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ABSTRACT

This review focuses on the comparison of the spark plasma sintering (SPS) with

other fabrication methods of MAX-phase materials. In the view of optimizing

properties for prospective applications, we summarized different routes to

synthesize and sinter bulk/powder MAX-phases with various microstructures,

discussed the phase composition of MAX-phases obtained by SPS and other

methods. In the article, we introduced the experimental features of various

sintering methods and carried out the comparative analysis of ‘‘competition

phenomenon’’ between the SPSed MAX-phases and MAX-phases prepared by

other technologies. We referred to relevant reports and reviews in which one

can acquire a comprehensive understanding of sintering kinetics, sintering

thermodynamics, grain growth kinetics, and densification mechanisms. Fur-

thermore, the influence of the sintering routes on the properties of the MAX-

phases was discussed paying emphasis on the mechanical properties.

Introduction

The MAX-phase materials is a relatively new class of

layered ternary ceramic that is a very active and

burgeoning area of research [1]. In 2000, Barsoum

published a review article on such ceramic materials

and first introduced the concept of ‘‘Mn?1AXn phase’’

(MAX-phase for short) to collectively refer to this

type of ceramic material [2]. Among the early MAX-

phases, an early transition metal is used as an M

element, a p-element usually belonging to groups

IIIA or IVA in the periodic table is applied as a A

component, and X is C and/or N, n = 1…3 [3–6]. To

date, close to 80 ternary MAX-phases have been
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experimentally synthesized, with an overall count of

more than 150 MAX-phases, including those pre-

dicted by theoretical studies [7]. As seen in Fig. 1, the

M elements have been expanded from early transi-

tion metals such as Ti, V, and Cr to rare earth ele-

ments such as Ce, Pr [8], A elements have also been

extended from well-known Group IIIA and Group

IVA elements to late transition metals such as Au, Ir,

Zn, and Cu [9–11] and B element is added to the

group of X elements (for example Ti2InB2 [12], V2AlB

[13]).

The study of the electronic structure of MAX-pha-

ses reveals that the M-X bond is characterized by a

strong covalent bond or ionic bond, which is com-

parable to their respective MX binaries. The weak

covalent bond (similar to the weak van der Waals

force between layered graphite) or metal bond

between M-X lamellar and plane of A atoms (M-A

bond) makes it possible for A atoms break free from

the bondage of M-X lamellar. In addition, the metal

bond is found to exist between M elements [4, 14–18].

Due to the above unique structure characteristics,

MAX-phases differ from traditional ceramic materi-

als and have excellent properties of both metal and

ceramic [19]. Like metals, MAX-phases exhibit good

electrical and thermal conductivity at room temper-

ature (usually better than the corresponding pure

metals) [16]. In addition, MAX-phases are machin-

able due to the layered structure, tolerant to thermal

shock (* 1400 �C), and demonstrate plastic

deformation at high temperatures [17]. In MAX-

phases, typical properties of ceramic materials are

also exhibited such as being hard and elastically rigid

(much higher stiffness than the parent metals),

lightweight, corrosion-resistant with high melting

points, excellent oxidation resistance, high ther-

mostability, high strength at high temperature, and

low expansion coefficient [17, 20]. More meaningful

is that MAX-phases have even better self-lubricating

properties than graphite [21]. All of the excellent

properties of MAX-phases are expected to make them

widely used in electromechanical, concentrated solar

power (CSP), instrumentation, metallurgy, automo-

tive, marine, aerospace, and other fields as both bulk

and thin films/coatings [15, 16, 22–35]. At present, an

enormous amount of work about MAX-phases has

been carried out, but not limited to, in the area of the

research of the synthesis and preparation process of

various powders and dense blocks, the preparation of

composite materials, and the research of various

properties, such as high-temperature oxidation, fric-

tion properties, high-temperature self-healing prop-

erties, radiation resistance [15, 16]. A good

introduction of the MAX-phases is given in several

brief overviews [1, 14, 16, 36, 37]. For more informa-

tion on the MAX-phases and an in-depth overview of

their properties, we refer the reader to review articles

on Cr2AlC [38, 39], Ti2SC [40], Ti3SiC2 [41–43], Nb4-

AlC3 [21] and Ti3AlC2 [44]. Nevertheless, there has

been no systematic comparative analysis of MAX-

Figure 1 Element distribution

of various end-member and

solid-solution MAX-phases

known to date. The data in the

table comes from tables in

Refs. [37, 45].
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phase materials in terms of various sintering

methods.

In the view of optimizing properties for prospec-

tive applications, we summarized different routes to

fabricate MAX-phase materials with various crystal

structures, discussed the phase composition of MAX-

phases obtained by spark plasma sintering (SPS) and

other sintering methods. We briefly described the

experimental processes of various sintering methods,

referring relevant reports and reviews in which one

can acquire comprehensive understanding of sinter-

ing kinetics, sintering thermodynamics, grain growth

kinetics and densification mechanisms. Recent

developments have revealed the potential of MAX-

phases for further application and have led to

accessible strategies to sintering new MAX-phases

using the SPS and other SPS-based technology.

Processing of bulk MAX-phases

Ceramic materials are usually not manufactured by

plastic deformation, mechanical machining or casting

but their production involves powders shaping and

successive consolidation at high temperatures [23].

This latter process, typically defined as sintering,

requires the activation of mass transport mecha-

nisms, which account for the formation of bonding

necks between the powder particles, densification,

and grain growth. Sintering needs to be carried out at

high temperatures to guarantee sufficient atomic

mobility and for this reason, it is also often indicated

as firing [23]. Two fundamental phenomena take

place during sintering: (1) the particles are bonded

forming the so-called necks, at the base of which

surface diffusion and evaporation/condensation are

occurred; (2) the center-to-center particles distance is

reduced, thus causing volumetric shrinkage and

densification [46]. Corresponding sintering routes of

various MAX-phases are presented in the review of

Haemers et al. [7], in which one can conclude that

pressureless sintering (PLS) is a relatively traditional

sintering method, following conventional curvature-

driven grain growth [47]. Compared with other sin-

tering methods, PLS is more suitable for industrial-

scale production with low cost and simple operation

conditions [15]. However, PLSed products have large

grain size, low densification, and inferior mechanical

properties [7, 38, 40, 48–51]. In addition, for some

MAX-phases, such as Cr2AlC, full densification

cannot be obtained by either one-step PLS or two-

step PLS without using ultrafine powders. Therefore,

pressure-assisted sintering such as hot-pressing (HP),

SPS, or hot isostatic pressing (HIP) arises at the his-

toric moment, which promotes the full densification

without using ultrafine powders [18]. The quasi-static

compressive stress applied during the sintering pro-

cess leads to better contact between particles, changes

the amount and morphology of those contacts,

enhances the existing densification mechanisms

already present during free sintering (grain boundary

diffusion, lattice diffusion, and viscous flow) or acti-

vates new mechanisms, such as plastic deformation

or grain boundary sliding [52]. With the development

of sintering technologies in recent years, it is now

possible to sinter MAX-phases with high densifica-

tion, high purity, and excellent properties. Never-

theless, the sintering of MAX-phases with controlled

microstructure, phase composition and properties is

still considered the open problem.

HP and HIP

Nowadays, most of the MAX-phases are produced

via powder metallurgy routes such as HP and HIP

[48, 53–58], which are mature pressure-assisted sin-

tering technologies. The operating characteristics of

HP make the compacting pressure only 1/10 of that

of cold-pressing and allow reduce the sintering tem-

perature and shorten the sintering time, so as to

inhibit grain growth and improve densification and

purity without using sintering aids. Although HP is a

well-developed method, it has the limitations due to

complex processes and equipment, strict require-

ments for production control and mold materials,

high energy consumption, low production efficiency,

and high production cost [38]. Further to that, it

should be noted that uniaxial pressing used in HP

usually leads not only to significant friction between

the powders and the mold but also the pressure loss

along the pressing direction, so that the density of

each part of the compact is not uniform. Different

from the uniaxial pressing of HP, during HIP the

same pressure is applied on the specimen in all

directions by injecting liquids or gases (such as

nitrogen and argon) as pressurized media into air-

tight vessels with the temperature of 900–2000 �C and

pressure of 100–200 MPa [59]. This makes HIP the

most widely accepted method of material densifica-

tion, which allows effectively remove defects and
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pores in specimens [60–62]. Furthermore, compared

to HP, HIP requires lower sintering temperature and

less sintering time [38, 63]. Another advantage of HIP

is the ability to prepare ceramics of various sizes and

shapes [61].

Since both HP and HIP belong to high-temperature

and high-pressure sintering methods, for further

understanding of densification mechanisms, includ-

ing thermodynamics and kinetics of densification of

powders by these methods, we refer the reader to

Web resources [64–66].

Self-propagating high-temperature
synthesis (SHS)

One of the promising fabrication technologies of

MAX-phases is SHS [67–69]. In the process of SHS,

two or more kinds of powders are mixed and pressed

followed by local igniting in the air or protective

atmosphere. The heat released from combustion

induces the adjacent combustion reaction, forming a

self-propagating combustion wave. After the com-

bustion wave passes, new compounds are formed. It

is worth mentioning that SHS can be carried out only

when the following requirements are met: (1) In

general, the continuity of the weakly exothermic

reaction cannot be maintained without external

energy input. Therefore, the reaction must be high

exothermic so that the heat released by the reaction

can make the unreacted part reach the combustion

temperature; (2) in the process of reaction a reactant

should be able to form a liquid or gaseous state,

which allows facilitating diffusion and mass transfer

so that the reaction can be carried out quickly; (3) the

heat loss (convection, radiation, heat conduction) in

the reaction process should be less than the increase

in the exothermic heat of the reaction, so as to ensure

that the reaction is not interrupted [16]. This SHS

technique offers several practical advantages

[16, 70–74]: (1) Short sintering time. The combustion

wave can spread to the entire reaction system in just a

few seconds; (2) Low energy consumption. The

energy for keeping the reaction process is obtained

only from the exothermic heat in the reaction system,

and no or only a small amount of external input

energy is needed; (3) Small grain size. Because of the

fast combustion reaction, large temperature gradient

and fast cooling rate, the grain size of the synthesized

product is small, and the metastable phase which is

difficult to be obtained by other methods can be

formed; (4) Low cost. Only a chemical furnace for the

self-propagating reaction without a lot of auxiliary

equipment is needed. However, due to the short

reaction time (fast combustion wave), the rapid

cooling rate and the high released energy, which

makes SHS a complex multistep process, the reaction

process is difficult to control and as a result, some

impurity phases in the products are formed, espe-

cially in the synthesizing process of solid solution

MAX-phases [75–79]. Furthermore, the materials

prepared by SHS usually have pores and other

defects due to the volatilization of the impurity phase

in the reaction process. Despite these drawbacks,

compared with thermal reduction and mechanical

alloying, SHS still exhibits considerable advantages

[41, 70].

To date, SHS technology has made great progress

and a theoretical system has been established in the

basic theoretical research, including the sintering

mechanism, combustion reaction kinetics and ther-

modynamics, which are present in the review [80]

and web resource [81]. Besides, the combination of

mechanical activation (MA) and force SHS-pressing

technologies has been reported to be expected to

obtain compacted samples with higher content of

pure phase and more homogeneous structure than

that of single SHSed samples [82].

Field-assisted sintering technologies

SPS

Cuskelly et al. [83] classified the production of MAX-

phases into two distinct parts of synthesis and

shaping (sintering). In the process of traditional PLS

of MAX-phases, large pores are generated during the

synthesis process due to the lack of assisted pressure

to close them hindering the densification of the

sample [18]. This hindering effect can be avoided

through the two-step process, where the pure phase

is first synthesized and the densification process is

carried out in a further separate step. Obviously, this

will lead to increase in sintering time, especially

when PLS is used in both steps [18]. SPS, also known

as pulsed electric current sintering (PECS), is a cur-

rent-activated and pressure-assisted powder sinter-

ing technique combining uniaxial HP sintering and

plasma activation technology [84–87]. SPS has been

firmly incorporated into the laboratory and industrial

practice as a one-step method for sintering and
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densification of the bulk ceramic samples offering

tools to control the microstructure and phase com-

position of the sintered materials [52, 53, 85, 88, 89].

Similar to HP, as shown in Fig. 2, SPS is often per-

formed when the pressure with maximal loads typi-

cally between 50 and 250 kN is applied on the

powder compact to enhance densification [52],

although pressureless SPS was also investigated

[90, 91]. Despite that the SPS process has been deeply

investigated [92–95] and widely used for sintering

various materials [52, 84, 87, 96, 97], the underlying

mechanisms are still not fully understood. It is

believed that the complexity of these mechanisms is

due to combined mechanical, thermal and electrical

phenomena [98]. At present, it is admitted by most

research that the complete SPS process follows

mainly two stages: (1) Plasma activation. From the

punches, the ON–OFF pulse direct current (DC)

flows in and through graphite dies and powders. The

current, which flows through graphite dies produces

a large amount of Joule heat as one of the heating

sources of powders. While the current, which flows

through the powders, produces plasma as a result of

the spark discharge of some gas molecules in the gap

between the powers, forming high-speed particles

(electrons and positive ions) flow in reverse, which

exerts high punch pressure on the surface of particles

and thereby blows away the adsorbed gas or broken

oxide film as well as purifying and activating the

surface of particles. This phenomenon is also known

as the electron wind effect [99, 100]; (2) Thermoplastic

deformation. As a result of both the discharge heat in

the non-contact zone and the Joule heat in the contact

zone between powders, a high-temperature field is

formed instantaneously. This field leads to melting

and evaporation on the surface of the powder parti-

cles providing the formation of necks around the

contact zone (between the particles) and significantly

increases the diffusion of the powder particle atoms.

The diffusion coefficient of atoms in this case is much

larger than that under the usual hot pressing condi-

tion, thereby realizing the quick sintering of powders,

reduced sintering time and temperature, and the

consolidation of powders without excessive grain

growth [100, 101]. Qualitative analysis of the densi-

fication mechanism of SPS is performed in reviews

[52, 100], where the effect of heating rate, sintering

temperature, sintering pressure, pulse current, sin-

tering time, sintering atmosphere, and other param-

eters are discussed.

Despite some controversy among researchers

about the physical processes of SPS, analysis of the

literature data indicates that powdered materials,

including nanocomposite powders, can be success-

fully consolidated by SPS into dense materials, which

can preserve the microstructure and have novel

properties [92, 93, 102, 103]. Compared with the tra-

ditional sintering methods, the main advantages of

SPS are as follows: (1) Owing to the compact geom-

etry of the die and punches as well as the typical ON–

OFF pulse current with the duration in the order of a

few milliseconds, the heating process can be con-

trolled with the quick heating rate as high as

1000 �C/min [52, 104]; (2) Plasma-induced surface

activation and applied external pressure make it

possible to use lower sintering temperature and

shorter sintering time to obtain high-density com-

posite materials preserving the small grain size of the

matrix [16, 100, 104–108]; (3) The SPS process is bin-

der-less, direct, and cost-effective [16, 38]; (4) The

grain size and microstructure of SPS sintered mate-

rials can be controlled by adjusting sintering tem-

perature and axial pressure die configuration, etc.

[105]. Despite the advantages of SPS among numer-

ous sintering methods, major problems with this

perspective technology should not be ignored: (1)

Limited by the sintering environment, it is difficult to

obtain real-time parameters in the sintering process,

which impede accurate analyzation of the sintering

process, densification mechanism and influencing

factors; (2) Complex power supply equipment and

high die cost make it difficult for large scale pro-

duction [109]. SPS techniques used to be unsuccessfulFigure 2 Schematic diagram of an SPS apparatus [52].
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in preparing compacts with various shapes and big

size as almost all the SPS-sintered compacts reported

in the literature were cylindrical and their diameters

are less than 30 mm [104]. Nowadays, some of these

problems can be solved by using new starting mate-

rials and graphite tooling production processes. For

example, a preceramic paper can be used as a feed-

stock [110], which is characterized by its properties to

be easily shaped into multilayer laminates or more

complex shapes [111, 112], and be manufactured in

the form of multilayer gradient ceramic composites

with enhanced properties. It was reported that the

traditionally sintered paper-derived Ti3SiC2-based

composites have porous structure caused by the long

sintering time [113, 114]. This should not be a prob-

lem for SPSed paper-derived MAX-phases consider-

ing the excellent densification of SPS technology over

ceramic materials. The densification process in PL-

SPS is the same as the conventional SPS and the

transport mechanism is grain boundary diffusion;

however, the significant advantage of the former is

necking at the early stages [115].

Flash sintering (FS) and flash spark plasma sintering

(FSPS)

FS is a novel current-assisted sintering technology

developed in the recent years. As shown in Fig. 3, in

general, a typical technological process of FS experi-

ment of ceramic can be divided into three stages

called constant pressure stage, flash stage and con-

stant current stage [116–119]. Both FS and SPS yiel-

ded significant improvements over existing sintering

methods, however, the differences between FS and

SPS should be noted: (1) In SPS the graphite dies,

typically more conductive than the ceramic powder

compact, carries the largest part of the electric current

[46]. As a result, thanks to good electrical conduc-

tivity of the materials used for tooling, low voltages

(typically below 10 V applied to the whole set-up)

can produce high currents (typically from 1 to 10 kA)

leading to efficient Joule heating [52]. Compared to

SPS, the current is forced to flow in the ceramic

component during a FS experiment. Due to that FS is

mainly applied for sintering materials with low

electrical conductivity in order to generate significant

Joule heating at the constant current stage, and higher

applied fields as well as lower current densities

characterize the FS process [46, 47]; (2) FS studies are

often pressureless [47].

Researchers have done a lot of work on the mech-

anism of FS process, although there are some com-

mon understandings, so far due to the transient

nature of FS academia is far from reaching a proven

consensus. To describe the FS densification process,

the same atomistic mechanisms as for the SPS pro-

cess, such as spark plasma, local melting and surface

softening can also be used [47]. The most significant

and appealing mechanisms proposed for explaining

the ‘‘flash’’ event including Joule heating effect,

thermal runaway theory, the theory of rapid heating

promoted densification, grain boundary overheating

and mobility, local melting, and Frenkel pairs

nucleation have been described in reviews

[46, 47, 120, 121]. Also these reviews discussed the

influence of processing parameters (i.e., electric field

magnitude, current density, waveforms (AC, DC)

and frequency, furnace temperature, electrode mate-

rials/configuration, externally applied pressure, and

sintering atmosphere) on microstructures, densifica-

tion mechanisms and modeling of FS. Starting from

Figure 3 Electric field (E) and current (J) evolution during constant heating rate (a) and constant furnace temperature, Tf, (b, c) flash

sintering tests [46].
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the prevailing characteristics of SPS and FS over other

traditional sintering methods, FSPS [122–126], com-

bining the advantages of both SPS and FS, is recently

developed based on the improved commercial SPS

platform. Compared with FSPS with no die [127], the

power and sintering time can be further reduced with

the use of thin graphite die as shown in Fig. 4 [125].

This could be in part explained by the fact that in the

early stage of sintering (low-temperature stage), the

electrical resistivity of the specimen is high so that the

current mainly flows through the die and as a result

the specimen is heated by the thermal energy con-

verted from electrical energy with more effective

energy utilization than that by furnace heating

[120, 125].

It is believed that independent of the sintering

method at the same sintering temperature and time

the grain growth can be inhibited by higher heating

rate [120, 128–135], which facilitates an ‘‘out of equi-

librium’’ process and therefore allows to sinter

metastable materials or avoid undesired phase tran-

sitions. However, it is worth mentioning that in some

cases using the high electric field for realizing the

higher heating rate may accelerate grain coarsening

[136]. This can be possibly explained by the well-

admitted theory that in SPS and FS the charged ions

at the space charge layer and the point defects at the

grain boundary in the applied electric field environ-

ment exerts influence on the grain boundary poten-

tial. One evidence of the theory is the fact that the

majority of the FS experiments were performed with

DC due to the directionality of DC field allowing

more effective changing the grain growth kinetics

during FS [47, 121]. In fact, the influence of the elec-

tric field on the sintering process has always been

controversial. Based on the experimental fact that

regardless of the presence or absence of an electric

field, the SHS and FS sintered 3 mol% yttria-stabi-

lized zirconia (3YSZ) specimens demonstrate com-

parable sintering behavior with similar temperature

profiles. Ji et al. [137] believed that the rapid densi-

fication in FSed 3YSZ is caused mainly by the indirect

effect of the electric field-induced rapid heating

rather than any direct effect of the electricity on the

net matter transport. Cologna and Raj [138], studying

the interaction between the electrical field and neck

formation in 3YSZ without reproducing the flash

event and Joule heating, concluded that the neck

growth rate is substantially unaffected by the field

application. On the contrary, Niu et al. suggest that

the extremely high-rate densification process

achieved during the flash event cannot be explained

only by the heating rate itself [125]. Another impor-

tant point about the mentioned field effect is that the

conclusions about the effect of the electric field on a

given sintering process may not be suitable for other

sintering processed since the type and intensity of

electric field are all factors that need to be considered

in the study of the field effect. For example, it was

believed by Chaim et al. [47] that the AC mode in FS

yields finer grain size and more homogeneous

microstructures of ceramic nanoparticles. Other

researchers analyzed the effect of static electric fields,

with no current in the material, on defects generation

[139], defect mobility [140], and surface chemistry

[141]. Several effects have been theoretically pre-

dicted although they appear significant when fields

in the order of 106 V/cm or larger are applied, which

is much larger than the maximum field used upon FS

in the order of 103 V cm-1 [46].

Figure 4 Schematic representation of the FSPS process.

a Schematic illustration of the graphite die used for the FSPS.

b Temperature curves versus time during the FSPS processes with

different applied currents. c Schematic illustration of the current

distributions at low and high temperatures during FSPS processes

[125].
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In recent years, several sintering technologies have

also been developed for MAX-phase sintering, such

as microwave (MW) assisted SHS [142] and MW ?

SPS two-step process [143], the densification mecha-

nism of MW is introduced in [144].

Micro-/crystalline structure and phase
composition of MAX-phase materials

Micro-/crystalline structure of MAX-phases

The chemical formula of end-member and solid-so-

lution MAX-phases could be generalized as MmApXn

(m, p, and n are integers) [19]. As shown in Fig. 5a

[145], when n = m–p, p = 1, MAX-phases are deter-

mined as ternary MAX-phases, crystallizing in a

hexagonal structure with P63/mmc symmetry and

two formula units per unit cell (UC), which consist of

edge-sharing octahedral ‘M6X’ octahedra (e.g., Ti6C)

interleaved with layers of A elements (e.g., Si or Ge)

[1, 14, 37, 146, 147]. Therefore, A element is also called

interlayer element [148]. The grain growth of MAX-

phases shows the characteristic of anisotropy

(Fig. 5b), therefore, regardless of the sintering meth-

ods, the morphology of MAX-phase is generally lath-

like [149, 150] or plate-like [151–153]. As can be

observed in Fig. 6, many lath-like and layered SPSed

V4AlC3 phases were distributed at the 3-dimensional

directions. In the case of higher magnification one can

see in Fig. 6 that the layered V4AlC3 is formed along

particles pulling out. By increasing the magnification

on the lath-like V4AlC3 phase, V4AlC3 delamination

and V4AlC3 plastic deformation, which are consid-

ered as the inherent properties of MAX-phase could

be seen [154]. Furthermore, with reducing the thick-

ness of the formed layer to nano-size the toughness of

the prepared sample could be improved. Similarly,

the plate-like MAX-phase consisted of a number of

thin slices, which were believed to be beneficial for

energy absorption when cracking and mechanical

property improved, was found in the hot-pressed

Ti3SiC2 grains as shown in Fig. 7 [153]. According to

the n value (stacking number of M-X lamella) in the

general formula, MAX-phase can be divided into

M2AX phase (21 l phase), M3AX2 phase (312phase)

and M4AX3 phase (413 phase) [14], the unit cell

structures of which are exhibited in Fig. 8. The M6X

structure of ternary layered ceramics is similar to that

of MX binary structure, as a result, the ternary lay-

ered ceramic material has some physical properties of

MX, such as good thermal stability, low coefficient of

thermal expansion (CTE), acid and alkali corrosion

resistance, good oxidation resistance and so on [16].

As n increases, the properties of these phases become

more similar to those of their corresponding binary

nitrides or carbides. Thus, the 211 structure with

higher repetition of the A-layers has more metallic

and better electrical and thermal conducting proper-

ties than the 312 and 413 phases that have more

carbide- or nitride-like properties [17]. This indicates

that the performance of MAX-phase can be controlled

by adjusting the thickness of M-X lamellas although it

was reported that the stacking number tends to have

minimal effect on the intrinsic mechanical behavior of

the Tin?1AlCn and Tan?1AlCn systems [155].

Improved understanding and systematization of how

the underlying electronic structure and chemical

bonding of MAX-phases affects the macroscopic

properties and how they can be tuned were reviewed

in [17]. Meanwhile, some MAX-phases with large m/p

like Ta6AlC5 [156] and Ti7SnC6 [157] have been

reported.

Figure 5 a Atomic-scale

high-angle annual dark-field

scanning transmission electron

microscopy images of layered

structure of Ti3AlC2 along

\11�20[ [145]; b crystalline

growth inside porous

microstructure of Ti3SiC2

demonstrating preferred

growth in a than c direction

[149].
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When n = m–p, p = 1, in addition to end-member

MAX-phases solid-solution MAX-phases can also be

formed, including chemically random and chemically

ordered solid-solution. Most of the chemically solid-

solute-random MAX-phases are quaternary MAX-

phases, including substitution of M [77, 79, 158–166],

A [78, 167–173] and X sites [13, 147]. In addition, a

few cases of double solid solutions [174–176] have

also been reported. The synthesis conditions of

chemically solid-solute-random MAX-phases are not

strict since they have been reported to be synthesized

by HP [177], PLS [175, 177], SHS [78, 79] and SPS

[172]. For chemically solid-solute-random quaternary

MAX-phases with the substitution of M site (M1,

M2)n?1AlCn, because M1 and M2 are randomly dis-

tributed in the transition metal position, the quater-

nary MAX-phase retains the P63/mmc symmetry of

the ternary MAX-phases [178]. Different from the

substitution of M site, for chemically solid-solute-

random quaternary MAX-phases with the

Figure 6 SE-FESEM images

of fracture surface of SPSed

V4AlC3 sample at different

magnifications, according to

Ref. [150].

Figure 7 SEM micrographs

of the fracture surface of hot-

pressed Ti3SiC2 ceramic:

a low magnification; b high

magnification [153].
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substitution of A site, in addition to the isostructural

MAX-phase solid solutions on A site [179, 180], the

substitution of A site has also been reported to lead to

the symmetry reduction, for example, Nechiche et al.

[168] found that the Cu mixing into the Al site of

Ti3AlC2 is accompanied by lattice distortion, which

leads to symmetry reduction from a hexagonal to a

monoclinic structure. Such symmetry was attributed

to this mixing through the deviation of the A-site

position from the special (0, 0, 1/4) position within

the P63/mmc space group of the original Ti3AlC2

structure. The family of MAX-phases is further

expanded by the recent discovery of both quaternary

in-and out-of-plane ordered MAX-phases. Unlike

chemically random solid-solution, to date chemically

solid-solute- ordered MAX-phases can be synthe-

sized only by substituting M site [8, 159, 181–191].

Therefore, the chemically solid-solute-ordered MAX-

phases currently only exist in quaternary, which can

be classified into in-plane ordered MAX-phases (i-

MAX) [8, 181, 183–186, 188–191] and out-of-plane

ordered MAX-phases (o-MAX) [159, 182, 187, 188]. In

all i-MAX-phases, solid-solute-ordered ‘‘211’’ phases

belonging to monoclinic C2/c space group is com-

mon, such as (Zr1/3V2/3)2AlC [181], (Y1/3Mo2/3)2AlC

[181], (Sc1/3W2/3)2AlC [183], (Y1/3W2/3)2AlC [183],

(Sc1/3Mo2/3)2AlC [186], and (Mo2/3RE1/3)2AlC [8],

where RE = Nd, Tb, Dy, Ho, Er, Tm, and Lu. The

crystal structures of monoclinic C2/m have also been

reported to exist in the family of i-MAX-phases, such

as (Mo2/3RE1/3)2AlC [8], where RE = Ce and Pr.

Furthermore, recently, starting from the DFT theo-

retical prediction Petruhins et al. [185] sintered two

new i-MAX-phases, (Cr2/3Sc1/3)2GaC and (Mn2/3Sc1/

3)2GaC, crystallizing in an orthorhombic structure

(Cmcm). While for o-MAX, the solid-solute-ordered

‘‘312’’ phases belonging to the P63/mcm space group,

such as (Ti1/3Cr2/3)3AlC2 [159, 187] and (Ti1/3Mo2/

3)3AlC2 [188], are common. The general formula of

o-MAX is (M’, M’’)n?1AlCn, where M’ (outer layers)

and M’’ (inner layers) denote early transition metals,

occupying different planes (Fig. 9c), and n is either 2

or 3 [37]. The chemical formula for i-MAX is similar

to that of the o-MAX-phases, but since n = 1, they are

best described as (M’2/3, M’’1/3)2AlC, where two

kinds of M atoms occupy the same plane (Fig. 9b)

and the M’:M’’ ratio is always 2. In these phases, the

M’ atoms are arranged in a hexagonal arrangement,

at the centers of which the M’’ atoms are positioned

[37]. Compared with traditional ternary MAX-pha-

ses, most of new higher-order i-MAX and o-MAX-

phases have yet to fully establish synthesis routes,

thus to date they are prepared superiorly by PLS

technique [7, 37, 182].

When n = m–p, p = 2 MAX-phases crystallize in

R�3m space group [192], they could be regarded as the

stacking-fault-ordered phases or hybrid structures

(Fig. 10g) [37]. Currently found stacking forms

include …211|312|211|312… and

…312|413|312|413 ���, which were observed in thin

films or bulk samples, such as Ti5Al2C3 [192–195],

(V0.5Cr0.5)5Al2C3 [196], Ti5Si2C3 [197], Ti5Ge2C3 [198],

Hf5Al2C3 [199], Ti7Si2C5 [197, 200], and Ti7Ge2C5

[198], This suggests that the performance of MAX-

phase ceramic composites is expected to be opti-

mized by preparing MAX-phases with such hybrid

structures [14].

Recently, 221 phases such as Mo2Ga2C [201, 202],

Ti2Au2C [203], and 321 phases such as Ti3Au2C2

(P�3m1 space group) [9, 203], Nb3As2C [204] with

n = m–p, where two layers of A atoms exist between

the MX layers, have been synthesized. Furthermore,

carbon-vacancy-ordered ‘‘413’’ phases belonging to

the P63/mcm space group such as Nb12Al3C8 [205]

and V12Al3C8 [206] have also been reported to exist.

The carbon-vacancy-ordered phase belongs to the

low-temperature structure in which the contribution

Figure 8 MAX-phase unit cell structures of 211 (n = 1), 312

(n = 2) and 413 (n = 3) [17].
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Figure 9 HR-STEM images showing the atomic positions of MAX-phase (a), i-MAX-phase (b), and o-MAX-phase (c) [45].

Figure 10 Crystal structures

of various MAX-phases.

Schematics of the (11�20)

planes in a M2AX; b a-
M3AX2; c b-M3AX2; d a-
M4AX3; e b-M4AX3; f c-
M4AX3; and g hybrid M5A2X3

phases. Dashed vertical lines

are guides for the eye [37].
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of entropy of disorder to free enthalpy increases with

temperature [19].

Using only the experimental synthesis method to

explore whether a large number of M, A, and X ele-

ments can form a stable MAX-phase is very time- and

labor-consuming. The method of theoretical calcula-

tion allows quickly to explore the unknown MAX-

phase system. The ab initio calculations based on

Density Functional Theory (DFT) is regarded as a

gold standard tool to determine the stability of the

MAX-phase by comparing the calculated enthalpy of

formation of the MAX-phase with that of the com-

petitive phase in the system. Recently, as shown in

Fig. 11, from the calculated formation energies for a

very large number of M2AX phases, it was found that

phases containing M = Ti, A = group-13 elements,

and X = C constitute the largest number of

stable M2AX phases [207]. It is also believed that

solid-solution MAX-phases are more stable than their

end-member [207], furthermore, in some cases, solid

solutions are stable when one of the end-member is

far from being stable [208] or even when neither end-

member is [196]. Through evaluation of the stability

of o-MAX-phase Mo2ScAlC2 using DFT, it was sug-

gested by Meshkian et al. [182] that compared with

the chemically disordered solid-solution, chemical

order in the quaternary MAX-phase promotes a

stable phase. The DFT-based theoretical investiga-

tion, conducted by Dahlqvist et al. [209], on the 312

and 413 o-MAX-phases (M’, M’’)AX (M’, M’’ = Sc, Y,

Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; A = Al; X = C),

suggests that the small size difference between M’

and M’’ as well as the large difference in elec-

tronegativity between M’ and Al facilitate the for-

mation of o-MAX-phases. Similar empirical design

rules for stable MAX compounds, such as choosing A

elements of similar radii and M elements of similar

valence and electronegativity, have been made for the

solid-solution M2AX phases by Ashton and Hennig

[207] through the use of a high-throughput frame-

work coupled to DFT for calculating the formation

energies of the 10530 M2AX compositions. Unlike M

and A sites, no significant relationships between the

X sites and the formation energy were found by

Ashton and Hennig [207]. This is consistent with the

findings of [210], which exhibit that despite the slight

increase of the total crystal energy due to the reduc-

tion in the number of valence electrons and the

emergence of weaker Ti–B bonds in the structure of

Ti3AlC2–xBx (0.5 B x B 2) composition, the structure

of the composition system remains thermodynami-

cally stable with the total crystal energy negative up

to the complete substitution of carbon atoms with

boron atoms. It was also suggested by Burr et al. [211]

that (M, M’)n?1AXn MAX-phases with the layered

ordering of M on 2a sites and M’ on 4f sites are

expected to exhibit increased stability due to the

formation of strong M’–C bond.

However, Chen et al. [212] believed that only the

ab initio calculations based on DFT cannot obtain the

complete information about the stability of MAX-

phases due to that only the results under 0 K are

obtained, which is very different from that of the

actual synthesized MAX-phase. In order to predict

the stability of MAX-phases at various temperatures,

the authors have developed the CALPHAD (Calcu-

lation of Phase Diagrams) approach coupled with

ab initio calculations. Using this novel calculation

approach the authors obtained the thermodynamic

stability of Ti2AuC, Ti2IrC, Ti2ZnC, Ti3AuC2, Ti3IrC2,

and Ti3ZnC2 at 550 and 1300 �C and confirmed

thermodynamic stabilities of the synthesized Ti3-

AuC2, Ti3IrC2, Ti3ZnC2, and Ti2ZnC MAX-phases,

which is in great agreement with the experiment

information. It was interesting to note that these two

temperatures (550 and 1300 �C) correspond to the

typical temperatures of the molten salt method and

HIP in the MAX-phase preparation process, respec-

tively, which suggests the prospect of this novel

theoretical calculation approach for obtaining the

Figure 11 Calculated formation energies for the 49

experimentally known M2AX phases. Negative (stable) or small

positive (slightly unstable) formation energies are predicted for all

49 compounds, with Hf2SnN showing the highest metastability of

26 meV atom-1 [207].
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stability of MAX-phases depending on the tempera-

ture, thereby guiding the selection of sintering

methods and adjustment of the sintering temperature

in order to experimentally synthesize and sinter new

MAX-phases [212].

Phase composition of synthesized/sintered
MAX-phase materials

Shamsipoor et al. [53] prepared SPSed Cr2AlC under

different sintering temperatures (1000–1300 �C) and

found that high sintering temperature allows

increasing the amount of displacement, thereby

accelerating the densification process. However, the

increment of SPS temperature did not considerably

increase the content of Cr2AlC phase. The densifica-

tion process can also be accelerated in the case of

small particle size of milled powder, which allows

increasing the activation energy of milled powder,

significantly decrease the enthalpy and Gibbs free

energy of reactions and can be obtained by extending

ball milling time. It should be noted that in the case of

long-term ball milling, impurities such as Fe may

appear in the powder when using steel balls [53]. For

this reason, the maximum milling time used was only

8 h. The fact that stoichiometric ratio of starting

materials plays an important role in the synthesis of

MAX-phases is generally accepted in the literature

from which we can draw the conclusion that in order

to obtain pure MAX-phase, it is necessary to ensure

the absolute accord between the molar ratio of actu-

ally reacted elements with the stoichiometric ratio of

desired MAX-phase. In the work of Shamsipoor et al.

[53], the excess amount of Al powder was used in

order to compensate for the evaporation of Al from

the system during the ball milling and sintering

process, which could be accelerated in the vacuum

condition of SPS [213]. This reveals the ‘‘competition

phenomenon’’ between the high purity and the high

densification controlled by the sintering temperature.

On the one hand, higher temperatures allow faster

diffusion process and movement of atoms, thereby

leading to lower porosity and higher density in

specimens; on the other hand, due to the various

melting points of starting materials, higher tempera-

tures may result in the evaporation of the element

with low melting point (for example, aluminum),

which exerts negative influence on the sintering

process leading to the formation of undesired phases

[53, 177]. Furthermore, the high tendency of

aluminum for oxidation and the presence of the oxide

layer on the surface of Al powders also exhibit the

necessity in the isolation of samples from oxygen and

the use of excess Al in the process of milling activa-

tion and sintering [213, 214]. Thus, although the

nominal stoichiometric ratio of Cr:Al:C should be

2:1:1 for the fabrication of Cr2AlC, the addition of Al

should be slightly higher than 1, especially in the

long process of common PLS techniques

[18, 115, 215]. The same problem was also observed in

the SHSed Cr2AlC from CaCrO4 ? Al ? C powder

mixtures when the formation of gaseous products

(CO, CO2, Al(g), AlO, and Al2O) caused a deficiency

in these elements in comparison with the stoichio-

metric composition. This leads to the fact that the

formation of the chromium aluminide Cr5Al8 and the

lower carbide Cr7C3 instead of the higher chromium

carbide Cr3C2 cannot be avoided without adding the

excess (superstoichiometric) carbon to the starting

mixture [75, 76, 216], which can also explain the for-

mation of secondary phase Cr7C3 in the SPSed Cr2-

AlC composite in the research work [18, 53]. In

contrast to SHSed Cr2AlC, the significant loss of Al

was observed in the SHSed Ti3AlC2 from elemental

titanium, aluminum, and carbon (graphite) powders,

which leads to the formation of the higher titanium

carbide by-product TiC [217]. Although based on the

experimental results of hot-pressed Ta2AlC [218] and

V2AlC [219] it has been proposed that the decrement

of carbon, i.e., less than 1, is verified to be beneficial

for the fabrication of high pure M2AlC phases, in the

case of Cr2AlC the fact that a deficiency in carbon

may increase the risk of formation of the Cr–Al

compounds cannot be ignored. The rare successful

example for the above-mentioned proposition

applied for Cr2AlC is the SPSed Cr2AlC in the work

of Ge et al. [115] with strict conditions for molar ratios

of starting materials, sintering temperature, and

holding time. The disappearance of the Cr–Al com-

pounds in the Cr2AlC sample may arise from the

C-uptake from the graphite dies [220], i.e., the Al-

volatilization, C-uptake from the graphite dies and

the carefully adjusted starting composition

(Cr:Al:C = 2:1.3:0.9) leads to complete stoichiometric

synthesis of Cr2AlC. SEM image and XRD analysis

results revealed that 1:1.9:1 Ti/TiC/Al powders (i.e.,

Ti:Al:C = 2.9:1:1.9), activated by ball milling, allow

preparing 100% pure Ti3AlC2 by HIP technology

[221]. This suggests that the molar ratios of starting

materials should be selected according to the
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conditions of the sintering technology in order to

prepare MAX-phases with high purity. However, this

selection can be significantly difficult for some MAX-

phases, such as Ti3SiC2, as the purity of synthesized

MAX-phases is very sensitive to the molar ratios of

starting materials [172].

As mentioned in ‘‘SPS’’ section is characterized by

its fast heating rate, which can inhibit the grain

growth of MAX-phases. However, based on the

analysis results of XRD and SEM of SPS sintered

Cr2AlC, several authors have shown that the fast

heating rate as well as the short holding time are

often the limiting factor in the formation of pure

MAX-phases [18, 222]. Gonzalez-Julian et al. [18],

using elemental constituents Cr:Al:C = 2:1.1:1 and

SPS with heating rate 100 �C/min. and holding time

10 min, prepared highly dense Cr2AlC with sec-

ondary phases. Gonzalez-Julian et al. [18] attributed

the formation of the secondary phases to the fast

heating and the short time, which limited the reaction

kinetics to form Cr2AlC or other intermediate speci-

mens thereby hindering the formation of the pure

phase. In contrast, Ge et al. [115], using four different

molar ratios of Cr, Al, and C as precursors, synthe-

sized Cr2AlC phases by PL-SPS and investigated the

effect of synthesis parameters on the purity via XRD.

The XRD results revealed that in the case of

Cr:Al:C = 2:1.3:0.9 and heating rate 100 �C/min the

purity of Cr2AlC increases first and then decreases

with the increase of temperature (700–1450 �C) and

holding time (0– 30 min), the pure homogenous and

porous Cr2AlC appears at 1300 �C for 15 min, indi-

cating higher decomposition ratio of Cr2AlC at high

temperature with the enlarged cracks and gaps

observed in the laminated structure and the

increased proportion of other phases. Comparing the

works of Ge et al. [115] and Gonzalez-Julian et al.

[18], one can conclude that the purity and the density

of MAX-phases can be adjusted by the molar ratios of

starting materials, heating rate, holding time, and the

assisting pressure, that is the high heating rate and

high assisting pressure should be applied for high

densification of MAX-phases, while for synthesizing

MAX-phases with high purity, smaller assisting

pressure and longer holding time should be consid-

ered first. This conclusion reveals another ‘‘competi-

tion phenomenon’’ between the high purity and the

high densification controlled by the assisting pres-

sure and can be partly backed up by the evidence in

[18], where pure Cr2AlC bulk materials but with low

density were sintered by in situ PLS, and furthermore

suggests the application prospect of the two-step

process. Instead of PLS, Hamm et al. [143] performed

MW heating for synthesizing single-phase V4AlC3 as

the first step followed by the SPS post-treatment and

evaluated the purity of the obtained products by

powder X-ray diffraction analysis. The results

demonstrate the ability of the MW heating for syn-

thesizing a nearly single-phase V4AlC3 product,

which was obtained after 60 min of MW heating at

1000 W. Rietveld refinement of the X-ray diffraction

data showed that the SPS post-treated composition

consists of roughly 98 wt% V4AlC3 and 2 wt% VC.

The introduction of MW technology into the two-step

process is expected to improve the preparing effi-

ciency of MAX-phases with high purity and densifi-

cation compared with the PLS-contained two-step

process. In addition to SPS, HIP can be expected to be

an option for the second step (densification/sintering

step) in the two-step process due to the applied

uniform pressure from all directions. Important note

concerning the two-step process must be made here

regarding the sintering temperature, high value of

which may cause the decomposition of MAX-phase,

thereby reducing the purity of MAX-phase. Kozak

et al. [223] performed XRD phase analysis of MAX-

phase composites based on Ti3SiC2 obtained by two-

step process (SHS-synthesized powders ? HP). It

was found that the amount of Ti3SiC2 in the SHS-

synthesized powders with the average grain size of

8 lm and 20 lm decreases from 75.3 wt% to 52.2 and

61.3 wt% after HP sintering (1500 �C, 25 MPa, 1 h),

respectively. Details of the investigation results of the

part of the above-selected works on microstructure

and phase composition of MAX-phases synthesized

by different sintering methods are presented in

Table 1.

Mechanical properties of MAX-phases

The layered structure and unique chemical bonding

characteristics determine the mechanical properties

of MAX-phases, such as higher elastic modulus,

strength, and fracture toughness, which arise from

the strong M-X covalent bond, while lower shear

modulus and hardness, which arise from the weak

interaction between M-X layer and A atomic layer

[14]. In the case of weak bonding between the A atom

layer and M-C layer in the crystal structure, such as
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Nb4AlC3, the formation and slipping of dislocations

can be easily generated, which induces the formation

of kink bands in the grains presenting ‘‘quasi-plastic’’

behavior [224]. In addition, the dislocations as result

of the layer slipping may lead to plastic deformation

[15, 149]. It can be seen from Figs. 12 and 13 that

different sintering methods can cause variation in

grain sizes of the prepared MAX-phase due to dif-

ferent heating rates, holding time, and other charac-

teristics, which thereby exert an influence on

mechanical properties [222, 225, 226].

It has been widely admitted that the coarse-grained

MAX-phase materials demonstrate higher fracture

toughness compared to fine-grained due to the

deflection and delamination of cracks by single

grains, as a result of which profusion of crack

bridging processes in the crack wake occurs (Fig. 14a)

[226–228]. Thus, for MAX-phases with high fractured

toughness the choice of SPS technology is not sug-

gested or at least should be considered carefully. In

addition, it has also been suggested that grain size of

MAX-phases exerts a significant influence on the

possibility of grains to kink (Fig. 14b [229]): the larger

is the grain size, the easier is the kink formation

[230, 231]. It is worth mentioning that since kinking is

a form of plastic buckling, the lack of constraint, due

to increase in porosity which leads to reduction of the

threshold stresses needed for incipient kink band

formation, must facilitate the formation of more

incipient and regular kink bands [229, 232]. There-

fore, more kink bands can be predicted to be pro-

duced in the PLSed MAX-phases than in the MAX-

phases sintered by SPS and other pressure-assisted

sintering technologies. Another interesting phe-

nomenon related to porosity lies in the inverse rela-

tionship between flexural strength and porosity

(proportional relationship between flexural strength

and density), which is backed up by the evidence in

Ref. [113]. In this work, a more than fivefold increase

in the flexural strength of paper-derived Ti3SiC2 was

observed as a result of preceramic paper densification

by calendering. Parrikar et al. investigated the influ-

ence of microstructure on the mechanical response of

the dense Ti2AlC processed by reaction sintering

[233] and PLS ? SPS two-step process [225]. It was

found that the grain growth leads to a decrease in the

temperature of failure and a correlation with the

Hall–Petch relation between compressive strength

and grain length was observed. Lapauw et al. [234]

found that grain size coarsening of (Nb0.85,M0.15)4-

AlC3 with M = Ti, Zr and Hf in the case of M = Zr

lead to the slightly lower room temperature flexural

strength of (Nb0.85,M0.15)4AlC3 (* 490 MPa) com-

pared with that of Nb4AlC3 (573 MPa).

The effect of grain size on the creep behavior of

MAX-phase was reported by Radovic et al. [235, 236]

based on the experimental investigation on tensile

creep of coarse-grained and fine grained (3–5 lm)

Ti3SiC2 in the 1000–1200 �C temperature range. It was

found that the coarse-grained Ti3SiC2 exhibited lower

creep rates and longer times to failure than their fine-

grained (3–5 lm) counterparts. The longer times to

failure of the coarse-grained Ti3SiC2 were explained

by the authors considering the ability of the larger

grains, the basal planes of which are normal to the

applied load, to form tenacious crack bridges by

delamination and kink band formation, in addition to

the bridges that occur when the basal planes are

parallel to the applied load. This suggests the supe-

riority of SPS technology for preparing MAX-phases,

which have the potential to be used as structural

materials for high-temperature applications.

Figure 12 SEM images of samples with different grain sizes

a fine-grained (FG) Ti2AlC samples processed by PLS ? SPS,

b medium-grained (MG) Ti2AlC samples processed by PLS

treating FG samples for periods of 8 h and c coarse-grained (CG)

Ti2AlC samples processed by PLS treating FG samples for periods

of 24 h, according to Ref. [225].
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Besides the grain size, the effect of secondary

phases on the mechanical properties of MAX-phases

has also been reported. Kozak et al. [223], performing

SPS on commercial powder and HP on SHSed pow-

der respectively, prepared Ti3SiC2-based materials

with various purity and grain sizes. The results of

coupling bending tests with Acoustic Emission (AE)

measurements performed on the Ti3SiC2-based

materials with different amounts of Ti3SiC2 (from 52

to 72 wt%) and various mean grain sizes (from 8 to

20 lm) showed that the lower the content (wt%) of

secondary phases (TiC, TiSi2) is, the higher the

mechanical strength and the capability to dissipate

energy are, while reduction of mechanical strength

and increase of dissipated energy were observed for

coarse-grained material. Wan et al. [237] found that

compared to monolithic Ti3Si0.95Al0.05C2, the SiC

particle-reinforced Ti3Si0.95Al0.05C2–SiC composites

exhibit higher elastic modulus, Vickers hardness,

fracture toughness, improved wear and oxidation

resistances, but demonstrate lower flexural strength.

This phenomenon was attributed by the authors to

the strengthening effect of SiC as the second phase on

the Ti3SiC2-like MAX-phases. However, it is worth to

remark here that for different mechanical properties,

the effects of the second phase and grain size are

different. For example, based on the investigation of

the influence of mechanical activation process on the

Figure 13 Backscattered

electron (BSE) images of

Ta4AlC3 produced at 1500 �C
by a HP

20 �C min-1 9 30 min and

b SPS

100 �C min-1 9 15 min.

c Fracture surface showing the

laminated structure of the

Ta4AlC3 grains. d Typical

damage near the corner of an

indentation produced by a

Vickers indenter, showing the

dislodging of Ta4AlC3 MAX-

phase grains [226].

Figure 14 a Field-emission scanning electron microscope image

of a bridged crack in the coarse-grained Ti3SiC2 microstructure.

Heavily deformed lamella bridge of the crack, and significant

amounts of delamination and bending are observed. The arrow

indicates the direction of crack propagation [228] and, b kink band

formation and concomitant delaminations of a solid bridge

between pores (kink boundaries and delaminations indicated

with arrows) in Ti3SiC2 according to Ref. [229].
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mechanical properties of bulk Ti2AlN MAX-phase

obtained by reactive HP Salvo et al. [238] believed

that the Ti5Si3 and Al2O3 particles dispersed into the

matrix was the main factor giving rise to the

enhanced Vickers hardness of mechanical activated

Ti2AlN, while the highest fractured toughness

obtained by the non-mechanical activated Ti2AlN

was attributed by the authors to the large mean grain

size. From this one can expect than for the MAX-

phase ceramic composites, the by-product phase in

which the mechanical properties of the single MAX-

phase can enhance, the SPS technology is a good

choice, i.e., by appropriately increasing the heating

rate and reducing the sintering time one can obtain

the MAX-phase ceramic composites with small grain

sizes, high densification and ‘‘desired impurity (sec-

ond) phases’’, all of which may allow improved

mechanical properties of MAX-phase. As mentioned

above, the SPS technology, which is good for

preparing MAX-phases with small grain size and

high densification as to enhance mechanical strength

and inhibit the formation of kink bands, finds its

limitation in improving the fracture toughness of

MAX-phases. Fortunately, the second phases can

make up for the lack of microstructure contribution

to the fracture toughness. The mechanisms, based on

which MAX-phases can be effectively toughened by

the second phases particles, could be summarized as:

(1) Difference in thermal expansion coefficient

between the second phase and the matrix. The second

phase with lower CTE compared to the matrix gen-

erates residual stresses during composite preparation

(cooling process) resulting in a reduction of local

stresses and strain fields at the crack tip. Therefore,

crack branching, crack deflection and micro-cracking

in the matrix might be favored by a residual tensile

stress in the matrix [239]; (2) Clean and clear grain

boundaries between reinforcements and the matrix.

As shown in Fig. 15, a very close interatomic distance

of close-packed planes of TiC (0.3055 nm) and TiB2

(0.3028 nm) phases indicates the formation of coher-

ent interface with strong binding energy [240]. Hence

a transgranular fracture with increased fracture

energy can be formed. Furthermore, the increase in

the residual compressive stress can be also found due

to the CTE mismatch, which could also lead to the

increase in the crack propagation resistance; (3) The

small second phase can play the role of pinning the

dislocation of matrix [14]; (4) The secondary phase,

which is formed as a result of the transformation

process of the ‘‘original secondary phase’’ in the

composite based on MAX-phase, generates com-

pressive stress in the matrix [241] and toughens the

matrix by multiple toughening mechanisms to a dif-

ferent degree, such as crack deflection and bridging

[242]. Whisker and fiber can be used as excellent

reinforcements for improving the fracture toughness

of MAX-phase by proving ceramic matrix with large

strains. However, the high reactivity between the

fibers and MAX-phase matrix has narrowed the

investigation works on the toughening behaviors of

fiber- or whisker-reinforced MAX-phases [243]. Due

to the high effectivity for toughening of MAX-phase

ceramics, texture microstructure can be used instead

of whisker or fiber reinforcements [224, 244–248]. As

shown in Fig. 16 this can lead to grain pull-out and

bridging, thereby activating the toughening mecha-

nisms of crack deflection in MAX-phase materials

[224].

The influence of sintering methods on the tribo-

logical behavior of MAX-phases can also be predicted

from the work of El-Raghy et al. [249] on the effect of

grain size on friction and wear behavior of Ti3SiC2, in

which based on the sliding and abrasive wear tests it

was proposed that the wear resistance increases with

increasing grain size. It was believed that the

increased wear resistance of coarse-grained Ti3SiC2

was due to a large number of possible sliding energy

dissipation mechanisms such as delamination, grain

deformation, microcracking, crack bridging and grain

fracture compared to the fine-grained one, where

only grain pull out and pre-fracture were observed.

Details of the investigation results of the part of the

above-selected works on mechanical properties of

MAX-phases synthesized by different sintering

methods are presented in Table 2.

Concluding remarks

At present, there are many methods for preparing

MAX-phase materials, due to the advantages of SPS,

over other sintering methods, which include

enhanced densification, high heating rate, short sin-

tering time, and low sintering temperature. SPS, as

binder-less, direct, and the cost-effective process will

continue to be the method of choice to develop MAX-

phase that has controlled microstructures and novel

properties. Furthermore, the SPS technique is highly

suited toward preparing MAX-phases with small
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grain size, which facilitates the increases in the

mechanical strength of MAX-phases. However, it

should be noted that, like all other sintering methods,

the SPSed product contains certain volume of the

impurity phase. This could be interpreted in three

ways: (1) Stoichiometric loss always exists no matter

which sintering method is applied, which leads to the

formation of the undesired phases. The C-uptake

from the graphite dies in the SPS process makes the

selection of the molar ratios of starting materials

more complicated; (2) Regardless of the sintering

method, the ‘‘competition phenomenon’’ between the

high purity and the high densification controlled by

the sintering temperature and the assisting pressure

always exists. Thus, the high heating rate and high

assisting pressure should be applied for high densi-

fication of MAX-phases, while for synthesizing MAX-

phases with high purity, smaller assisting pressure

and longer holding time should be considered first;

(3) The formation of the stable MAX-phases occurs

only in a specific temperature interval, for which one

can refer to the Ref. [250]. Below this interval, MAX-

phases cannot be formed, while above this interval,

MAX-phases degradation occurs. In the case of cost

of preparing MAX-phases, the HP, HIP and SPS

processes require precise and expensive equipment

and high vacuum and protective gas (for example,

argon gas), which leads to high cost of production

driven by these technologies and as a result they can

only be used as a conventional laboratory prepara-

tion method, not suitable for mass production of the

MAX-phases. Compared with the above sintering

methods, the PLS has the advantages of simple

operation, high yield, and low requirements for

experimental environment and technology. This is

conducive to industrial production, but the problem

with this method is that the PLSed products have

large grain size, low densification, and inferior

mechanical properties. In addition, for some MAX-

phases, such as Cr2AlC, without using ultrafine

powders full densification cannot be just obtained by

whether one-step PLS or two-step PLS. Furthermore,

it is well admitted that small grain size allows

improve most of the mechanical properties of MAX-

phases, such as increase in the temperature at which

graceful failure occurs, and enhancement of Vickers

hardness and room temperature flexural strength,

which make the SPS technology a good choice for

preparing MAX-phases with excellent mechanical

properties both at high temperature and room tem-

perature. However, due to the positive effect of big

grain size on the material’s fracture toughness, the

SPS technology should be rarely used for MAX-

phases with high fracture toughness even though the

grains of SPSed MAX-phases can be grown by

increasing the sintering time. Thus, although MAX-

phase ceramic composites exhibit excellent properties

and have broad application prospects in many

modern fields, to achieve large-scale industrial

applications several research areas should be

Figure 15 a TEM

micrograph of the

(TiB2 ? TiC)/Ti3SiC2

composite with 10 vol% TiB2;

b HRTEM image of interface

structure for Ti3SiC2 and TiC;

c HRTEM image of interface

structure for TiB2 and TiC

[240].

Figure 16 SEM micrographs of the in situ crack propagation of

textured Nb4AlC3 [224].
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developed: (1) Using theoretical calculations for

obtaining the thermodynamic stability of MAX-pha-

ses depending on the temperature, thereby guiding

the selection of sintering methods and adjustment of

the sintering temperature in order to experimentally

synthesize and sinter new MAX-phases; (2) Investi-

gation of the influence of sintering parameters

applied in various sintering processes, such as the

molar ratios of starting materials, heating rate, hold-

ing time, and the assisting pressure, on the purity, the

density and the microstructure of MAX-phases, the

impact of which was found to be especially severe in

the mechanical properties of MAX-phases; (3)

Reduction of the production costs and simplification

of the synthesis process while improving the purity

of synthesized MAX-phases.

New approaches based on both new starting

components and additive technologies can be used to

produce new materials based on the MAX-phases

[251–253]. Currently, new technologies to obtain

laminated [254] or preceramic paper-derived struc-

tures [111] are being developed, and their application

open the potential for manufacturing of gradient (in

relation to composition and porosity) MAX-phase

materials with complex shape. Gradient MAX-phase

materials can have superior mechanical properties

due to the layered structure providing crack resis-

tance, as well as enhanced high-temperature resis-

tance that can be achieved by designing of multi-level

structure with gradually changing thermal expansion

coefficient. At the same time, the mechanical prop-

erties of MAX-phase-based materials can be

increased by fiber reinforcement, which has been

shown in recent works [255–261] and review on

toughening mechanisms in MAX-phase ceramics

[243]. SPS can be expected to be beneficial method

due to that in the traditional sintering process, the

required high sintering temperature and long sin-

tering time lead to the degradation of the fibers, and

even to the chemical reaction between the fiber and

the matrix. In this context, due to the fast sintering

process, the SPS method can be used to obtain fiber-

reinforced MAX-phase ceramics without damaging

the reinforcing fibers [262].
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