45]

Epoxy 25:75 – 4.52 21.57 – – – – – [103]

Epoxy 40:60 – 27.50 71.50 800.0 1700 – – – [65]

Polyester 10:90 7.111 37.33 72.00 – – 2.17 – 12.90 [96]

Epoxy

(Polyester)

10:90 1.818 140.7 – – – – – 77.30 [98]

Epoxy 8:92 2.933 18.30 220.0 14.80 – 4.00 – – [66]
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of frequency. It was also noted that sound damping is

the dominating factor of the vibroacoustic behaviour

of Luffa composite and structures with higher loss

factor could be obtained by optimizing the Luffa/

epoxy ratio. In their work, Thilagavathi et al. [107]

used a desktop computer to determine the sound

absorption coefficient from the measured transfer

function data. It was discovered that luffa fibrous

mats did not exhibit good noise reduction coefficient

(NRC) if they were used alone, even though the

fibrous mats had serrated surface and microporous

structure. By increasing the thickness of the mats, the

noise reduction coefficient of Luffa mats was

improved. Jayamani et al. [72] discovered that

changing the fibre concentration caused changes in

the composite sound absorption coefficient. Dielectric

loss factor, electrical conductivity and dielectric con-

stant of pure polymer matrix, and treated and

untreated Luffa fibre composite have been studied by

Parida et al. [85]. A decrease in dielectric constant

and loss factor of all samples was obtained; however,

ac conductivity of all the samples increased with the

frequency increase.

Knowledge gap and future perspectives

Based on this review, several areas have been

observed to have some gap in knowledge. This sec-

tion draws the attention of the research community to

these interesting problems that could form the foun-

dation for future studies. The genus Luffa comprises

from 5 to 7 species, but only Luffa c. and Luffa acu-

tangula are widely used. Generally, much research

focus has been on the L. cylindrica and very few

studies have focused on L. acutangula. Though Luffa is

Table 5 continued

Polymer

(ternary

component)

Fibre-resin

ratio (wt%

or Vf
*)

Impact

strength

(kJ/m2)

Tensile

strength

(MPa)

Flexural

strength

(MPa)

Young’s

modulus

(MPa)

Flexural

modulus

(MPa)

Water

Absorption

(%)

Elongation

at break

(%)

Hardness

number

(shore D*)

Refs

Epoxy 13:87 6.667 27.00 55.00 1000 3900 – – – [67]

Polyester – – 11.00 – 1100 – – 3.00 – [68]

Epoxy – – 29.90 72.17 – – – 11.00 – [69]

Epoxy 50:50 27.50 22.50 115.0 – – 13.00 – – [71]

*Values that were given in terms of volume fraction, Vf

Table 6 Thermal properties of Luffa reinforced composites

Polymer Amount of filler (wt%

or vol%*)

Glass transition

temp (�C)
Initial degradation

temp (�C)
Final degradation

temp (�C)
Crystallinity Refs

Epoxy 40.00 – 363 600 – [1]

Thermoplastic starch 10.00 – 100–200 336 – [95]

Thermoplastic starch 20.00 – 100–200 343 – [95]

Epoxy 15.00 – 100 417 0.39 [67]

Polyester 50.00 95.23 200 680 – [45]

Poly (butylenes

succinate-co-lactate)

10.00 – 250 385 – [50]

Polyurethane 10.00 – 250 500 – [25]

Epoxy 30.00 – 258 700 – [14]

Polyester 28.00* – 270 600 – [7]

Vinyl ester 15.00 – 265 600 – [47]

Polycaprolactone 12.00 58.80 – – 0.56 [32]

Polyester 35.20* – 250 580 – [59]

*Values that were given in terms of volume percentage, vol%
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usually extracted by drying, the effect of drying

parameters, such as temperature and time on the

physical and compositional properties of the fibres is

unknown. This is an interesting area that can be

investigated to determine optimal periods for drying

the pods to harness the fibres in their best physical

state. Besides the popular epoxies, the only other

reported resins for Luffa composites are polyesters

[46, 59, 92], polypropylene [3, 89], polyethylene

[93, 94], vinyl esters [47, 60], polyurethane [25],

rescorcinol formaldehyde resin [82], polylactic acid

[90], poly caprolactone [32], poly butylene succinate-

co-lactate [50]. In the future, other novel polymers

will likely be applied for Luffa-based composites and

multi-polymer ternary systems may be employed.

Conclusions

The average chemical composition of Luffa fibres

ranges from 57–74% cellulose, 14–30% hemicellulose,

1–22% lignin and 0–12.8% of the other components.

The physical properties of the Luffa fibres such as

tensile strength, tensile modulus, elongation at break,

the fibre diameter as well as the density are generally

acceptable for their use as potential reinforcements

for polymer composites. Luffa is usually not extracted

by the decortication and water retting but by drying.

Furthermore, the most common modification tech-

nique is alkali mercerisation. In composite prepara-

tion, about 53% of the research studies made use of

epoxy resins making them the most popular resins

for Luffa fibre reinforced composites. The composites

are fabricated usually by manual mixing and hand

layup. The most common curing technique for Luffa

fibre reinforced composites is compression moulding.

The average tensile strength values of the Luffa

composites vary between 13 to 36 MPa for most of

the composites and highest flexural strength values

were observed when Luffa fibres were used for rein-

forcement of epoxy composites. Further interesting

areas, suggested for future work, include the inves-

tigation of the effect of drying, more trials with L.

acutangula and the utilisation of multi-resin ternary

systems. Luffa is a promising material for composite

development and based on its favourable properties,

it is likely to continue playing an important role in

the area of natural fibre reinforced composites for

years to come.
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22(2):e-11848

[89] Sakthivel M, Vijayakumar S, Ramesh S (2014) Production

and characterization of Luffa/coir reinforced polypropylene

composite. Procedia Mater Sci 5:739–745

[90] Tripathy S, Pradhan C, Parida C (2018) Study of

biodegradation of Luffa cylindrica/poly (lactic) acid com-

posites. Int J Curr Res Rev 10:1

[91] Jin F-L, Li X, Park S-J (2015) Synthesis and application of

epoxy resins: A review. J Ind Eng Chem 29:1–11

[92] Dhanola A, Bisht AS, Kumar A, Kumar A (2018) Influence

of natural fillers on physico-mechanical properties of Luffa

cylindrica/polyester composites. Mater Today Proc

5:17021–17029
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