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ABSTRACT

Geopolymers are a class of inorganic polymers that have attracted attention in

recent years, especially in the construction sector, due to their promising

mechanical properties, as well as simple and low-cost fabrication. These mate-

rials also stand out for being more environmentally friendly, not only because of

their lower CO2 emissions during production, but also because industrial by-

products can be incorporated in their synthesis. Recent studies have investi-

gated porous geopolymers, allowing expansion of their potential use to several

other applications. Meanwhile, application of GPs to efficient water and

wastewater treatments, such as nanofiltration and advanced oxidation pro-

cesses, remains a challenge, especially due to high operational costs. Thus, this

paper provides a comprehensive review of the current state of knowledge of

geopolymers produced from aluminosilicate wastes, showing the main

promising advances in their applications in three technological fields: (1)

adsorption, (2) membrane filtration and (3) catalysis (as both catalyst or catalyst

support).
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GRAPHIC ABSTRACT

Abbreviations

�OH Hydroxyl radicals

AOP Advanced oxidation processes

BA Bottom ash

BC/GM Biochar/geopolymer

BFS Blast furnace slag

BT Bauxite

CB Carbon black

CC Calcium carbonate

CGP Catalytic geopolymer

CTAB Cetyl-trimethylammonium bromide

EPR Electron paramagnetic resonance

FA Fly ashes

FS Fumed silica

GP Geopolymer

GPA Geopolymeric adsorbents

GPM Geopolymer membrane

HT Halloysite

HZ Hydroxysodalite zeolite

KT Kaolinite

LT Laterite

MGP Magnetic geopolymer

MK Metakaolin

MS Magnesium slag

PT Perlite

POFA Palm oil fuel ash

SF Silica fume

QZ Quartz

SMS Silicomanganese slag

SS Steel slag

Introduction

Geopolymers are inorganic polymers produced by

the polycondensation of aluminosilicate materials,

which is promoted by an alkali activator [1]. The

reaction consists of three main steps: dissolution,

gelation and polycondensation [2]. The reaction

begins by the dissolution of the aluminosilicates,

which occurs due to hydrolysis (water consumption)

of the alkali solution, which forms two distinct

monomeric tetrahedral structures: aluminates (AlO4)

and silicates (SiO4). It is important to point out that

geopolymerization is assumed to occur as a conse-

quent dissolution of solid particles at the surface,

leading to the release of aluminate and silicate to the

solution [3]. These tetrahedral units then begin to link

by sharing oxygen atoms, forming polymeric bonds

of Si–O–Al–O, resulting in a complex mixture of sil-

icates, aluminates and aluminosilicates. The solution

is quickly supersaturated with formed oligomers,

leading to a gel formation. Finally, the oligomers

condense and eliminate water, developing large net-

work structures, producing an amorphous or semi-

crystalline geopolymer, which presents an equilib-

rium of both negative (Al) and positive (Na) charges

[3–6]. A schematic mechanism is presented in Fig. 1.

The great interest in geopolymers research is due to

the lower cost of the sources used for their synthesis

(such as industrial wastes) and more environmentally

friendly production techniques, combined with the
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possibility to customize their properties to the

application of the final material [8, 9]. Among the

characteristics of geopolymers, when compared to

Portland cement, stand out: their greater mechanical

properties (such as compressive, tensile and flexural

strengths, elastic performance and fracture failure),

fire-proof and better thermal resistance, chemical

inertness, improved resistance to carbonation and

frosting, greater durability and less shrinkage during

drying [7, 10–12].

There are several recent review articles about the

geopolymeric materials discussing general proper-

ties, chemistry, possible raw materials and applica-

tions [2, 7, 13–21]. Moreover, innovative applications

in water and wastewater treatment have been pro-

posed with promisor results in separation processes

(adsorption/ion exchange, filtration media and

membranes), oxidation processes (peroxidation,

ozonation, photocatalytic degradation) or combined

processes. Therefore, in this review article, we pre-

sent a critical panorama about geopolymer uses in

separation and reaction processes for water and

wastewater treatment.

Most of GP-based materials are based on alkali-

activated metakaolin (MK), different types of fly ash

(FA), blast furnace slags (BFS) or industrial solid

wastes. As the composition and microstructure of

these aluminosilicates vary in a wide range, the

adsorptive capacity, the textural characteristics or

mechanical strength vary widely as well [7, 22].

Recent important reviews describe the effect of the

source material and curing conditions on the

geopolymer characterization [7, 9, 23–25]. However,

they did not emphasize the potential applications

and drawbacks in membrane separation processes,

catalytic membrane applied in advanced oxidation

processes or adsorptive processes for water and

wastewater treatment.

Metakaolin (MK) is produced by the calcination of

kaolinite (KT) at 600–700 �C, which leads to a dehy-

droxylation of kaolinite (Eq. 1) [26]. MK has been

largely applied in GP synthesis, since it has a higher

purity than other aluminosilicate materials, such as

fly ash [27]. Furthermore, MK is an appropriate

source for producing zeolite-like materials, which are

promising for application in filtration membranes,

due to combined high mechanical strength and ele-

vated adsorptivity [28]. In addition, Rasaki et al. [2]

reinforce that MK-based geopolymers may have

small particle sizes, high surface area, nanostructure

surfaces and effective electron transference, enabling

them suitable for use as catalysts or for co-catalyst

support.

Al2O3 � 2SiO2 � 2H2O ! Al2O3 � 2SiO2 þ 2H2O "
Kaoliniteð Þ Metakaolinð Þ

ð1Þ

Moreover, fly ashes (FA), bottom ashes (BA), palm

oil fuel ash (POFA) and blast furnace slags (BFS) have

Figure 1 Simplified

mechanism of

geopolymerization. Reprinted

with permission from [7].

Copyright 2020 Elsevier.
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also attracted attention alone or incorporated into GP,

due to their low cost (considered a hazardous

industrial waste) and appropriate chemical compo-

sition. Moreover, Gollakota et al. [23] point out the

fineness of FA provides a higher glass phase, there-

fore generating a greater geopolymerisaton rate, thus

producing materials with greater mechanical

strength properties. Several high-strength values

have been reported for FA-based GP, up to 65 MPa

[9, 25, 29]; this is very relevant for applications as

concretes/cement, adsorbents and filtration mem-

branes, which can be exposed to elevated pressures.

In addition, this kind of waste has already been

applied to several different wastewater treatments, to

serve as coagulants, adsorbents, membrane filters,

Fenton catalysts and photocatalysts [30]. Although, it

is worth mentioning that the chemical composition of

each type of ash can vary significantly, therefore

needing attention on synthesis, in order to produce

homogeneous materials [29].

However, the incorporation of some non-conven-

tional sources has also been recently focused on, such

as: pozzolan [31], glass [10], natural zeolites [11],

biomass fly ash [32], silicomanganese fume [33],

magnetite [34], red mud [35] and others. It is

important to emphasize that the incorporation of

industrial wastes not only can benefit the GP’s overall

properties, but also has financial and environmental

advantages. The choice of these sources will be

influenced by availability, cost and application [9, 36].

Si et al. [10] were able to incorporate significant

amounts of waste glass powder (up to 20%) in

metakaolin-based geopolymers. The authors found

that the increase in this waste led to denser

microstructure formation, as well as a smaller porous

range distribution, with a well-defined pore diameter

peak of 30 nm. In addition, a sample with 10% of

waste glass powder remarkably decreased the water

loss rate under drying conditions, i.e., it reduced

drying shrinkage of the synthesized materials.

Moreover, Rossato et al. [34] synthesized a novel

magnetic geopolymer (MGP) by adding 5% of mag-

netite (Fe3O4) to its composition (Fig. 2), this facili-

tated separation of the solids from the solution with a

magnet. The authors also reported impressive

adsorption capacity (400 mg g-1) of acid green 16

dye (300 mg L-1), although catalytic activity in this

process has not been evaluated. Magnetite has inter-

esting catalytic activity on many AOP [37–39]; how-

ever, a GP based on this material has not yet been

studied, thus their behavior in these reactions

remains unknown.

Similarly, red mud, which is rich in Al and Fe, has

been widely investigated as a catalyst to AOP, for

example, as a substitute for Fe2? ions in Fenton-like

reactions. Although GP preparations with red mud

have not focused on these types of reactions [40]. Hu

et al. [35] investigated the role of Fe species during

geopolymerization and observed that the binding

energies of Al–O and Si–O increased; due to Fe3?

replacement by Al3? in the geopolymer matrices.

Thus, the fabricated materials showed a potential

catalytic application and may also reduce leaching,

since the Fe atoms are arranged in the GP’s network.

Furthermore, the activity of the geopolymer is

highly associated with the aluminosilicate sources, as

is their chemical composition, soluble Si/Al content,

particle size, presence of inert particles and glass

phase (which is inert in water, requiring the addition

of an activator for geopolymerization) [41].

Several alkaline activators can be applied to

geopolymerization processes; as consequence of the

cations different sizes and charges density, distinct

properties are obtained in the final material. Com-

monly hydroxides (NaOH or KOH) and silicates

(Na2SiO3 or K2SiO3) or a mixture of them are used,

because of their lower cost and high efficiency [7].

Normally, K?-based activators provide faster solidi-

fication than Na?, because of their larger ionic radius,

although they are also more susceptible to cracking

and provide lower porosity [42].

Moreover, Xin et al. [43] showed that concrete GP

activated by NaOH and Na2CO3 generates more

microdefects than that with composed of the combi-

nation of NaOH and Na2SiO3, which implies that this

mixture produces more suitable materials. Other

studies have indicated that the combination of Na2-
SiO3:NaOH produces materials with higher com-

pressive strength than each activator alone [41, 44].

The adequate concentration of the activators depends

on the aluminosilicate sources, but Zhang et al. [7]

reviewed 173 studies and found that the most com-

mon proportion is 2–2.5 of Na2SiO3:NaOH.

Furthermore, studies have revealed that the con-

centration of the alkaline activator also influences the

final properties of the GP matrix, having an optimum

value, like the other precursors. If this value is too

low, the dissolution of the aluminosilicates is

diminished (few OH- ions in the medium), while a
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value that is too high decreases the mechanical

properties [45, 46].

As mentioned, GP’s microstructure and mechani-

cal properties depend not only on the aluminosilicate

sources but also on the composition and concentra-

tions of the alkaline activator, such as, for example,

Si/Al, M2O/H2O, M2O/SiO2 and M2O/Al2O3 molar

ratios (where M is the corresponding alkaline cation

Na? or K?) [36]. Normally, these values follow the

parameters Davidovits et al. [47] established as ideal

for obtaining high mechanical properties (Table 1).

Another influential parameter are the curing con-

ditions, the chosen temperature and its duration will

also modify the GP’s mechanical properties. Nor-

mally, curing is divided into two periods: heated and

room-temperature stages. The heated stage generally

occurs at temperatures between 40 and 75 �C for

24 h, in order to initiate the reaction, since higher

temperatures are needed to overcome the energetic

[48, 49]. Contradictory results have been reported for

GP curing temperatures, Aliabdo et al. [50] showed

that as temperature increases, compressible strength,

tensile strength and elastic modulus initially increase,

but decrease after reaching a maximum. Yet, Zhang

et al. [48] found similar behavior for compressible

strength, while tensile strength had an initial constant

with temperature elevation and then decreased. In

terms of curing time, it cannot be too short, because

nucleation and crystallization processes are reduced,

producing a material with low geopolimerization.

However, prolonged periods (normally, more than

48 h) cause the granular semi-crystalline structure to

break, leading to dehydration and, consequently, gel

constriction [23]. Thus, the heat curing time and

temperature need to be optimized for each compo-

sition, for example for metakaolin-based GP studies

found that maximum strength is obtained at 60 �C for

24 h [51, 52].

Yet, the room-temperature step normally takes

7–28 days and water curing is generally applied if the

geopolymer usage would be in wet or submersed

areas [7]. Furthermore, GP cured under water have

higher absorptivity and porosity, although as a con-

sequence the compressive strength is reduced [53].

It is important to comment on the efflorescence

phenomena found during GP curing. Efflorescence

occurs due to a high concentration of the alkaline

activator applied during the synthesis. The unreacted

excess diffuses to the material surface where it reacts

with atmospheric CO2 leading to the formation and

accumulation of carbonates on the GP surface [54].

This phenomenon not only changes the geopolymers’

appearance, but also their mechanical properties [55].

Thus, strategies are used to minimize efflorescence,

such as altering: chemical formulation, particle size,

type of activator, additives mixing and hydrothermal

cure [56, 57]. An interesting study was conducted by

Xue et al. [58], who modified the FA-based GP

Figure 2 Magnetization

curves of MGP and Fe3O4

(a) and MGP particles when

attracted by a magnet (b).

Reprinted with permission

from Rossato et al. [34].

Copyright 2020 Elsevier.

Table 1 Proposed oxides ratio for GP formulation. Sources:

Davidovits et al. [47]

Molar proportion Minimum Maximum

SiO2/Al2O3 3.30 4.50

Na2O/H2O 10 25

Na2O/SiO2 0.2 0.48

Na2O/Al2O3 0.80 1.60
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surface by coating it with octyltriexysilane, trans-

forming its surface from hydrophilic to hydrophobic,

which reduced the leaching of ions, suppressing the

efflorescence.

As a consequence of the impressive characteristics

of GP, they have attracted attention in several

industries including: construction [12, 29], aeronau-

tics, aerospace, shipbuilding and automotive [59–62],

nuclear and oil/gas cementing [63, 64], archaeologi-

cal research [65], acoustic and thermal insulation

[66, 67], ceramics [68, 69], pharmaceuticals [70], gas-

eous and aqueous effluents treatment (by adsorption,

membrane filtration and/or chemical catalysis)

[34, 71–73] and many others.

Davidovits [65] suggested an ideal proportion of

Si/Al depending on its application (Table 2), which

could be expanded considering the most recent

advances in the application of geopolymers, as

shown.

Due to particular properties, geopolymers are

being considered for use in membrane filtration or

catalytic reactions. For these applications, some tex-

tural and physico-chemical properties must be

adjusted, since GPs normally have low porosity and

low surface area.

A simple method for increasing porosity is to add a

small percentage of a porogenic agent (such as H2O2),

which generates gaseous products (O2 and H2, for

example), leading to a more porous material. Other

strategies have been investigated, such as direct gas

bubbling, the insertion of a sacrificial filler or by

introducing an additive to the GP synthesis. How-

ever, these methodologies are not often applied since

they are complex, expensive and raise environmental

concerns [83].

Geopolymeric adsorbents (GPA)

Many studies have been published emphasizing the

application of GPs as adsorbents [21, 69, 83–85], for

this reason, this topic will point out the adsorption

mechanisms (also very relevant for membrane filtra-

tion), but only some highlights about recent

achievements in this field will be briefly discussed.

Adsorption processes promote the removal of the

contaminants by using the interactions of the con-

taminants and a solid surface, in this review

geopolymers. The molecules bonding may occur by

two distinct forms: physisorption or chemisorption,

depending on van der Waals or chemical interac-

tions, respectively [2].

In general, the mechanism of heavy metals

adsorption on GPA occurs by physisorption, due to

electrostatic interactions or ionic exchange properties

of the GP surface properties, which facilitate the

adsorbent regeneration by simple or steam washing,

chemical or thermal treatment, but also generates

negative effect to multiple ions adsorption, due to

sites competition [2, 84]. The equilibrium of adsorp-

tion is frequently described according to the Lang-

muir model (for toxic metals removal, such as Zn2?,

Cu2?, Mn2?, Pb2?) [84] and the adsorptive capacity is

comparable to that on natural zeolites [86].

Yet, for other substances, as CO2 [13, 87] or organic

molecules [76, 88, 89] chemisorption has an important

role. In fact, Al-Zeer and MacKenzie [76] showed that

the chemisorption of pyridine on the Lewis and

Brønsted acidic sites on their produced fly ash-based

GP contributed on the enhancement to their acylation

reactions when compared to other metal-zeolite and

metal-mesoporous silicate.

Table 2 Proposed oxides ratio for GP formulation. Sources: [8, 26, 69, 70, 72–82]

Si/Al molar

ratio

Application

= 1 Bricks; ceramics; fire protection

1–2 Mortar

1–3 Filtration membranes

1–4 Zeolites; chemical stability in air materials

= 2 Low CO2 cements and concretes; radioactive and toxic waste encapsulation

2–4 Catalyst support; porous materials; H2 production

= 3 Fire protection fiberglass composites; Foundry equipment; Heat resistant composites (200–1000 �C); tooling for

aeronautical titanium process

[ 3 Industrial sealants (200–600 �C); tooling for aeronautics spf aluminum; adsorbents; cements; drug support

20–35 Fire resistant and heat resistant fiber composites; biomaterial

1044 J Mater Sci (2021) 56:1039–1063



Initially, it is important to mention that most

investigations have been conducted with dyes or

heavy metals as contaminants, some of which even

have superior adsorbent capacity than commercial

solids [21, 24, 90]. Extensive and comprehensive

reviews have reported several advantages of

geopolymeric materials as adsorbents, such as, low

cost, high adsorptive and/or ion-exchange capacity

and chemical stability [2, 16, 18, 19, 21, 69]. However,

as emphasized by Luukkonen et al. [24] other pollu-

tants of interest should also be further evaluated,

such as pharmaceuticals, oils and fats, phenolic

compounds, micro-pollutants, among others. For

example, a remarkable adsorption capacity was

found by Siyal et al. [89] in their studies using a

geopolymer synthetized with fly ash residues to

remove an anionic surfactant (sodium dodecyl ben-

zene sulfonate, SDBS) from water. A maximum

removal of 714.3 mg g-1 was measured. These

results show promising application for the separation

of similar surfactants from wastewaters.

Recently, Song et al. [77] concluded that high

adsorption played an important role in oil separation

during geopolymeric membrane filtration, since the

droplets were affected by van der Waals forces and a

hydrophobic effect. Additional studies should be

performed using real water (ground water, surface

water, etc.) and wastewaters where competitive and

simultaneous cations/anions, organic pollutants and

natural organic matter could affect adsorption effi-

ciency [6].

Although most applications of GP in adsorption

processes are focused on liquid phases, recent studies

have shown their potential for applications in gas-

eous phases. An important and emergent application

is the removal of CO2 to avoid the greenhouse effect

[87, 91–93]. Minelli et al. demonstrated that their

synthesized metakaolin-based geopolymers not only

had an adsorption capacity comparable to other

materials, but could selectively remove CO2, since the

adsorption capacity of N2 or CH4 are low.

Overall, the literature indicates that GPs have a

prosperous future as adsorbents. However, impedi-

ments remain to their large-scale application, such as

their performance when exposed to several different

contaminants (industrial wastewater effluents, for

example), long-term durability, reusability, the

length of regeneration cycles and other operating

conditions, etc.

Geopolymeric membranes (GPM)

Membrane filtration is a technology developed to

separate molecules according to their characteristics

(chemical, size, hydrophilicity, etc.) (Fig. 3) and is

normally driven by a pressure difference, allowing

some molecules to pass through the membrane

(permeate) while retaining others (retentate) [94–96].

Inorganic membranes have attracted attention due

to their advantageous properties: chemical and ther-

mal stability, fouling resistance, mechanical strength

and long service life, making them widely applicable,

especially those made of ceramic materials [98, 99].

Catalytic membranes have also been developed to

enhance removal of contaminants [100], minimize

fouling (incrustation accumulation, which reduces

transmembrane flow) [101] and provide a self-clean-

ing material [102].

However, inorganic membranes have a high man-

ufacturing cost and are difficult to model. Thus,

geopolymer membrane (GPM) materials offer an

opportunity to solve these adversities [73]. Recently,

Shao et al. [103] analyzed the fabrication costs of

nanofiltration membranes with fly ash-based GPM,

which they had synthesized. The authors concluded

that the production cost of conventional membranes

is over $1000 m-2, while for the geopolymeric mate-

rials, this cost is reduced to $31.8 m-2. They also

emphasized that the operational pressure used in the

experiments (0.1 MPa) was the lowest level applied

among efficient nanofiltration procedures.

Moreover, Bai and Colombo [69] and Zhu et al.

[104] highlight that GPs, especially porous ones, are

promising low-cost materials for use in technological

applications, such as adsorbents, catalyst supports or

filtration membranes for liquids or gases.

There has been an increasing amount of studies

involving GPMs and their new applications (Table 3).

One application that should be highlighted is sepa-

ration by pervaporation; a process that has been used

for water desalination and ethanol purification.

GPMs are suitable for this procedure due to their

high thermal resistance and long durability.

GPMs have also been investigated for several

environmental applications such as, air depollution,

oil/water separation, as well as the removal of

organic pollutants and heavy metals (Table 3). Shao

et al. [103], for example, studied fly ash-based GPM

in the filtration of several dyes and pharmaceuticals,

obtaining impressive separations (greater than 95%).

J Mater Sci (2021) 56:1039–1063 1045



Geopolymer-based membrane micro-, ultra-
and nanofiltration

This section reviews the most important applications

of GPMs to aqueous solution filtration. The results

are summarized in Table 4. As can be seen, the

majority of GPM studies synthesized flat ultraporous

membranes. The work of Li el al. [131] is an exception

because they produced a membrane composed

mainly of nanopores (\ 2 nm), not only did the pro-

duced material reject 99% of Cd2? ions, but its

operating pressure was also relatively low compared

to the other studies examined. In terms of the oper-

ating pressure of the GPM, He et al. [130] reported

the lowest condition. They applied 10 kPa to a fly

ash-based geopolymer membrane and were able to

remove 91% of Cr4? cations. However, due to the

small average pore sizes (12 nm) and the low applied

pressure, this study also presented one of the lowest

permeate fluxes. The sufficient and suitable com-

pressive strengths (C 10 MPa) of GPM enable them

to be used in filtration processes

[28, 103, 115, 123, 130].

Furthermore, high separation efficiency can be

achieved using GPM. Xu et al. [127] studied the

retention of suspended solids in the green liquor

stream (Fig. 4) (from the paper industry) by micro-

filtration (all pores\ 0.28 lm) and found a rejection

of * 100%, reducing their concentrations from 186 to

0.79 mg L-1, which is far below the requirements for

green liquor recycling (\ 20 mg L-1).

The applicability of FA-based membranes to

remove turbidity, color and suspended solids from

produced water [124] and household wastewater

[125] was recently reported by Naveed et al. (2019).

Besides, significant rejection rate from oils present in

the produced water was acquired (78%), reducing its

initial very high value (597 mg L-1) [125].

Another relevant issue is the application of GPMs

for the removal of dyes or heavy metals from water

and wastewater (Table 4). Shao et al. [103] and Song

et al. [77] reported especially interesting studies,

since they examined not only the types of molecules

mentioned, but also the removal of other refractory

organic compounds (tetracycline, p-nitrophenol,

tetracycline and polystyrene) and water/oil separa-

tion (hexadecane). All the results showed high

removals (C 97%) of the contaminants, except for

p-nitrophenol (61%), because of its low molecular

size [103].

Figure 3 Membrane filtration removal mechanisms: a size exclusion, b hydrophobicity, c electrostatic interaction and d adsorption.

Reprinted with permission from Khanzada et al. [97]. Copyright 2020 Elsevier.
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Moreover, distinct mechanisms were observed for

the contaminants removal. Several researches

describe the main pathway for the pollutants rejec-

tions as a combination of adsorption kinetics with

sieve segregation [71, 73, 127, 131], i.e., molecules

(larger than the membranes pores) are barred due to

size exclusion, simultaneously with molecules bond-

ing into the surface, due to their interactions affinity.

Besides, electrostatic interactions were also consid-

ered important on membranes filtration [77, 130],

Song et al. [77] proposed that organic cationic mole-

cules (crystal violet) and heavy metal ions were

Table 3 Geopolymers and their application in water and wastewater treatment

Geopolymer base Application References

Metakaolin (MK) – [105]

Fly ash (FA) Textile wastewater treatment [106]

Metakaolin (MK) and hydroxysodalite zeolite

(HZ)

Desalinization by pervaporation [107]

Fly ash (FA) Water permeation [108]

Fly ash (FA) Oil separation from water [109]

Al2O3–SiO2 powder Desalinization by pervaporation [110]

Metakaolin (MK) and fumed silica (FS) Ion exchange [111]

Metakaolin (MK) Water permeation [112]

Metakaolin (MK) Ethanol/water separation by pervaporation [113]

Metakaolin (MK) Heavy metals removal [73]

Fly ash (FA) Oil separation from water [114]

Metakaolin (MK) Water permeation and turbidity removal [115]

Blast furnace slag (BFS) Ethanol/water separation by pervaporation [116]

Fly ash (FA) and bauxite (BT) Oil separation from water [117]

Fly ash (FA), quartz (QZ) and calcium carbonate

(CC)

Oil separation from water [118]

Fly ash (FA) – [119]

Metakaolin (MK) – [120]

Metakaolin (MK) Water desalination [121]

Blast furnace slag (BFS) Oil separation from water [122]

Al2O3–SiO2 powder Ethanol/water separation by pervaporation [123]

Metakaolin (MK) and chitosan Ion exchange [62]

Metakaolin and fly ash (FA) – [28]

Fly ash (FA) Household wastewater treatment [124]

Fly ash (FA) Produced water treatment [125]

Metakaolin (MK) Air particulate matter removal [126]

Metakaolin (MK) Water and pulp-papermaking green liquor treatment [127]

Metakaolin (MK) and fumed silica (FS) Water desalination [128]

Metakaolin (MK) and fumed silica (FS) Organic pollutants removal [71]

Fly ash (FA), quartz (QZ) and calcium carbonate

(CC)

Poultry slaughterhouse wastewater treatment [129]

Fly ash (FA) Heavy metals removal [130]

Metakaolin (MK) and fumed silica (FS) Heavy metals removal [131]

Fly ash (FA) and faujasite Low-temperature solid oxide fuel cells [132]

Metakaolin (MK) Antimicrobial, AOP and membrane filtration [133]

Fly ash (FA) Adsorption and organic pollutants removal [103]

Metakaolin (MK) and chitosan Water permeation, oil separation from water, heavy metals and organic

pollutants removal

[77]

Laterite (LT) Ethanol/water separation by pervaporation [134]

Blast furnace slag (BFS) and ground mixed

recycled aggregates

– [6]
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attracted by the negatively surface of the GP, being

easily removed. At the same time, the authors con-

cluded that, for congo red and crystal violet dyes

removal, chelation or hydrogen bonding (hy-

drophilicity) also had important participation, once

the existence of amino, hydroxyl and carboxyl groups

on their produced GP facilitated the molecules

bonding.

Thus, the reviewed studies showed promising

results in terms of pollutants separation efficiency

permeate flow/operational pressure relationship,

ultra- and nanoporous distribution, versatile removal

mechanisms, aside from having low cost and easy

production. These results are thus of great interest for

further research and possible commercial

applications.

Geopolymer-based catalysts

Catalytic geopolymers (CGP) are geopolymers that

are functionalized and/or modified to enhance

specific reaction kinetics. Mechanical strength, ther-

mal stability, acid-basic properties, permeability and

durability are some of the properties for which they

are used in catalysis, as catalysts themselves or as

catalyst support [83, 135].

Furthermore, the microstructure and morphology

of CGPs are also interesting, given that some authors

have synthesized GPs with structures similar to

zeolites (in terms of surface area, pore size and vol-

ume, number of active sites, affinity for reactants and

stability) (Fig. 5), which are widely studied for their

applications in catalysis [21, 74, 136].

As explained above, during polycondensation,

tetrahedral silicates and aluminates connect ran-

domly and, some cations (Na?, K? and Ca2?)

simultaneously interact with them, promoting an

electronic balance. Thus, in some studies, these

cations are substituted by other transition metal and/

or rare metal cations to produce CGPs with enhanced

activity [85].

The most common methods for incorporating these

metals in the GP are ion exchange, surface coating/

impregnation, incorporation into the composition

during synthesis and thermal activation. These

treatments alter the materials’ porosity, surface area,

available active sites, band gap, electronic surface

charge and many other properties, which improve

their catalytic activity [2, 85].T
a
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Few studies have been done with CGP, a search in

SCOPUS with the words catalytic AND geopolymer

yielded only 54 results in the past 10 years. Although

there was a sharp increase, in 2019 when 11 studies

were published (* 20%) [137]. Some of the publica-

tions on CGP are listed in Table 5.

In a very recent work, Chen et al. [71] demon-

strated that the incorporation of Cr2O3 not only

enhanced the membrane flux (compared to an

undoped process) with high rejection (* 100%), but

also presented low fouling during the filtration pro-

cess. Moreover, the incorporation of the catalyst led

to a high photocatalytic performance for the degra-

dation of green dye (30 mg L-1), and almost com-

plete oxidation was obtained in 100 min.

Considering the studies reported in the literature

(Table 5), geopolymer-based catalytic membranes are

promising, since they combine adjustable porosity,

diverse morphology, easy modulation, excellent

mechanical and thermal properties and are simple to

prepare, environmentally friendly and have lower

manufacturing costs.

Similarly to the application of CGP as membranes,

the main advantage of using these materials for cat-

alyst support is their mechanical and thermal char-

acteristics, as well as high surface area, porosity and,

in some cases, photo-activity, which increase interest

in these materials [69, 72]. Asim et al. [85] emphasize

that the surface modification of geopolymers is ben-

eficial to their catalytic applications.

Several of the studies cited (Table 5) used a catalyst

supported in GP for organic syntheses reactions.

Alzeer and MacKenzie [166] reported that the CGP

produced (with NH4
? ion exchange) had superior

catalytic activity than other commonly used alumi-

nosilicate supports such as zeolite M and meso-

porous molecular sieves.

The production of H2 has also been studied

through the application of CGP materials (Table 5),

mainly by the incorporation of metal oxides (CeO2,

CuO, In2O3–NiO, CaWO4) or graphene as photocat-

alysts. These materials are able to act as electron

acceptors and improve the catalytic performance of

geopolymers, consequently raising the reaction rate.

Zhang et al. [176] studied both H2 production and

dye removal using ZnO/graphene CGP. The H2 yield

was up to 30% higher due to the incorporation of

ZnO, because of the synergistic effects of this semi-

conductor with graphene and the geopolymer com-

position itself. Zhang et al. [176] also noted a

Figure 4 Support (left) and

inorganic composite

membrane (right) (a); and

green liquor before and after

filtration (b). Reprinted with

permission from Xu et al.

[127]. Copyright 2019

Elsevier.

Figure 5 Nano-geopolymeric zeolites, where the aluminosilicate

source is: faujasite (a), cancrinite (b), sodalite (c) and Linde-Type

A (d). Reprinted with permission from Chen et al. [74]. Copyright

2019 American Chemical Society.
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Table 5 Summary of geopolymer-based catalysts and their application

Geopolymer base Catalyst Application References

Metakaolin (MK) TiO2 Photocatalysis [138]

Metakaolin (MK) TiO2 Adsorption and photocatalysis [139]

Metakaolin (MK) and blast furnace slag

(BFS)

NH4
?, Co2?, Cu2?, Fe, or Pt Redox reactions [140]

Metakaolin (MK) NH4
? and TiO2 Adsorption and photocatalysis [141]

Steel slag (SS) NH4
? or Ni2? Adsorption and photocatalysis [142]

Fly ash (FA) Fe2O3 (from raw materials) Adsorption and photocatalysis [143]

Bast furnace slag (BFS) Fe2O3 Adsorption and photocatalysis [144]

Metakaolin (MK) TiO2 Adsorption and photocatalysis [145]

Bast furnace slag (BFS) Fe2O3 and TiO2 (from raw

materials)

H2 production [146]

Magnesium slag (MS) NH4
? and CuO H2 production [147]

Fly ash (FA) Ag Antimicrobial [49]

Metakaolin (MK) Ni Ethanol reforming, autothermal reforming

and partial oxidation

[148]

Kaolinite (KT) Cu2O/TiO2 Adsorption and photocatalysis [149]

Metakaolin (MK) CuCl2 Antimicrobial [150]

Steel slag (SS) Composition from the raw

materials

Photocatalysis [151]

Metakaolinite (MKT) Ca2? Biodiesel production [152]

Magnesium slag (MS) NH4
? or CuO/NiO Adsorption and photocatalysis [153]

Halloysite (HT) NH4
? Beckmann rearrangement reaction [154]

Fly ash (FA) TiO2 Mechanical properties enhancement [155]

Kaolinite (KT) and cetyl-

trimethylammonium bromide (CTAB)

Cu2O/TiO2 Adsorption and photocatalysis [72]

Steel slag (SS) NH4
? or CeO2 Adsorption and photocatalysis [156]

Al2O3–SiO2 powders CdS Adsorption and photocatalysis [157]

Metakaolin (MK) and fly ash (FA) TiO2 Adsorption and photocatalysis [158]

Blast furnace slag (BFS) Graphene Adsorption and photocatalysis [159]

Halloysite (HT) NH4
? Friedel–Crafts alkylation [160]

Metakaolin (MK) Ag Antimicrobial [161]

Metakaolin (MK) and fly ash (FA) TiO2 Photocatalysis [75]

Metakaolin (MK) ZnO Antimicrobial [27]

Steel slag (SS) NH4
? or CeO2 H2 production [162]

Bottom ash (BA) NH4
? or Mn2?–

CuO/graphene

Photocatalysis and H2 production [78]

Fly ash (FA) NH4
? or In2O3–NiO H2 production [163]

Blast furnace slag (BFS) CaWO4 H2 production [164]

Blast furnace slag (BFS) NH4
? or CaWO4/

CaSiO3�H2O

Photocatalysis [165]

Fly ash (FA) NH4
? Friedel–Crafts benzylation [166]

Metakaolin (MK) Cu, Ni or Cu/Ni Isopropanol dehydrogenation [167]

Metakolin (MK) Composition from the raw

materials

Biodiesel production [168]

Fly ash (FA) ZnO–SiO2 Antimicrobial [169]

Steel slag (SS) NH4
? or CdO/graphene Photocatalysis [170]
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considerable separation of photo-generating e-/h?

pairs, promoting efficient reduction reactions. More-

over, they observed that an incorporation of 15 wt%

of ZnO to the geopolymer enhanced the degradation

kinetics constant by approximately 17 times, pos-

sessing a high activity under visible light.

Moreover, the majority of the studies utilized CPG

in photocatalysis (Table 5), promoted high oxidation

of dyes, volatile molecules and nitrogen oxides

[34, 71, 72, 143, 157, 158]. Metal oxides, metal alloys

and sulfides were used to coat GP and enhanced their

absorbance under visible light [78, 148, 157]. Ancora

et al. [139] and Chen et al. [75] reported impressive

photocatalytic performance not only on the surface,

but also in the bulk of the material, as a consequence

of its high porosity.

As seen above, the chemical composition, porosity

and water adsorption make geopolymers suitable for

other AOP reactions as catalysts or for catalyst sup-

port, a still little explored field. Studies that applied

CGPs for these purposes will be discussed below.

Geopolymer-based catalysts applied
to advanced oxidation processes

Initially, it is important to point out that some authors

did not introduce catalysts to their geopolymeric

materials (Table 6), showing photocatalytic activity

due to the composition of raw materials used in their

synthesis [88, 143, 151]. These three studies found a

high degradation of dye compounds (C 96%) when

exposed to UV light, which is attributed in particular

to the presence of Fe2O3 in their composition, a

widely studied semiconductor, since it is rapidly

excited by electron transfer and has a relatively low

band gap [183].

In addition, only one CGP has been applied to a

Fenton-like reaction (Table 5), all of the other studies

focused on photocatalysis. Huang et al. [178] pro-

duced a biochar/geopolymer composite membrane

(denominated as BC/GM), coated with alkaline lig-

nin, which was simultaneously carbonated and self-

activated. It was applied to a highly oxidizing reac-

tion in the presence of H2O2 (a Fenton-like process).

Pharmaceutical tetracycline (50 mg L-1) was almost

completely degraded with 150 mg L-1 of the GP

(10 mL L-1 H2O2, pH 5.0, 60 �C, 5 h). Moreover,

electron paramagnetic resonance (EPR) analysis

Table 5 continued

Geopolymer base Catalyst Application References

Silicomanganese slag (SMS) Carbon black (CB) Photocatalysis [171]

Fly ash (FA) Graphene Adsorption and photocatalysis [172]

Blast furnace slag (BFS) Graphene H2 production [173]

Fly ash (FA) NH4
? Friedel–Crafts acylation [76]

Metakaolin (MK) Fe2O3, Mn2O3 or Fe2O3/

Mn2O3

Biomass gasification [174]

Silicomanganese slag (SMS) NH4
? or CaMoO4 Adsorption and photocatalysis [175]

Blast furnace slag (BFS) ZnO/grapheme Photocatalysis and H2 production [176]

Fly ash (FA) La0.6Sr0.4Ga0.3Fe0.7O3 (from

raw materials)

CH4 conversion [177]

Metakaolin (MK) and silica fume (SF) Cr2O3 Photocatalysis and membrane filtration [71]

Metakaolin (MK) and blast furnace slag

(BFS)

Alkaline lignin Adsorption and Fenton-like process [178]

Metakaolin (MK) Ag0, Ag?, Cu? and Cu2? Antimicrobial, AOP and membrane filtration [133]

Fly ash (FA) TiO2 Photocatalysis [179]

Metakaolin (MK) K2CuFe(CN)6 Adsorption [180]

Metakaolin (MK) Fe3O4 Adsorption [34]

Perlite (PT) Fe2O3 (from raw materials) Adsorption and photocatalysis [88]

Blast furnace slag (BFS) Ni2? CO2 methanation [181]

Si-doped with carbon nanotubes

(simulation)

Graphene Mechanical properties enhancement [182]

1052 J Mater Sci (2021) 56:1039–1063



revealed the formation of a hydroxyl radical (�OH) by

solid materials. The authors concluded that graphi-

tized carbon, ketone, quinone moieties and defect

structures contributed to the generation of radicals.

The proposed reaction mechanism is presented in

Fig. 6.

As expected, the catalyst most commonly added to

photocatalytic GP is TiO2 (Table 6). The reported

results showed a lower degradation or a higher

reaction time than other studies that utilized distinct

catalysts, probably a consequence of TiO2’s high band

gap (* 3.20 eV).

To overcome this difficulty, Falah et al. (2015) [149]

used the Cu2O/TiO2 heterojunction in the synthe-

sized CGP, producing a material with a reduced

band gap of 2.17 eV, which led to high removal of

methylene blue (1000 mg L-1, 98%). The incorpora-

tion of other metal oxides was also studied by Kang

et al. [156], Zhang et al. [170] and Chen et al. [71]

(CeO2, CdO/graphene and Cr,2O3 respectively) and

showed an almost complete degradation of three

Table 6 Photocatalytic and Fenton-like degradation results by catalytic geopolymers application

Geopolymer

base

Catalyst dosage, wt% Band

gap, eV

Light source k, nm;

power, W

Pollutant

concentration,

mg L-1

Reaction

time, min

Removal,

%

References

MK TiO2 (3) – – NO 60 97 [139]

MK TiO2 – UV/Vis; 900 Methylene blue 90 * 100 [141]

SS Ni2? (7) – 254; 40 Methylene blue

(1283)

350 94 [142]

FA Fe2O3 (5; from raw

materials)

– 254; 40 Congo red (6) 100 * 100 [143]

BFS Fe2O3 (5) – 254; 40 Methylene blue

(1283)

20 93 [144]

MK TiO2 – 365; 15 2-butanone (5) 5000 10 [145]

KT Cu2O/TiO2 (30) 2.17 UV; 150 Methylene blue

(1000)

60 98 [149]

SS Composition from

raw materials

– UV; 18 Malachite green (4) 60 96 [151]

KT and

CTAB

Cu2O/TiO2 – UV;150 Methylene blue

(320)

960 97 [72]

CC CeO2 (8) 2.41 UV; 18 Malachite green (8) 70 * 100 [156]

Al2O3–SiO2

powders

CdS (13)7 – 245; 8 Methyl orange

(5000)

110 93 [157]

FA TiO2 (3) – UV; 9 NO (7.5�10-5) – * 100 [158]

BFS Graphene (0.02) – UV; 18 Methyl violet (4) 110 91 [159]

MK and FA TiO2 – 254; 8 (4 lamps) Methylene blue (10) 480 70 [75]

BA Mn2?–CuO/graphene – 365; 18 Sky blue 5B (20) 90 * 100 [78]

BFS CaWO4 (5) – 365; 18 Violet 5BN (4) 70 90 [165]

SS CdO/Graphene (8) 2.87 UV; 18 Direct fast bordeaux

dye (30)

100 * 100 [170]

SMS CB (4.5) 2.53 365; 18 Basic violet 5BN (4) 100 88 [171]

FA Graphene (1) 3.20 253; 30 Indigo carmine (10) 90 90 [172]

SMS CaMoO4 (4) – UV; 18 Basic violet 5BN (6) 90 * 100 [175]

BFS ZnO/graphene (15) 3.20 320–780; 300 Basic violet 5BN (4) 120 93 [176]

MK and SS Cr2O3 (5) – Xenon lamp Basic green (30) 100 * 100 [71]

MK and BFS Alkaline liginin – – Tetracycline (30) 300 * 100 [178]

FA TiO2 (5) – Xenon lamp; 300 Methylene blue (20) 90 95 [179]

PT Fe2O3 (0.9; from raw

materials)

3.82 254–380; 125 Methylene blue (30) 240 98 [88]
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different contaminants, malachite green, direct fast

bordeaux dye and basic green, respectively.

Moreover, graphene is commonly reported for

CGP (Table 5), in general as part of the composite,

producing catalysts that act with Z-scheme mecha-

nisms, which enhances photocatalytic activity by

promoting electron transfers between the higher

conduction band and the lower valence band of each

semiconductor, resulting in elevated generation of

e-/h? pairs and consequent higher degradation

potentials [184].

The work of Zhang et al. [171] also deserves

emphasis. These authors incorporated carbon black

(CB) into their GP samples, the presence of this

compound produced a solid with one of the lowest

reported band gaps for CGP (2.53 eV) and also

increased the absorption in the visible region (Table 6

and Fig. 7). This is highly associated with the

increased electroconductivity of the photocatalysts,

improving the e-/h? pair segregation by facilitating

transmission to the network of CB.

Unfortunately, studies that only examined TiO2

semiconductor loading did not calculate the band

gap values to provide a better comparison. Actually,

few investigations reported this parameter value, 7 of

the 26 (Table 6), which is probably because GPs are

composed of several materials, making it difficult to

estimate it. In addition, the reported values consid-

ered the GP to be a pure semiconductor, to facilitate

obtaining its value [88].

Furthermore, although few studies were conducted

under visible light, their results were promising.

Zhang et al. [176], Chen et al. [71] and Maiti et al.

[179] observed organic contaminant degradation of

93%, * 100% and 95%, respectively. The band gap of

CGP used by Zhang et al. [176] is considered high,

yet the material demonstrated great photocatalytic

efficiency.

It is also important to comment on the mechanical

properties of the CGP. Various studies demonstrated

enhanced values of compressible strength and flex-

ural modulus [78, 144, 159, 171, 176, 179], many of

them even higher than those reported for membrane

Figure 6 Schematic

mechanism of �OH radicals

formation and tetracycline

degradation. Reprinted with

permission from Huang et al.

[178]. Copyright 2020

Elsevier.

Figure 7 UV–Vis diffuse reflectance spectra of the samples with

different amounts of CB. Reprinted with permission from Zhang

et al. [171]. Copyright 2018 Multidisciplinary Digital Publishing

Institute.
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filtration applications. Zhang et al. [144, 176], for

example, obtained, in this order, 86 MPa and 59 MPa

of compressive strength, while the flexural strength-

ens were 2 MPa and 5.2 MPa, respectively. It is

known that some compounds such as TiO2 and gra-

phene are able to increase these properties [155, 182],

which make them very interesting for application as

catalytic membranes.

The literature review indicated that few studies

have applied CGP to photocatalysis or peroxidation

and none in another AOP. Moreover, these studies

focused mainly on the degradation of dyes, while

other pollutants have been little explored. Thus, it is

not only important to study CGP performance in

other advanced oxidation processes, but also the

behavior of other contaminants when submitted to

these materials, as emerging contaminants, which

have been widely reported to degrade with AOP.

Final remarks

In general, from the results presented in this review

of the literature, it can be concluded that geopoly-

meric materials are promising for a number of their

characteristics (compressive and flexural strength,

thermal resistance, porosity, water absorption, elec-

tronic transference, surface area, catalytic activity,

etc.). Thus, they appear as an effective solution for

minimizing costs for both membrane filtration and

advanced oxidation processes, making them more

economically viable. This is not only because of the

lower production costs for GPMs, but also due to the

fact they possibly need none or lower catalyst loads,

as well as shorter time and lower temperature con-

ditions in manufacturing than others adsorbents,

inorganic membranes precursors or catalyst sup-

ports, such as zeolites.

Therefore, a combination of these processes using

catalytic geopolymeric membranes may be used in

the future for many applications, including water and

wastewater treatments. However, more research is

still needed in this field, since few studies have been

published that consider large-scale applications. In

particular, studies involving other important pollu-

tants, different AOP reactions (aside from photo-

catalysis), metal leaching, reuse, maintenance costs

(replacement of materials, cleaning, fouling, etc.),

chemical resistance and synthesis homogeneity (as a

consequence of the variability of the industrial waste

samples) would be important to clarify some essen-

tial issues that would allow further expanding

development of GPMs.
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