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ABSTRACT

In vivo tracking or in vitro real sample analysis by electrochemistry is one of the

most straight and useful methods in biosensor field. However, surface bio-

fouling of electrodes by non-specific protein adsorption is inevitable and usually

leads to a decrease in sensitivity. Here, we developed a Nafion-coated porous

boron-doped diamond (NAF/pBDD) electrode with hydrophobic nanostruc-

tures to minimize the biofouling effect and selectively detect dopamine (DA).

Larger active area was obtained by this procedure compared to a bare diamond

electrode. The as-prepared electrode shows excellent antifouling property and

enrichment capacity toward selective detection of dopamine (DA). The low

background current of the BDD electrode and the enhanced signals enables a

lower detection limit, 42 nmol L-1, and a wider linear range, 0.1–110 lmol L-1,

for determination of DA in human serum. Additionally, the facile modified

electrode demonstrated renewable property and long-term stability due to the

fact that the antifouling nanostructures belong to its own.

Introduction

In vivo monitoring or in vitro sensing by electro-

chemical techniques is becoming a powerful tool in

biological environment analysis, helping us better

understand the correlation between chemistry and

behavioral, diagnose signals and disease level [1–9].

However, surface biofouling of sensors still hinders

their further applications due to the fouling-induced

decrease in sensitivity and limited long-term func-

tionality [10–12]. Non-specific protein adsorption on

the device surface is the initial stage of many fouling

mechanisms and that will ultimately compromise the
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functionality of the device [4, 13]. Two major strate-

gies have been taken to alleviate the adsorption and

improve the biocompatibility of devices [10, 14]. The

first approach is surface coating by electrically neu-

tral hydrophilic polymers, which minimizes the close

reactions between proteins and devices surfaces.

Many of these, such as poly (ethylene glycol) (PEG)

and poly(lactic-co-glycolic acid) (PLGA), have

demonstrated promising results in resisting proteins

adsorption [15, 16]. However, the presence of blood

components or other interferents that can interact

with the surface layers which have high water uptake

may alter the surface that is actually applied to the

biological environment; key proteins like hydrophilic

ones and phospholipids can still eventually adsorb

under conditions that initiate the platelet adhesion

and activation [17–21]. Another method is surface

patterning with hydrophobic nanostructures, which

can effectively minimize the amount of proteins

actually arriving at the surface by reducing the length

of diffusive transport region [22–25]. Different grain

sizes of silica, metal particles and carbon-based

materials have been decorated on the substrate to

create surfaces with different roughness. Although

these structures show excellent antifouling property

because they can prevent proteins from reaching

electrode inner surface, they still face a great chal-

lenge in preparing methods by a controllable manner

(e.g., nanoporous gold) [5, 26–30].

Typically, surface biofouling of sensors is one of

the most serious issues challenging determination of

dopamine (DA), which is an important monoamine

neurotransmitter. Because Parkinson’s, Alzheimer’s

and Huntington’s diseases could be monitored by the

abnormal DA level [3] due to its vital role in central

nervous, renal and hormonal systems. But the con-

centration of DA in brain is low and its action

depends on the overall levels and short bursts. Thus,

diagnosis of these diseases necessitates very accurate

measurements of DA in biological samples and the

electrochemical analysis of DA could be hindered

easily by serious biofouling of the electrodes [4, 13].

Besides, the close oxidization potentials of DA and

AA make it difficult to distinguish DA from inter-

ferents and extra DA could be produced by the

reaction of the unoxidized AA and the oxidation

products of DA then reoxidized at electrode surface

(EC’ mechanism) [31, 32]. As a strong candidate for

biosensing material, boron doped diamond (BDD)

stands out due to its low adsorption property,

inherent robustness, wide potential window and

good biocompatibility [27, 33–38]. Fewer surface

functional groups of diamond electrode are able to

reduce the adsorption of oxidation products [38, 39].

However, BDD electrodes are incompetent when it

comes to antifouling to proteins due to their fierce

responses and strong adhesion in biological envi-

ronment [11, 40]. Therefore, further modifications or

patterning is usually required. Herein, we report a

nanoporous diamond surface as a new antifouling

material for enhanced, selective detection of dopa-

mine in human serum. We expect that a nanoporous

diamond electrode will potentially reduce the non-

specific adsorption of proteins and bring a new

inspiration for improving the performance of

biosensors. Nevertheless, the use of a nanoporous

diamond electrode for antifouling to proteins

adsorption has not been reported.

In this work, we use facile thermal etching tech-

nique to create a hydrophilic nanoporous diamond

surface. The prepared Nafion-coated porous boron-

doped diamond (NAF/pBDD) electrode shows high

selectivity and stability for detection of DA in human

serum, being unaffected by the excess interferences of

AA. Most importantly, antifouling properties and

stability analysis of this electrode show the potential

of real applications.

Experimental methods

Materials

Dopamine hydrochloride (C 99%), L-ascorbic acid

(C 99%) were purchased from Sigma-Aldrich, United

States. Nafion PFSA 5% dispersions D-520 (Dupont,

United States) were obtained from ILongSheng

energy technology Co. Ltd., Suzhou, China. Phos-

phate buffers (pH 7.4, 0.01 mol L-1) were purchased

from Leagene Biotechnology, Beijing, China. Normal

human serum was purchased from Abbkine Scientific

Co., Ltd, Wuhan, China. All reagents were of ana-

lytical grade and used as received without any fur-

ther purification. All solutions were prepared with

deionized, distilled water (18 MX cm resistance).

Apparatus

Morphology studies were conducted using a scan-

ning electron microscope (SEM) (FEI Quanta FEG
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250, United States and TESCAN MIRA3, Czech

Republic). Raman spectroscopic analysis was carried

out using LabRAM HR800, HORIBA Jobin–Yvon,

France. Electrochemical measurements were finished

by an electrochemistry workstation CHI660e, (Chen-

Hua, Shanghai, China). The BDD, pBDD, NAF/

pBDD electrodes were used as the working elec-

trodes, and an Ag| AgCl| KCl(3.5 mol) electrode and a

platinum plate (10 9 10 9 3 mm3) were used as the

reference and auxiliary electrodes, respectively.

Preparation of Electrodes

The boron doped diamond (BDD) layer was grown

on p-type silicon wafer substrates (4 9 4 mm2) using

a hot filament chemical vapor deposition (HFCVD)

system. Before the deposition, the substrates were

ultrasonically cleaned with acetone, ethanol and

deionized water for 20 min individually, and then

ultrasonically treated in the suspension of diamond

nanopowder and deionized water for 40 min and

2 min, respectively. During the 8-h deposition, the

BDD film was deposited on silicon substrates in the

mixture gases of CH4 (1 sccm), H2 (49 sccm) and B2H6

(0.3 sccm) under 3.0 kPa, maintaining the tempera-

tures of the substrate and a tungsten filament at

850 �C and 2350 �C, respectively. The porous BDD

(pBDD) was prepared by a thermal catalytic etching

(TCE) process, which includes: (1) sputtering a nickel

layer on the BDD layer using a physical vapor

deposition (PVD) system, (2) heat treatment of the

Ni/BDD in a quartz tube furnace in H2 and (3)

removing remaining Ni. The details of the TCE were

given in our earlier work [37]. The Nafion 5% dis-

persions were diluted to 0.5 wt% using isopropanol

and then drop-coated on the pBDD layer using an

adjustable micro-pipettor. The renewable process of

the electrodes was finished by cleaning in ethanol at

70 �C for 5 min and then ultrasonic treatment (60 Hz)

in distilled water for 10 min.

Results and discussion

Characterizations of electrodes

The preparation processes of the BDD, pBDD elec-

trodes were illustrated in Fig. 1a; the pBDD electrode

was obtained by thermal etching after the deposition

of BDD film. The morphology of the BDD, pBDD and

NAF/pBDD electrodes was examined by SEM anal-

ysis. Figure 1b, c shows the micro-crystal diamond

layer deposited on the silicon substrate. The diamond

layer is well covered on the substrate, and the grains

size are about from 3 to 5 lm. The porous diamond

obtained by thermal etching is presented in Fig. 1e

and f. The nanopores on the diamond are well dis-

persed on the crystal plane after removing the Ni

nanoparticles using the nitric acid. These nanopores

are supposed to increase the electrochemically active

surface area (EASA) by producing more defect sites

on the surface of the electrode. The Raman spectra for

the BDD, pBDD and NAF/pBDD electrodes are

presented in Fig. 1h. The strong peak at * 466 cm-1

and * 1192 cm-1 are the boron band, which has no

obvious change in three electrodes due to their same

boron-doped concentrations [41]. The relative weaker

peak at * 1063 cm-1 is from the Nafion membrane,

corresponding to the symmetric stretch of sulfonic

group [42]. The peaks at * 1291 cm-1 are assigned to

the diamond phase. This peak shifted significantly

from 1332 to 1291 cm-1 due to the high B/C ratio (B/

C = 20,000 ppm in this work). Generally, polycrys-

talline boron-doped diamond films show a Raman

spectrum where the 1332 cm-1 diamond vibrational

mode peak intensity decreases and shifts down in its

wave number with the increasing boron concentra-

tion [43]. It would appears only as a shoulder when

the B/C ratio exceeds 12,000 ppm [44]. The X-ray

diffraction (XRD) patterns for the BDD, pBDD and

NAF/pBDD electrodes are shown in Fig. 1i. Two

peaks at 4� and 7� could be found at all three elec-

trodes which can be assigned to the (111) and (220) of

diamond. On the BDD and pBDD electrodes, there is

a common peak at 69.5� from the silicon carbide. The

etching process for the nanopores results in the gra-

phite peak at 9.5� on the pBDD electrode. And due to

the Nafion membrane covered on the NAF/pBDD

electrode, the intensity of two peaks for diamond

decreases and the peaks for silicon carbide and gra-

phite could not be found. Furthermore, there is a

broad peak at 17� on NAF/pBDD electrode which

could be assigned to the semi-crystalline structure of

the Nafion’s main chain [45].

Electrochemical characterization of different
electrodes

The cycle voltammetry (CV) and electrochemical

impedance spectrum (EIS) were employed to
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evaluate the surface nature and electron transfer

behavior BDD and pBDD electrodes. Figure 2a shows

comparative CV responses of BDD and pBDD elec-

trodes in a 2 mmol L-1 K3[Fe(CN)6] at a scan rate 10

Figure 1 Schematic diagram a for the preparations of the BDD,

Ni/BDD and pBDD electrodes; SEM images for BDD electrode

(b, c), and pBDD electrode (e, f); EDS for BDD electrode (d) and

pBDD electrode (g); h The Raman spectra for the BDD, pBDD

and NAF/pBDD electrodes; i The X-ray diffraction (XRD)

patterns for the BDD, pBDD and NAF/pBDD electrodes.
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mVs-1. The higher peak current magnitudes and

smaller DEp values with pBDD electrode could be

due to the facile electron transfer behavior and its

larger electrochemically active surface area (EASA).

The EASA was then estimated according to the

Randles-Sevcik equation:

Ip ¼ 2:690105n3=2AD1=2Cv1=2

where n is the number of electrons participated in the

redox reaction, A is the EASA (in cm2), D is the dif-

fusion coefficient (D = 6.50 9 10-6 cm2 s-1) [46], C is

the bulk concentration (in mol cm-3), m is the scan

rate (in V s-1). Larger EASA value for the pBDD

electrode (0.14 cm2) than these of the BDD electrode

(0.08 cm2), reveal that the EASA was substantially

increased by these nanopores obtained through

etching. The EIS data for two electrodes were

obtained at an open circuit potential of 10 mV in the

frequency range from 1 Hz to 1 MHz, as presented in

Fig. 2b through the Nyquist diagrams. The well-de-

fined semi-circles at high frequencies for these elec-

trodes correspond to the electron transfer process and

the diameters are equivalent to the charge transfer

resistance (RCT). The impedance parameters were

evaluated using a curve fitting software and the

values were noted to be 8.8 X and 4.5 X for BDD and

pBDD electrodes, respectively. The lower RCT value

for pBDD electrode reveals that the electron transfer

resistance was reduced by these nanopores due to its

excellent conductivity and a large number of defect

sites.

The heterogeneous electron transfer rate constants

(ko, cm-1) have been calculated by the extended

method which merges the Klingler-Kochi and

Nicholson and Shain methods for totally irreversible

and reversible systems [47–49], using following

equation:

W ¼ k�½pDmnF=RT��1=2

where w is the Nicholson’s kinetic parameter

dependent on DEp, m is the number of electrons

transferred in the oxidation/reduction process (here,

m = 1), R is the universal gas constant, and T is the

temperature (in Kelvin). Values of w were deter-

mined for every scan rate in the range 0.01–0.15 Vs-1

from Lavagnini’s equation:

W ¼ �0:6288þ 0:0021Xð Þ= 1� 0:017Xð Þ

where X indicated DEp 9 n expressed in mV [50, 51].

The value of k�was obtained to be 1.59 9 10-3 cm s-1

and 0.87 9 10-3 cm s-1 from the slope of w vs

[pDnmF/RT]-1/2 plots, for pBDD, BDD electrodes,

respectively, as shown in Figure S1. The ko value

obtained in the case of the pBDD electrode resulted to

be higher than that obtained in the case of the BDD

electrode, showing the nanopores with new formed

defect sites on the pBDD are helpful to a faster elec-

tron transfer kinetics.

Electrocatalytic oxidation of DA, AA
on the BDD, pBDD and NAF/pBDD
electrodes

The electrochemical behaviors toward DA and AA of

BDD, pBDD and NAF/pBDD electrodes were then

investigated using cyclic voltammetry (CV) and

square-wave voltammetry (SWV). The individual CV

responses to the two biological fluids are presented in

Fig. 3b, c. On the bare BDD electrode, the oxidation

potential of DA and AA are * 0.37 and * 0.74/V vs

Ag|AgCl|KCl (3.5 mol), but no clear separative peaks

were found when applying to mixed solution

Figure 2 The CVs (a) and the EIS (b) for the BDD and pBDD electrodes with 2 mmol L-1 of K3[Fe(CN)6] in 0.1 mol L-1 KCl solution;

c The comparations of EASA and Rct for BDD and pBDD electrodes.
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(Fig. 3b). This could be assigned to the limited active

sites on BDD electrode, resulting in the low catalytic

capability. More negative oxidation potentials

(* 0.36, * 0.70/V vs Ag|AgCl|KCl(3.5 mol) for DA,

and AA) were reached on the pBDD electrode, but

still, the overlapped potential of DA and AA exists

(Fig. 3c). The lower oxidation potentials and higher

response currents are attributed to the nanopore

structure on the pBDD electrode, but the intrinsic

property of diamond determines the non-selective

behavior [52]. Besides, the EC’ mechanism mentioned

in the introduction, an extra reaction between AA

and the oxidation products of DA, dopamine-o-qui-

none, still exists. The EC’ effect, as shown in Fig. 3a,

would produce new DA and the reoxidized DA will

result in an interference signals to DA detection

[31, 32].

Two main strategies have been adopted to address

this problem. One is using nanomaterial with high

catalytic activity to modify the surface of diamond

electrode and oxidizing AA before DA. Recently,

several studies modifying carbon black, carbon nan-

otubes and graphene on diamond to selective deter-

mination of DA in AA are all based on this strategy

[46, 53]. But the depletion of AA near the surface of

electrodes is not equivalent to the total oxidization of

AA and there could still be some influence on the

signal of DA. Very recently, an increase in the signals

of DA was found by other researchers when in the

presence of AA on a gold electrode modified with

graphene, which indicated that using the depletion

effect of AA to eliminate EC’ effect could be unreli-

able and more work is still needed to study further.

Another strategy is employing the functional mem-

brane covered on the diamond electrode such as

Nafion to separate DA and AA and selectively obtain

the signals of DA oxidation only (Scheme 1). Nafion

membrane has unique ionic properties as a cation

exchange polymer, which could be attributed to

incorporating perfluorovinyl ether groups terminated

with sulfonate groups onto a tetrafluoroethylene

(PTFE) backbone and as such the pKa of the sulfonic

Figure 3 a Schematic diagram for DA oxidation pathway and the

EC0 effect; CVs of individual determination of three analytes at

BDD electrode (b) and pBDD electrode (c) in 0.01 mol L-1 PBS

(pH 7.4) containing 1 mmol L-1 AA, 20 lmol L-1 DA and their

mixed solution respectively at 50 mVs-1. d SWVs of individual

determination of DA and AA at pBDD electrode and Nafion

coated NAF-pBDD electrode in 0.01 mol L-1 PBS (pH 7.4)

containing 1 mmol L-1 AA and 20 lmol L-1 DA. Square-wave

voltammetry (SWV) was employed the following parameters:

30 mV amplitude, 8 mV step potential, and frequency of 5 Hz.
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acid moiety is estimated at - 6, enabling the func-

tional group to deprotonate within the physiological

pH range [7, 8]. At a physiological condition, DA is

positively charged, but AA is negatively charged [54].

Naturally, anions like AA will be rejected by the

negative charge from the Nafion at the surface of

electrode, and the interference signals will be elimi-

nated. On the other hand, positively charged DA will

be attracted to enhance the analyte signal (Scheme 1).

Herein, we evaluated the influence of Nafion mem-

brane on the signals of DA and AA, which is coated

on the pBDD electrode. 2 lL 0.5 wt% Nafion solution

were coated on the surface of an as-prepared pBDD

electrode, and this electrode was employed to detect

20 lmol L-1 DA and 1 mmol L-1 AA solution. The

SWV signals are shown in Fig. 3d. The oxidation

current of DA was enhanced due to the larger active

area of the pBDD electrode. On the contrary, the

response current of AA was suppressed from 10.5 to

0.9 lA. And the signal for the mixed solution of DA

and AA are 11.3 lA, just 0.8 lA higher than the single

DA, which indicates that it is practicable to eliminate

the impact of AA in the mixed solution by Nafion

modification when selectively detecting DA

(Scheme 1).

As discussed above, DA in the mixed solution

could be detected independently by employing the

NAF/pBDD electrode, being nearly unaffected by the

interferences from AA. But apparently proper

amount of Nafion and well coverage of the Nafion

membrane coated on the diamond layer are essential

conditions for a selective and accurate determination

of DA. The SEM images for the diamond electrode

modified by certain amount of Nafion are shown in

Fig. 4a–c. The Nafion membrane is even and well

covered on the diamond layer (Fig. 4a). But it is dif-

ficult to obtain a neat cross plane for this three-layer

electrode due to the brittleness of silicon substrate

and diamond layer and the flexibility of the poly-

meric Nafion membrane. Thus, we created a small

crack by punctured on the Nafion membrane using a

micro-needle (Fig. 4b, c). The profile of the crystal

grains of diamond can be seen in Fig. 4c, which can

indirectly prove the good uniformity of the Nafion

membrane. And the thickness of Nafion layer could

be estimated at around a few microns to tens of

microns. Obviously, the precise control of the thick-

ness of Nafion layer will determine a more

stable performance of the NAF/p-BDD electrode.

Thus, adding volumes of Nafion are crucial and must

be optimized. 0–10 lL Nafion solution were added to

and dried on 7 same p-BDD electrodes and the SWV

signals to individual DA (20 lmol L-1) and AA

(1 mmol L-1) were investigated. For DA, peak

Scheme 1 Illustration of

mechanism of the antifouling

property and the selective

detection of DA on the NAF/

pBDD electrode.
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current increases with the Nafion volume added. The

maximum value can be found at 6 lL, which reveals

that suitable amount of Nafion could enhance the

response currents for DA due to the interaction

between them. But too much Nafion could weaken

the response due to hindering the mass transfer due

to Nafion’s insulation (Fig. 4e, f). On the other hand,

obvious suppression to AA could happen even with a

relatively less amount of Nafion (2 lL, red curve,

Fig. 4g, h) and it maintained similar effect when the

addition exceeded 4 lL (Fig. 4h). Therefore, the

addition of 6 lL Nafion is considered optimal for DA

determination in this work.

Figure 4 a SEM image for the NAF-pBDD electrode; b SEM

image for the NAF-pBDD electrode with a small crack punctured

using a microneedle; c The enlarged view of the small crack;

d The EDS for the NAF-pBDD electrode; e SWVs for NAF-

pBDD electrodes coated with 0–10 lL Nafion solution

respectively in 0.01 mol L-1 PBS (pH 7.4) containing 20 lmol

L-1 DA; f Values of current response toward 20 lmol L-1 DA for

NAF-pBDD electrodes coated with 0–10 lL Nafion solution

respectively; g SWVs for NAF-pBDD electrodes coated with 0–6

lL Nafion solution respectively in 0.01 mol L-1 PBS (pH 7.4)

containing 1 mmol L-1 AA; h Values of current response toward

1 mmol L-1 AA for NAF-pBDD electrodes coated with 0–6 lL
Nafion solution respectively; i SWVs for DA in the concentration

range from 0.1 to 100 lmol L-1 in 0.01 mol L-1 phosphate buffer

solution containing 1000 lmol L-1 AA and 5 vol% human serum;

j Peak current of DA oxidation at corresponding various

concentrations of DA.
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Determination of DA in the presence of AA
using the NAF/pBDD electrode

In this part, the optimized NAF/pBDD electrode was

employed to determine DA in a mixed solution

containing AA and 5 vol% human serum. The effects

of amount of Nafion on the NAF/pBDD electrode

were investigated, and the optimization process are

discussed in the supporting information. The addi-

tion of 6 lL Nafion is considered optimal for DA

determination in this work. Figure 4i shows the SWV

response for the oxidation of DA in the concentration

range from 0.1 to 150 lmol L-1 in 0.01 M phosphate

buffer solution containing 1000 lmol L-1 AA and 5

vol% human serum. The peak currents demonstrate a

linear variation with the concentrations of DA in the

range of 0.1–10 lmol L-1 and the correlation coeffi-

cient (R2) is 0.998. The slope of the calibration curve is

calculated to be 0.449, and the sensitivity is estimated

to be 3.21 lA (lmol cm2)-1. The relative standard

deviation (RSD, %) is 3.1%. The limit of detection

(LOD) has been estimated using the following for-

mula [55].

LOD ¼ 3Sb=m ð3:1Þ

where Sb is the standard deviation obtained from 12

measurements of the background signals and m is the

sensitivity represented by the slope of the calibration.

The LOD is estimated to be 0.042 lmol L-1.

As presented in Table 1, the slope and sensitivity,

the limit of detection (LOD) and linear range of the

NAF/pBDD electrode were compared with other DA

sensors. The lower LOD and wide linear range could

be attributed to the low background current of dia-

mond electrode, large amounts of defect sites of

nanopores and the enhancement from the Nafion

layer due to the special interaction between the

Nafion and DA. Although the performance of the

some other sensors was better than the NAF/pBDD

electrode in this work, the biocompatibility, simple

structure and high stability of this electrode enable it

to stand out among these. Crucially, its LOD could

fits the concentrations of DA for the real-life appli-

cations, such as in human brain (0.02–0.2 lmol L-1)

[13] and human plasma (0.23 lmol L-1) [56].

Reproducibility of the NAF/pBDD electrode
in real sample and excess interferents

The real-life applicability and the feasibility in excess

interferents of the NAF/pBDD electrode were

exemplified by applying to detect DA in human

serum and a mixture containing serum and excess

AA. 1–80 lmol L-1 DA was added into a 5 vol%

serum solution (prepared with phosphate buffers

solution). All samples were diluted by 0.01 mol L-1

phosphate buffers solution (pH 7.4) and the SWV

results are showed in Figure S2 and Table 2. The

Table 1 Detection limit and linear range at various electrodes

Sensors Slope and sensitivity (lA (lmol cm2)-1) Detection limit (lmol L-1) Linear range (lmol L-1) References

CB-Nafion/p-BDD 0.45, 3.21 0.042 0.1–110 This work

GE/Pt 0.34, 1.79 0.03 0.03–8.1 [57]

SPGNE 0.08, 1.14 0.12 0.5–2000 [58]

PANi/rGO 0.14, 2.01 0.5 2–18 [59]

Au@Pd-rGO 0.42, 6.08 0.024 0.1–100 [60]

RGO-ZnO 0.33, 4.68 1.08 3–330 [61]

GO-PAN 0.26, 3.71 0.5 1–14 [62]

NG 0.11, 1.57 0.25 0.5–170 [63]

MWCNT-FeNAZ–CH 0.37, 5.28 1.05 7.35–833 [64]

HCNTs 0.69, 9.85 0.8 2.5–105 [65]

PSFM 0.08, 1.14 0.3 0.05–470 [66]

AuNPs–bCD–GR 0.45, 6.43 0.15 0.5–150 [67]

NiHCF/PDAN 0.55, 7.85 0.03 600–1000 [68]

AuNPs/P(PDA)–GO 0.53, 7.57 0.02 0.05–100 [69]

Nafion/AuNPs/AzA/

Ts

0.72, 10.28 0.01 0.5–50 [70]

CB/GC 0.11, 1.57 0.052 0.59–11.8 [71]
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calculated values reveal that the fabricated NAF/

pBDD electrode exhibits good reproducibility and

anti-interference ability, indicating the potential

application of the electrode in real samples.

Antifouling properties and stability analysis
of the NAF-pBDD electrode

As mentioned in the introduction part, the first

method to reduce proteins adsorption by a hydro-

philic polymer could be invalid when it comes to

some blood components or interference that have

high water uptake. This failure can be attributed to

the fact that the hydration layer formed by a hydro-

philic polymer, acting as a physical and energetic

barrier that minimize protein adsorption, could be

destroyed by the substance with high water uptake.

The protein arriving at the surface must pass three

regions: the conductive transport region in blood or

tissue fluid, the diffusive transport region by the

assumed no-slip boundary condition and the close

proximity region dominated by short range forces

[10, 14, 72]. The conductive transport region is too far

away for any interacting forces to contribute to the

protein adsorption. But proteins will diffuse through

the diffusion-controlled region, whose extent is

inversely proportional to the slip length. The theory

behind this method is to reduce the diffusive trans-

port layer, caused by the no-slip condition in fluid

dynamics, between the fluid and the boundary of

device surface. And this approach is primarily

achieved by patterning the device surface with

hydrophobic nanostructures through various

techniques. These hydrophobic nanostructures will

create gas-fractions or air bubbles on the device sur-

face and stabilize the surface in a dewetted state,

increasing the slip length and reducing the extent of

diffusive transport region. That means more proteins

will be carried away from the surface by fluid as

oppose to arriving at the surface through diffusion

[11, 18, 20, 23]. Therefore, a hydrophobic nanoporous

surface is more reliable compared to a hydrophilic

polymer due to its intrinsic high stability and similar

effect in most situations. The NAF-pBDD electrode in

this work was designed to alleviate the protein

adsorption by the nanopores and the hydrophobic

hydrogen terminations on the diamond surface. Most

importantly, both the nanopores and the hydrogen

terminations are obtained in a simple metal thermal

etching process in hydrogen environment.

To investigate the hydrophobicity of the NAF-

pBDD electrode, we measured the contact angle of

the BDD, pBDD, NAF-BDD and NAF-pBDD elec-

trodes (Fig. 5). The static water contact angle of BDD

electrode is much smaller than that of the pBDD

electrode (52.6� vs 91.1�, Fig. 5a). This can be

explained by two factors: one is the smaller rough-

ness of the BDD electrode than that of the pBDD

electrode due to the nanopores, which can reduce the

extent of diffusive transport region and form a ‘‘Lotus

effect’’ for self-cleaning; another reason is that more

hydrogen terminations could be formed on the pBDD

electrode after thermal etching process compared to

the BDD electrode [6, 27]. The hydrogen termination

on a diamond electrode has been demonstrated to be

helpful in forming a hydrophobic surface [73, 74].

Table 2 Recovery of

Dopamine (DA) at the NAF/

pBDD electrode in real

samples and excess AA

Sample Added (lmol L-1) Founded (lmol L-1) Recoverya (%)

[DA in human serum] 1 0.91 90.9

5 5.41 108.2

10 11.64 116.4

20 20.33 101.6

40 38.15 95.4

80 80.91 101.1

[DA in human serum] ? interferentsb 1 0.97 97.5

5 5.85 117.1

10 11.64 116.4

20 20.55 102.8

40 39.48 98.7

80 79.57 99.5
aRecovery % = ([analyte]Founded/[analyte]Added) 9 100%
bInterferents containing AA (1000 lmol L-1) with fixed concentrations
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The hydrophobicity of a bare BDD electrode is

improved by Nafion coating from 52.6� to 82.8�
(comparing the BDD and NAF-BDD electrode),

which is close to other researchers’ results. The lar-

gest contact angle obtained on the NAF-pBDD elec-

trode, 118.6�, and this could be attributed to the

synergistic effect of Nafion membrane and the

nanoporous diamond surface. Same phenomenon

can be found at different time for all electrodes dis-

cussed above as shown in Fig. 5a, b.

To investigate the antifouling property of the NAF-

pBDD electrode, 5 vol% human serum, used as the

fouling agent, was added into DA in phosphate

buffers solution (pH 7.4) (Fig. 5b). The oxidation

current of DA recorded at the glass carbon electrode

and graphite electrode decreased dramatically about

58% and 69% upon the addition of human serum,

indicating that the serious adsorption of the proteins

in human serum on these two electrodes. For a bare

BDD electrode, the human serum still resulted in

around 55% decrease, revealing that a bare BDD

electrode is not qualified for antifouling in DA

detection. In contrast, the current response on the

hydrophobic pBDD and NAF-pBDD electrodes

decreased only about 25% and 11%. Furthermore, the

current of DA oxidation recorded on the NAF-pBDD

electrode is more stable than these on the glass car-

bon and graphite electrodes (Fig. 5c), indicating that

the products of DA oxidation do not adsorb on the

NAF-pBDD electrode.

The long-term stability of the NAF/pBDD elec-

trode was then investigated by consecutive and long-

time measurements. After 50 consecutive measure-

ments without rinsing in 30 lmol L-1 solution, the

peak currents of DA oxidation changed slightly with

a decrease in 1.3% of the initial value from 13.6 to

13.4 lA, revealing that the adsorption of the DA

oxidation products is weak (Fig. 6a). The result

indicates the excellent cyclic stability and good

resistance to bio-fouling of the developed NAF/

Figure 5 a Typical static

water contact angle of the

BDD, pBDD, NAF-BDD and

NAF-pBDD electrodes;

b Amperometric current

response in 20 lmol L-1 DA

solution recorded with the

BDD, pBDD, NAF-pBDD,

glass carbon and graphite

electrodes at potential of 0.2 V

upon the addition of 5 vol%

human serum. c Amperometric

current response in 20 lmol

L-1 DA solution recorded

with the NAF-pBDD, glass

carbon and graphite electrodes

at potential of 0.2 V. I0 and I

were the current values at

starting time and given time.

756 J Mater Sci (2021) 56:746–761



pBDD electrode. The long-term stability of the NAF/

pBDD electrode was studied by measurements once

in every 5 days for the duration of 10 days (Fig. 6b).

The peak current of the tenth day maintained

approximately 94% of the initial value, demonstrat-

ing the long-term stability of this electrode. The

renewable properties of the electrodes were investi-

gated by cleaning in ethanol at 70 �C for 5 min and

then ultrasonic treatment (60 Hz) in distilled water

for 10 min. Five repeated experiments on a same

electrode were conducted and this pBDD electrode

could maintain nearly same basic electrochemical

behavior, which indicated that the electrode can be

reused for many times.

Conclusions

In summary, a novel porous boron doped diamond

electrode modified by the biocompatible Nafion

membrane was first developed to selectively detect

DA in human serum and excess AA. The response

current of DA was enhanced significantly by the

higher surface area of the pBDD electrode due to its

nanoporous structure. The elimination of the EC0

effect (interference from AA) was realized by the

Nafion’s suppression to AA due to its special ionic

properties. High sensitivity, low limit of detection

and sufficient linear range for detecting DA inde-

pendently have been achieved at the optimized

NAF/pBDD electrode. And this special electrode is

facilely prepared, carbon based and biocompatible

with a relatively low cost. Additionally, repro-

ducibility of this NAF/pBDD electrode in human

serum and excess main interferents (ascorbic acid)

was validated, showing good reproducibility and

anti-interference ability. The biocompatibility,

antifouling property and long-term functionality of

the NAF/pBDD electrode show potential for a real

application and could bring a new inspiration for

biosensors design.
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