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ABSTRACT

We predict a new family of two-dimensional (2D) rare earth monochalcogenide

materials MX (M = Sc, Y; X = S, Se, Te). Based on first-principles calculations,

we confirm their stability and systematically investigate their mechanical

properties. We find that these materials are metallic and interestingly, they

possess nodal lines in the low-energy band structure surrounding the whole

Brillouin zone, protected by nonsymmorphic crystal symmetries in the absence

of spin–orbit coupling (SOC). SOC opens small energy gaps at the nodal line,

except for two high-symmetry points, at which fourfold degenerate 2D spin–

orbit Dirac points are obtained. We show that these topological band features

are robust under uniaxial and biaxial strains, but can be lifted by the shear

strain. We also investigate the optical conductivities of these materials and show

that the transformation of the band structure under strain can be inferred from

the optical absorption spectrum. Our work reveals a new family of 2D topo-

logical metal materials with interesting mechanical and electronic properties,

which will facilitate the study of nonsymmorphic symmetry enabled nodal

features in 2D.
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Introduction

Topological metals/semimetals have attracted broad

interest in multiple fields of physics, chemistry, and

materials science, owing to their fascinating proper-

ties and potential applications in many frontiers of

research [1–7]. In such materials, the electronic bands

form robust degeneracies around the Fermi level,

such that the low-energy electrons could have unu-

sual dispersion as well as emergent pseudospin

degree of freedom, leading to their exotic behavior.

Such degeneracies may take the form of nodal points

[8–12], nodal lines [13–18], or even nodal surfaces

[19–21]. And their robustness derives from the

topology/symmetry protections. Based on the type of

protection, the band nodal features can be distin-

guished into two classes. The first class is called

accidental, because these nodal features can be

removed by a continuous band deformation without

changing the symmetry of the system. The other class

is known as the essential degeneracies, which cannot

be removed by any symmetry-preserving deforma-

tion. The accidental degeneracies are typically pro-

tected by symmorphic symmetries, such as rotation

or reflection, whereas the essential degeneracies

require nonsymmorphic crystal symmetries, i.e.,

screw rotation or glide reflection, which involve

fractional lattice translations [9, 22, 23]. In three

dimensions (3D), a range of candidate materials has

been identified for each class.

When moving to the two-dimensional (2D) world,

the number of symmetry operations are greatly

reduced. As a result, the discovered 2D topological

metals are also much less. This is especially the case

for the class with essential degeneracies [24], by

noting that in 2D, we have only one glide mirror and

two screw axes, all lying within the 2D plane. So far,

the reported nonsymmorphic 2D topological materi-

als are quite limited. Examples include the spin–orbit

Dirac points in HfGeTe-family monolayers [25], 2D

X3SiTe6 (X = Ta, Nb) [26], and a-bismuthene [27];

hourglass nodal loops in the GaTeI family monolay-

ers [28]; and magnetic nodal lines in monolayer CoSe

[29]. And the only experimental verification was on

the 2D spin–orbit Dirac point in a-bismuthene [27].

Thus, to facilitate the theoretical and experimental

studies of these novel topological states, there is an

urgent need to identify new 2D materials with non-

symmorphic band degeneracies.

In this work, based on the first-principles calcula-

tions, we predict a new family of 2D materials, the 2D

rare earth monochalcogenide MX (M = Sc, Y; X = S,

Se, Te), and we show that they possess nonsym-

morphic nodal-line and nodal points near the Fermi

level. Our study is motivated by noting that in the 3D

bulk form, these materials take a cubic NaCl-type

structure. However, when reduced to a 2D single

layer (corresponding to a bilayer in the bulk), the

structure will have a spontaneous distortion and

adopt a wrinkled structure. Via first-principles cal-

culations, we confirm that these 2D structures are

stable and we systematically investigate their

mechanical properties. Importantly, such a structural

change also modifies the symmetry: There emerge

two in-plane screw axes, making the space group

nonsymmorphic. We show that these nonsymmor-

phic symmetries give rise to a nodal line near the

Fermi level in the absence of spin–orbit coupling

(SOC), surrounding the whole Brillouin zone (BZ).

SOC opens a small gap on the nodal line, except for

two high-symmetry points, where fourfold degener-

ate spin–orbit Dirac points are realized. We investi-

gate the change of the band structure under various

lattice strains and demonstrate that the nodal line is

robust against the biaxial and uniaxial strains, but is

lifted by the shear strain. Furthermore, we study the

optical conductivity of these materials and show that

the change in the nodal line may be traced by mea-

suring the optical absorption spectrum. Finally, we

screen the commonly used substrate materials and

suggest SrTiO3 and TiO2(001) as the suitable sub-

strates for the growth of these materials.

Computational methods

Our first-principles calculations were performed by

using the Vienna ab initio Simulation Package

(VASP) [30, 31] based on the density functional the-

ory (DFT). The projector augmented wave (PAW)

pseudopotentials [32] were adopted. The exchange–

correlation functional was described within the gen-

eral gradient approximation (GGA) with the Perdew,

Burke, and Ernzerhof (PBE) realization [33]. A vac-

uum of 30 Å was added to eliminate the artificial

interaction between periodic images. The cutoff

energy was set as 500 eV, and the first BZ was sam-

pled using a C-centered k-point mesh of size

13 9 13 9 1 [34]. The geometric structures were fully

relaxed with the force and energy convergence
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criteria set as 0.01 eV/Å and 1.0 9 10-6 eV, respec-

tively. Phonon spectra were calculated using the

frozen phonon method and generated with the

PHONOPY package [35]. Ab initio molecular

dynamics (AIMD) simulation was performed with a

5 9 591 supercell at 300 K to evaluate the thermo-

dynamic stability. The optical conductivities were

calculated using the WIEN2K package [36]. The plane

wave cutoff parameter Kmax was given by Rmt*-

Kmax= 8.0. The k-point mesh for the self-consistent

loop was the same as the VASP input, and it was

increased to 100 9 100 9 1 for optic conductivity

calculation.

Results and discussion

Lattice structure

The bulk rare earth monochalcogenides MX (M = Sc,

Y; X = S, Se, Te) share the NaCl-type cubic crystal

structure (Fm3-m, No. 225) (which can be trans-

formed to the CsCl-type structure (Pm3m, No. 221)

under pressure) [37–40]. These materials have excel-

lent thermal stability, and they have been enjoying

many practical applications in the fields of nonlinear

optics, electro-optic devices, glass-making, grinding

alloys, composites lasers, phosphors, and electronics

[41, 42]. In this work, we explore the 2D form of these

materials. We take a unit of two atomic layers from

the bulk NaCl-type cubic structure. After relaxation,

we find that the optimized 2D MX (referred to as the

monolayer MX in the following), although main-

taining a square lattice in the 2D plane, becomes

corrugated in the z-direction, as shown in Fig. 1a, b.

The space group symmetry is transformed to P4/nmm

(No. 129) by the corrugation and is the same as the 2D

PbX (X = S, Se, and Te) monolayers [43, 44]. We note

that a previous study on the superconductivity in 2D

YS had also predicted this structure [45].

In their 2D structure, there are two M atoms and

two X atoms per unit cell. The optimized lattice

constants and the bond lengths of these MX mono-

layers are listed in Table 1. The lattice has inversion

symmetry P. Importantly, the space group is non-

symmorphic: There exist two screw axes in the 2D

plane, ~Sx : x; y; zð Þ ! xþ 1=2;�yþ 1=2;�zð Þ and
~Sy : x; y; zð Þ ! �xþ 1=2; yþ 1=2;�zð Þ. Besides, there

is no magnetic ordering found in these materials.

Hence, the time reversal symmetry T is also

preserved. These symmetries will be essential for our

discussion below.

To confirm the dynamical stability of the obtained

structures, we calculate their phonon spectra (plotted

in the Supporting Information Fig. S1). As a repre-

sentative, Fig. 1d shows the result of monolayer ScTe.

Obviously, there is no imaginary frequency (soft

mode) in the whole BZ, indicating that the structure

is dynamically stable. There are 12 vibrational modes

appearing in the spectrum. The acoustic ZA branch

with a quadratic dispersion, which is a characteristic

for 2D materials [46, 47], can be clearly observed here.

Meanwhile, the thermodynamic stability of mono-

layer ScTe is validated by the AIMD with the

canonical (NVT) ensemble. Figure 1e shows that the

fluctuation of energy per atom is less than 0.001 eV

during the simulation time of 2 ps, suggesting the

strong thermodynamic stability of monolayer ScTe at

room temperature.

Mechanical properties

The mechanical properties provide information on

the stability and stiffness of a material. Here, we have

calculated the elastic constants (Cij), Young’s moduli

(Y), and Poisson ratios (m) of the MX monolayers. The

results are listed in Table 2. The standard Voigt

notations are used, with 1-xx, 2-yy, and 6-xy. From

the results, we confirm that the elastic constants fulfill

the mechanical stability criterion of 2D materials with

square lattices: C11C22 - C12
2 [ 0 and C66[ 0 [48]

(C22 = C11 for the square lattice), indicating that the

MX monolayers are mechanically stable. The

obtained Young’s moduli range from 61.491 N/

m * 104.075 N/m, which are smaller than their bulk

materials (e.g., in the bulk, ScS: 141.43 N/m; ScSe:

114.04 N/m; ScTe: 82.76 N/m) [42] and 2D materials

such as graphene (340 ± 50 N/m) [49], monolayer

MoS2 (120 N/m) [50], and monolayer BN (267 N/m)

[51]. Meanwhile, their Poisson ratios range from

0.356 * 0.456, which are larger than graphene (0.178)

[52], monolayer MoS2 (0.254) [50], monolayer BN

(0.21), and SiC (0.29) [51]. These results imply that the

MX monolayers are less stiff and have better flexi-

bility. Therefore, they should be more susceptible to

strain engineering, as we will discuss in a while.
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Electronic structures and nonsymmorphic
nodal lines

Now, we turn to the electronic properties of the MX

(M = Sc, Y; X = S, Se, Te) family materials. As they

share very similar features, in the following, we take

ScTe as a representative for presentation. The results

for other members are relegated to the Supporting

Information. The band structure and the partial

density of states (PDOS) of monolayer ScTe without

SOC are shown in Fig. 2. The result shows that the

material is metallic. From PDOS, one observes that

the low-energy states are mainly contributed by the

d orbitals of Sc and p orbitals of Te. To analyze the

bonding character, we have also calculated the elec-

tron localization function (ELF) (presented in Sup-

porting Information Fig. S3), which indicates that the

material is dominated by ionic bonding.

Interestingly, from the band structures in Fig. 2a,

one notes that there are two energy bands (labeled as

1 and 2) which linearly cross along the high-

Figure 1 a Top view and b side view of theMX monolayers. The

gray and orange atoms represent X (S, Se, Te) and M (Sc, Y)

atoms, respectively. The lattice constant a, the bond lengths d and

h, and the bond angles h1 and h2 are labeled in the figure. c The

first BZ with the high-symmetry points. d Phonon spectrum of the

monolayer ScTe. e Variation of the energy per atom for monolayer

ScTe from the AIMD calculation at 300 K during the timescale of

2 ps.

Table 1 Calculated lattice

parameters of MX

monolayers, including the

lattice constant (a), bond

lengths (d and h), and bond

angles (h1 and h2)

MX Lattice constant (Å) Bond length (Å) Bond angle (degree)

a d h h1 h2

ScS 3.571 2.581 2.616 87.558 101.922

ScSe 3.709 2.713 2.753 86.247 104.867

ScTe 3.937 2.929 2.949 84.447 108.153

YS 3.816 2.744 2.790 88.093 100.556

YSe 3.951 2.870 2.926 86.991 103.266

YTe 4.170 3.076 3.126 85.342 106.560

Table 2 Calculated elastic

constants (Cij), Young’s

moduli (Y), and Poisson ratios

(m) of MX monolayers. The

standard Voigt notations are

used: 1-xx, 2-yy, and 6-xy

MX Elastic constants (N/m) Young’s moduli (N/m) Poisson’s ratio

C11 C12 C66 Y m

ScS 121.648 46.247 65.120 104.075 0.380

ScSe 102.676 36.832 53.583 89.467 0.359

ScTe 79.587 28.301 40.244 69.522 0.356

YS 114.136 52.025 66.544 90.429 0.456

YSe 97.600 44.552 57.851 77.265 0.456

YTe 76.489 33.884 46.544 61.491 0.443
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symmetry path X-M around the Fermi level. To

confirm this band degeneracy, we plot the energy

difference DE (DE = E1 - E2) along the X-M path

[Fig. 2b] and in the whole BZ [Fig. 2c]. The results

show that these two energy bands are indeed

degenerate along the boundary of the whole BZ,

indicating that monolayer ScTe is a nodal-line metal

in the absence of SOC.

Next, we investigate the mechanism for the pro-

tection of the nodal line. Focusing on the X-M path

with kx ¼ p in Fig. 2c, we note that any k point on this

path is invariant under a combined symmetry oper-

ation T ~Sx. This operation satisfies

T ~Sx
� �2¼ T100 ¼ e�ikx

where T100 represents a translation along the [100]

direction by one unit cell. Here, we have T 2 ¼ 1 for a

system without SOC. (As for such case, the electrons

can be regarded as spinless.) Along the X-M path,

kx ¼ p; hence, T100 ¼ �1. Therefore, we have T ~Sx
� �2¼

�1 on this path. This anti-unitary operation thus

generates a Kramers-like double degeneracy for

every point on X-M. Deviating from the path, the

protection is lost; hence, the two bands will generally

split. This gives rise to the nodal line along X-M.

Furthermore, because the boundaries of the BZ are

connected by the fourfold rotation along z, the nodal

line occurs for the whole BZ boundary.

SOC generally lifts the degeneracy at the nodal

line. From Fig. 2d, one can observe that SOC opens a

small gap for the nodal line on the X-M path. Nev-

ertheless, the degeneracy at the two points X and M is

maintained. Here, after including SOC, each band has

a twofold spin degeneracy due to the PT symmetry.

Hence, the crossing points at X and M are fourfold

degenerate Dirac points. Moreover, such Dirac points

are robust under SOC (in comparison, the nodal point

in graphene is removed by SOC), so they belong to

the 2D spin–orbit Dirac points discussed in Ref.

[25, 26].

Below, we clarify the symmetry protection of these

spin–orbit Dirac points. In the analysis, we will uti-

lize the glide mirror ~Mz : x; y; zð Þ ! xþ 1
2 ; yþ 1

2 ;�z
� �

and the mirror My instead of the screw rotation.

These mirror symmetries can be obtained from the

twofold (screw) rotations by combining with the

inversion P.
Consider the Dirac point at X p; 0; 0ð Þ. This point is

invariant under the symmetries My; ~Mz, and T . Each

energy eigenstate at X can also be chosen as an

eigenstate of My. Since

Figure 2 a Band structure

and PDOS of monolayer ScTe

in the absence of SOC. The

Fermi level is set at zero.

b The energy difference

(DE = E1 - E2) curve for the

two bands labeled as 1 and 2 in

(a). c The 2D image of the

energy difference DE in the

whole BZ. d Band structure

near the Fermi level for

monolayer ScTe when SOC is

included. The inserts show the

enlarged views around the X

and M points.
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My

� �2¼ �E ¼ �1;

theMy eigenvalues must be my ¼ �i. For a Bloch state

uj at X with an My eigenvalue my, its Kramers partner

T ju must have the eigenvalue �my. Meanwhile, the

commutation relation between My and ~Mz is given by

My
~Mz ¼ �T0�10

~MzMy;

where the minus sign comes from the anti-commu-

tativity between the mirror operations on spin. At X,

we have

My
~MzT ju

� �
¼ my

~MzT ju
� �

;

which shows that the two orthogonal states ju and
~MzT ju have the same my. Therefore, the following

four states u; T ju; ~Mz

�� ��u; ~MzT ju
� �

are linearly inde-

pendent and degenerate with the same energy,

forming the spin–orbit Dirac point at X. The Dirac

point at M can be argued in a similar way.

We have a few remarks before proceeding. First,

we have demonstrated that the nonsymmorphic

symmetries play a crucial role in stabilizing the nodal

line and the spin–orbit Dirac point here. These nodal

features are guaranteed to exist by the symmetry.

Hence, they belong to the essential band

degeneracies.

Second, the protection of the nodal line by the T ~Sx
symmetry is analogous to the protection of so-called

Class II nodal surfaces in 3D systems [21]. For both

cases, the nodal feature must appear at the boundary

of the BZ. Particularly, the previous study had shown

that the protection works in the absence of SOC. In

the presence of SOC, the nodal feature can still

remain if the PT symmetry is broken [21]. For the

monolayer MX considered here, the PT symmetry is

preserved; hence, the nodal line will be lifted and

reduced to the Dirac points.

Third, it should be pointed out that the splitting of

the nodal line by SOC is small. The result shown in

Fig. 2d is for ScTe. For other members with lighter

elements, the SOC strength (and hence the splitting)

is even smaller, on the order of few meV. Conse-

quently, regarding most measurable properties, the

SOC effect can be neglected for these materials, and

one can consider these materials as nodal-line metals.

(We have explicitly verified this point in the optical

conductivity calculation; see Supporting Informa-

tion.) In the following, we will neglect SOC in the

analysis.

Strain effects and optical conductivity

Lattice strain has been proved to be an effective

method to tune the physical properties of 2D mate-

rials [53–56]. Below, we explore the effects of differ-

ent types of strains on the properties of MX

monolayers.

We first consider the uniaxial and biaxial strains, as

schematically illustrated in Fig. 3a. Figure 3b shows

the calculated stress–stain curves for monolayer ScTe.

The results show that the material is quite flexible.

The critical uniaxial and biaxial tensile strains can

reach * 30% and 17%, respectively. The linear elastic

regime can be up to about 6% strain.

Figure 3c, d, respectively, shows the change of the

band structure under uniaxial and biaxial strains of

10%. One can observe that the change is not much.

Importantly, the nodal line is preserved under both

strains. The strains mainly make the nodal line band

flatter and closer to the Femi level. This robustness of

the nodal line can be understood by noting that the

two screw axes ~Sx; ~Sy and the time-reversal symmetry

are preserved by the strain. Thus, the nodal line is

still protected and remains an essential band

degeneracy.

However, the screw axes may be broken by the

shear strain. Here, we consider the type of shear

strain by varying the angle c as shown in Fig. 4a from

its equilibrium value of 90�. Under this strain, the

lattice symmetry is changed to the space group

Cmma. From the calculated band structure in Fig. 4b,

one confirms that the nodal line no longer exists,

because the original screw rotational symmetry is

broken. This result again illustrates the important

role played by the nonsymmorphic symmetry in

stabilizing the nodal line.

To probe the band structure and the effect of strain,

we consider the optical conductivity of monolayer

MX. Optical conductivity determines the linear

response of a material to oscillating electromagnetic

fields. In experiment, it can be determined by mea-

suring the optical reflection and absorption. In

Fig. 4c, we plot the dissipative (real) part of the

optical conductivity of monolayer ScTe without and

with the shear strain. One observes that without

strain, the optical conductivity has a suppressed

window from about 0.2 to 0.6 eV, as there is no

available state for optical transition across the Fermi

level in this frequency range. Around 1 eV, there

14888 J Mater Sci (2020) 55:14883–14892



appear two peaks at * 0.96 eV and * 1.13 eV,

labeled as A and B in Fig. 4c. By analyzing the band

structure, we find that these two peaks correspond to

locally parallel conduction and valence bands at the

two locations marked in Fig. 4d. They give an

enhanced optical transition at these two particular

frequencies. The applied shear strain produces

noticeable changes in the optical conductivity. In

Fig. 4c, one can observe that the two peaks A and B

are suppressed by the shear strain. In addition, due to

the splitting of the nodal line by the strain, the

intraband (Drude) contribution and the low-fre-

quency interband contribution are enhanced. These

contributions lead to the observed enhancement of

the Drude peak. In other words, the splitting of the

nodal line by strain can manifest as an enhancement

of the Drude peak detected in optical absorption

measurement.

Figure 3 a Schematic

diagrams showing the uniaxial

and biaxial strain acting on the

2D structure. b Calculated

stress–strain curves for

monolayer ScTe. c, d The

change in the band structure

for monolayer ScTe under

c 10% uniaxial strain and

d 10% biaxial strain.

Figure 4 a Left: schematic

figure showing the shear strain

considered here. Right: The

BZ after applying the shear

strain. b Calculated band

structure of distorted

(c = 80 deg.) monolayer ScTe.

c Optical conductivity of

original (c = 90 deg.) and

distorted (c = 80 deg.)

monolayer ScTe. d The

transitions that contribute to

the peaks A and B in the

optical conductivity for the

undistorted monolayer ScTe.

J Mater Sci (2020) 55:14883–14892 14889



In this work, we have predicted the stable 2D

structures of MX (M = Sc, Y; X = S, Se, Te) family

materials. To realize these materials, a possible

approach is the bottom-up growth method, such as

chemical vapor deposition or molecular beam epitaxy

(MBE). For these approaches, one needs a suit-

able substrate for the material growth. Here, we

screen several commonly used substrate materials

with square lattice for the epitaxial growth of 2D

films, including SrTiO3(001) [57], SiO2(001) [58], 3C-

SiC [59], 6H-SiC(0001) [60], and TiO2(001) [61], as

listed in Table S1. From the comparison, we find that

the lattice mismatches for SrTiO3(001) and TiO2(001)

are minimal (typically\ 6%), implying that the

SrTiO3(001) and TiO2(001) could be suitable sub-

strates for growing the MX monolayers in

experiment.

To apply strains in experiment, one may choose a

particular substrate for growth to achieve a small

specific strain. For 2D materials, there are other well-

developed approaches. For example, one may trans-

fer the fabricated sample to another substrate with

trenches or holes and use atomic force microscope

tips to apply the strain [49]. Another approach is to

transfer the sample to a flexible substrate and apply

strain via a beam bending apparatus [62].

Conclusion

Based on the first-principles calculations, we discover

a new family of 2D materials, the rare earth

monochalcogenide MX (M = Sc, Y; X = S, Se, Te)

monolayers. We demonstrate their stability and

excellent flexibility with small Young’s moduli and

large Poisson ratios. These materials possess essential

nonsymmorphic nodal lines on the boundary of the

whole BZ around the Fermi level, which are pro-

tected by the combined operation of a screw rotation

and the time-reversal symmetry in the absence of

SOC. SOC opens a small gap on the nodal line, and

the line evolves into stable 2D spin–orbit Dirac

points. We demonstrate that the nodal line is robust

against uniaxial and biaxial strains, but is lifted by

the shear strain. We have also studied the optical

conductivity of these materials and show that split-

ting of the nodal line by strain can manifest in the

optical absorption measurement. Our work offers a

new platform for the study of 2D nonsymmorphic

topological metal states. The excellent mechanical

property and the interesting topological electronic

property of these 2D materials may lead to potential

applications in nanoscale devices.
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