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ABSTRACT

Recently published data on coarsening of c0 precipitates in a binary Ni–Al alloy

are critically reviewed within the framework of the trans-interface diffusion-

controlled theory of particle coarsening. These data are shown to be remarkably

consistent in every respect with the predictions of theory using the temporal

exponent n = 2.2, which was arrived at by fitting experimental histograms and

experimental cumulative distribution functions to their theoretical counterparts.

This is the best procedure for evaluating the temporal exponent n, but plotting

the average radius, hri, as hrin versus aging time t is a suitable alternative.

Semiquantitative agreement is obtained with all the data, including the kinetics

of solute depletion as well as the temporal dependencies of the volume fraction

and number density, Nv. The inverse time dependency of Nv is shown once

again to be incorrect, failing the simplest test of internal consistency, specifically

constancy of the product Nvt. The notion that there exists a ‘‘quasi-stationary’’

regime of c0 precipitate coarsening is seriously questioned and shown to be

untenable. Analysis of the data enables quantitative prediction of the interfacial

free energy, r. In combination with previous work, this provides the first con-

crete experimental evidence for a linear decrease of r with increasing

temperature.

Introduction

A polydisperse array of particles coarsens in order to

lower its interfacial area, hence energy. During

coarsening smaller particles shrink, surrendering

their mass to the larger particles that grow at their

expense. Coarsening thus involves the transport of

matter from smaller shrinking particles to larger-

growing ones. Any of a number of different processes

can control the rate of transport. Among these, dif-

fusion in the medium supporting the particles (the

matrix phase) or an unspecified reaction at the

interface between the matrix and the particles are two

processes of historical importance, though there are
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quite a few more. Matrix-diffusion-controlled (MDC)

transport was envisioned by Greenwood [1] and

Todes and Khrushchov [2], for example, whose early

incomplete theories were ultimately replaced nearly

simultaneously by the seminal work of Lifshitz and

Slyozov [3] and Wagner [4], leading to what is now

universally known as the LSW theory. LSW derived

not only the kinetics of growth of a particle of average

radius hri in a polydisperse assembly, but also the

particle size distribution (PSD). The variation of hri
with aging time t is represented by the familiar

equation

hri3 � hroi3 ¼ kt; ð1Þ

where k is a rate constant that depends on the

important thermodynamic and kinetic parameters of

the system and hroi is taken as the average radius at

the onset of coarsening. Equation (1) is sometimes

written alternatively as hri3 = k(t – to), where to is a

different constant of integration which ostensibly

represents a fictional time at which coarsening is

supposed to have commenced. However, from a

physical and mathematical perspective there is only

one constant of integration, and the only parameter of

true physical significance in Eq. (1) is the rate con-

stant k.

In a representative metallurgical aging experiment

on precipitation from supersaturated solid solution,

the particles form by nucleation and growth, spin-

odal decomposition or some combination of the two,

depending on the composition of the alloy and its

phase diagram. Whatever the process is that governs

the initial stages of decomposition, the onset of

coarsening typically overlaps the end of the initial

stage, after the matrix has been depleted of excess

solute to the extent that the residual supersaturation

is small. In practical terms both hroi and to are both

ill-defined and t in Eq. (1) is simply taken as the total

aging time of an experiment. If the major objective of

an experiment on coarsening is to evaluate the mag-

nitude of the rate constant k, it is necessary only to

determine the slope of a plot of hri3 versus t.

Wagner [4] also considered the problem of inter-

face reaction-controlled (IRC) coarsening, wherein

the rate-limiting process is the transport of solute

through the precipitate-matrix interface by an

unspecified interface reaction. The equation for

coarsening under these conditions is

hri2 � hroi2 ¼ kR t; ð2Þ

where kR is a new rate constant that depends quite

differently from k on the thermo-kinetic parameters

of the system. As is the case for MDC coarsening, the

parameters hroi and to are also fictitious, though their

magnitudes are also expected to be small. In his

classic paper Wagner also derived the PSD associated

with IRC coarsening and showed that it is broader

than the PSD for MDC coarsening.

The LSW theory, as written, is strictly speaking

valid for a simple thermodynamic system in which

the host matrix phase is an ideal solid solution, the

dispersed precipitate phase is a pure element, and the

dispersion itself is infinitely dilute, meaning in

practical terms that its equilibrium volume fraction,

fe, is zero. These physical restrictions are never sat-

isfied in real 2-phase systems. Solid solutions are

almost never close to being infinitely dilute and the

dispersed phases are never pure, but are usually

solid solutions or intermetallic compounds. Under

these more general conditions the most widely

accepted equation for the rate constant for MDC

coarsening is that of Calderon et al. [5] for binary

alloys,

k ¼ kð0Þ ¼ 8 ~DVmc0er

9G00
mce Xc0e � Xce

� �2
: ð3Þ

Equation (3) is written here specifically for c/c0

alloys, where the c phase is a Ni (or Co)-base solid

solution and the c0 phase is an ordered intermetallic

compound based on Ni3Al, which has the Cu3Au

(L12) crystal structure. In Eq. (3) ~D is the chemical

diffusion coefficient in the majority c phase, Xce and

Xc0e are the equilibrium compositions of the c and c0

phases, respectively, r is the interfacial free energy of

the c/c0 interface, Vmc0e is the molar volume of the c0

precipitates, and G00
mce is the curvature of the Gibbs

free energy of the c phase; Vmc0e and G00
mce are evalu-

ated at their equilibrium compositions. All the

parameters in Eq. (3) are temperature dependent,

some more weakly so than others, so the activation

energy for coarsening is generally not equal to the

activation energy for chemical diffusion.

The equality k = k(0) in Eq. (3) emphasizes its

limitation to describe the rate of coarsening in sys-

tems in which the equilibrium volume fraction is

formally equal to zero. As already stated, fe can never

be zero in real systems. This was realized not only by

Lifshitz and Slyozov [3] themselves, but also by many
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others, leading to numerous publications on the effect

of fe on the kinetics of coarsening as well as other

consequences of nonzero volume fraction, especially

spatial correlations which are nonexistent when fe-

= 0. The numerous approaches to solving the multi-

particle diffusion problem can be found in several

review articles on this topic [6–9]. There are three

major consequences of the effect of fe on MDC

coarsening, only two of which are important in this

paper; 1. The temporal dependence of particle

growth is identical to that in Eq. (1), i.e., the temporal

exponent remains n = 3, but the rate constant k be-

comes a function of fe, k(fe), which increases mono-

tonically as fe increases, i.e., k(fe)/k(0)[ 1; 2. The PSD

broadens as f increases. The third consequence of

finite fe is that spatial correlations develop among

randomly spaced spherical precipitates in systems

that are free of internal strains, such as solid or liquid

particles coarsening in a liquid matrix, or perfectly

lattice-matched precipitates in a solid matrix. In such

systems the spatial correlations loosely resemble the

atomic or molecular arrangements in liquids or

amorphous solids, with no specific directionality. In

solid systems containing coherent misfitting precipi-

tates, elastic interactions engender alignment of the

precipitates along elastically soft cube directions [10].

These complications are not relevant to the overall

objectives of this paper and are mentioned only for

the sake of completeness.

The mathematical approach used by Lifshitz and

Slyozov [3] has been readily adapted to other kinds of

problems in the coarsening pantheon, some leading

to temporal exponents that differ from n = 3. In no

particular order, it has been used to formulate a

theory of grain growth [11] (n = 2), MDC coarsening

in 2-dimensions [12–14] (n = 3), coarsening of grain

boundary precipitates, which is grain boundary dif-

fusion-controlled [15–18] (n = 4), coarsening of pre-

cipitates on dislocation networks, in which diffusion

through dislocations in the network is the rate-lim-

iting step [18] (n = 5). In these processes the rate

constants can no longer be predicted by Eq. (3), but

are instead related to the thermo-kinetic parameters

of the specific situation, which are not germane to the

objectives of this article.

Even though k(fe) is theoretically predicted to

increase as fe increases, it does not do so in numerous

binary and multi-component Ni-base c/c0 alloys. The

absence of the effect of volume fraction on coarsening

kinetics is so contrary to theoretical expectation that a

brief review of findings is in order. Binary Ni–X

alloys containing Ni3X precipitates, where X = Al

[19–25], Ga [26, 27], Ge [28, 29], Si [30–32] and Ti [33]

have been extensively investigated. The most com-

pelling evidence for the absence of an effect of fe on

k(fe) is provided by the results on the coarsening of

Ni3Al precipitates in Ni–Al alloys [22, 23] and Ni3Si

precipitates in Ni–Si alloys [31, 32], where measure-

ments have been taken over very large ranges of

volume fraction, up to fe * 0.3. The dependency of

k(fe) on fe in Ni–Si alloys aged at 650 �C is shown in

Fig. 1. It is evident that k & 0.11 nm3 s-1 from

0.08\ fe B 0.30. There is a hint in Fig. 1 of an

anomalous dependency of k(fe) on fe in that k(fe)

appears to decrease with fe at small values of fe
(\ 0.08). It turns out that this is a robust observation,

which is also observed in the coarsening behavior of

c0-type precipitates in Ni–Al [34], Ni–Ga [27], Ni–Ge

[29] and Ni–Ti [33] alloys. To date, there is no satis-

factory explanation for this behavior although it has

been found in 2-dimensional phase-field computer

simulations of coarsening in c/c0 alloys [35, 36].

There is also quite convincing evidence for the

absence of an effect of fe on the kinetics of coarsening

in multi-component alloys. Examples are Ni3(Al, Cr)

Figure 1 Illustrating the dependence of the rate constant for

coarsening, k(fe), on the equilibrium volume fraction, fe of c0-type
Ni3Si precipitates in binary Ni–Si alloys aged at 650 �C. k(fe) is
essentially constant within the shaded area. Data of Meshkinpour

and Ardell [30], Cho and Ardell [32] and Sauthoff and Kahlweit

[37].

14590 J Mater Sci (2020) 55:14588–14610



precipitates in ternary Ni–Al–Cr alloys [38, 39], with

compositions lying along the same tie line [40]. The

experimentally measured PSDs in ternary Ni–Al–Cr

alloys [22, 24] are also unaffected by volume fraction.

Other examples of similar behavior are found in the

coarsening of c0 precipitates in ternary Ni–Co–Al

alloys [41] and quaternary Ni–Co–Cr–Ti [42] and Ni–

Cr–Al–Ti and Ni–Cr–Al–Nb alloys [43], although the

compositions in these alloys do not necessarily lie on

the same tie line.

The absence of the effect of volume fraction on

coarsening behavior in Ni-base c/c0 alloys is one of

the critical factors that led to the development of the

theory of trans-interface diffusion-controlled (TIDC)

coarsening [44]. However, there are two other

important components of the TIDC coarsening the-

ory. One of them is the discovery that the c/c0 inter-

face is not sharp, but diffuse [45], transitioning

chemically from the c to c0 compositions over a dis-

tance, d, the order of * 2–4 nm. The third important

factor is the relatively large difference between

chemical diffusion in the ordered c0 and disordered c
phases; for example diffusion is much more sluggish

in Ni3Al, typically by 2 orders of magnitude, than in

disordered Ni–Al solid solutions [46–48].

The initial observations on the diffuse nature of the

c/c0 interface were made using atom probe tomog-

raphy (APT) by Harada et al. [45]. Although there

was some early disagreement [49] over that finding,

subsequent investigations by APT on a variety of

different Ni-base c/c0 alloys [50–52] now leave no

doubt that c/c0 interfaces are indeed diffuse. Ato-

mistic Monte Carlo simulations [44, 53] are consistent

with the experimental observations. It has also been

shown using high-resolution transmission electron

microscopy that the transition from order to disorder

occurs over a distance smaller than the interface

width [54, 55]. There is therefore a component of the

interface width, dlro, over which the order–disorder

transition occurs and, as noted, dlro \ d.

The TIDC coarsening theory predicts that for small

particles, in the earlier stages of coarsening, the rate

constant should be independent of fe because the

kinetics is controlled by diffusional transport

THROUGH the ordered interface region rather than

by diffusion in the disordered matrix TO the inter-

face. Any mechanism of coarsening that involves

interfacial processes that control the growth of indi-

vidual precipitates will lead to a rate law like Eq. (2)

(see for example Shiflet et al. [56]). The physical

reason behind the transition from TIDC to LSW

coarsening kinetics is that when the particles are

large enough, the concentration gradients in the

matrix are so small that MDC becomes the rate-lim-

iting step. Ardell and Ozolins [44] showed that this

prevails when the particle radius r satisfies the con-

dition r[ d ~Dc= ~DI. This condition is the most likely

reason that MDC coarsening of c0 precipitates is

operative in Ni and/or Co-base superalloys aged at

very high temperatures.

The TIDC coarsening theory is also consistent with

the coarsening behavior in so-called inverse c/c0

alloys. The geometries of the (c ? c0)/c0 phase

boundaries in the Ni–Al and Ni–Ge phase diagrams

(the c solvus in both cases) enable the c0 phases Ni3Al

and Ni3Ge to be supersaturated at temperatures

below the c solvus and therefore to exhibit normal

precipitation behavior. In these circumstances the

precipitates are the Ni–Al and Ni–Ge solid solutions,

respectively. In principle the structure of the c/c0

interfaces should be the same irrespective of which is

the majority phase, though a recent report [57] sug-

gests that this might not be the case. Since the

matrices in both inverse alloys are the ordered c0-type

phases, chemical diffusion is now substantially

slower in the ordered matrix than in the disordered

precipitate phase or in the interface itself. Under

these conditions MDC coarsening is expected to

dominate, and that is precisely what happens.

Experiments on ‘‘inverse’’ Ni–Al [58, 59] and Ni–Ge

[60] alloys demonstrate that the rate constants are

strongly dependent on volume fraction, as shown in

Fig. 2. The ranges of fe over which the data were

measured are quite small, but the dependencies of

k(fe) on fe are very strong and the antitheses of the

behavior in normal alloys.

A few years after the publication of the TIDC the-

ory of coarsening, a review of the literature on

coarsening of c0 precipitates in binary Ni–Al alloys

was undertaken to evaluate extant data [63]. The

focus of that work centered on three aspects of the

TIDC theory, namely the PSDs and the kinetics of

particle growth and solute depletion. The TIDC the-

ory was shown to be quantitatively consistent with

the available data. Since the publication of that paper

there has been one new thorough investigation of

precipitation in Ni–Al alloys, specifically a compre-

hensive study by Plotnikov et al. [64] of nucleation,

growth and coarsening of c0 precipitates in a binary
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Ni–12.5 at.%Al alloy aged at 823 K. The authors

concluded that coarsening during the later stages of

precipitation was fully consistent with the predic-

tions of the LSW theory. No effort was made to

evaluate the efficacy of the TIDC theory. That effort

constitutes the focal of this paper, which is organized

as follows. The foundational equations of the TIDC

coarsening theory are presented in order to provide a

background for the subsequent sections that deal

with the analyses and evaluation of data on the PSDs,

kinetics of particle growth and solute depletion, as

well as the temporal evolution of the volume fraction

and number density of precipitates. The data of

Plotnikov et al. [64] are re-evaluated and demon-

strated to be in remarkably good agreement with the

predictions of the TIDC theory of coarsening. The

data are also shown to be internally self-consistent

only in the context of TIDC coarsening, but not

otherwise. New calculations of r are extracted from

the data, and for the first time r is confirmed exper-

imentally to be a function of temperature. The final

section of the paper summarizes the main findings,

presents a number of conclusions and offers final

thoughts on work that remains to be done.

Brief review of quantitative predictions
of the TIDC theory of coarsening

In the TIDC theory of coarsening the rate of growth of

the average particle is given by the equation

dhrin

dt
¼ kn; ð4Þ

where the rate constant kn differs from that in Eq. (3).

Instead, it is given by an equation of the form

kn ¼ n� 1

n

� �ðn�1Þ
KT; ð5Þ

where KT is a constant that depends in different ways

on the thermo-kinetic parameters of the alloy system,

as well as assumptions about the dependencies of the

interface width, d, and the interfacial diffusion coef-

ficient, ~DI , on r [63, 65]. For purposes of this discus-

sion the exact equation for KT is irrelevant. The

important points to note here are that the temporal

exponent, n, satisfies the condition 2 B n B 3 and

that the growth rate of the average particle is given

by Eq. (4), the integration of which leads to the

equation for the growth of the average precipitate,

namely

hrin � hroin ¼ knt: ð6Þ

The kinetics of solute depletion of the matrix phase

varies with aging time as

Xc � Xce � jntð Þ�1=n; ð7Þ

where Xce is the concentration of solute in the c phase

at thermodynamic equilibrium and jn is a rate con-

stant related to kn by the equation

Figure 2 Illustrating the dependencies of the rate constant for

coarsening, k(fe) of the LSW theory on the equilibrium volume

fraction, fe, of disordered Ni–Al precipitates (a) and Ni–Ge

precipitates (b) in ‘‘inverse’’ Ni3Al and Ni3Ge alloys aged at 650

and 600 �C, respectively. The data in a are from Ma and Ardell

[59], and the data in b are from Ma and Ardell [60]. The dashed

curves in a and b represent the predictions of the MLSW theory of

Ardell [61], modified by the calculations of Tsumuraya and Miyata

[62].
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kn
jn

� �1=n

¼ hzi‘; ð8Þ

where ‘ is the capillary length determined by the

Gibbs–Thomson equation, namely

‘ ¼ 2Vmc0er
DXeG00

mce
: ð9Þ

In Eq. (9) DXe = Xc0e - Xce and hzi = hri/r*, where

r* is a critical radius in all coarsening theories. It is the

radius of a particle that is neither growing nor

shrinking at time t; hzi is of order unity and can be

calculated from the theoretical PSD (discussed later).

An equation similar to Eq. (7) governs the kinetics of

solute depletion in the minority c0 phase, but the rate

constant differs from jn because it involves different

thermo-kinetic parameters. The main assumption in

the derivation of Eq. (7) is that the later stages of

coarsening have obtained, so that hrin is truly much

greater than hroin, hence hri & (knt)
1/n.

The other two quantities that vary with aging time

are the volume fraction, f, and the number of pre-

cipitates per unit volume, Nv. The asymptotic time

dependence of f is given by the equation

f ¼ fe �
jntð Þ�1=n

DXe

; ð10Þ

while the asymptotic variation of Nv with aging time

is

Nv ¼
fe

wS kntð Þ3=n
1 � jntð Þ�1=n

feDXe

( )

; ð11Þ

where the constant S depends on the shape of the

precipitate phase and enters into the kinetics via the

relationship among f, Nv and the average volume of

the precipitate phase, hVi, i.e.,

hViNv ¼ f ; ð12Þ

where hVi = wShri3. For spherical particles S = 4p/3

while for cube-shaped particles S = 8 and r is taken

as a/2, where a is the edge length of the cube. The

parameter w = hr3i/hri3 depends on the PSD and

varies from * 1.36 to * 1.13 as n increases from

n = 2 to n = 3; it is evaluated in ‘‘Appendix A.’’

Equations (10) and (11) differ slightly from previous

versions [6, 20, 66] because in the general expression

for f from the lever rule, f = (Xo - Xc)/(Xc0 - Xc), it is

assumed that the denominator (Xc0 - Xc) & DXe. It

will be shown later that this is an excellent approxi-

mation, and better than the one used previously, i.e.,

(Xc0 - Xce) & DXe. The origin of the second term in

curly brackets in Eq. (11) is the first term in the series

expansion for the time dependence of f; it is not the

second term in a series expansion for the time

dependence of Nv. This is presented in detail in

‘‘Appendix B.’’

The PSD is calculated using the equations1

hðzÞ ¼ �3/ðzÞ exp nðzÞf g; ð13Þ

nðzÞ ¼ 3

Z z

0

/ðxÞdx; ð14Þ

and

/ðzÞ ¼ zðn�1Þ

ðz� 1Þ nn

ðn�1Þðn�1Þ � zn
: ð15Þ

Comparison with experimentally measured PSDs

or histograms must be made using the variable u = r/

hri, since r* cannot be measured experimentally. To

compare an experimental PSD or histogram with a

theoretically predicted PSD, it is necessary to trans-

form h(z) to the PSD expressed in terms of the vari-

able u, i.e., g(u), which is done using the equation

gðuÞ ¼ hzihhzi ð16Þ

which follows from the equality g(u)du = h(z)dz. The

maximum theoretical particle size in the PSD is

zmax = n/(n - 1). It follows that umax = n/hzi(n - 1).

Analytical solutions of Eqs. (13)–(15) are possible

only for n = 2 (hzi = 8/9) and n = 3 (hzi = 1). In these

2 cases the PSDs are identical to those for IRC and

MDC coarsening [3, 4], respectively.

Re-analysis of the data of Plotnikov et al.
[64] in the context of TIDC coarsening

The particle size distributions

The most important parameter needed for the analysis

of the data on kinetics of coarsening within the frame-

work of the TIDC coarsening theory is the temporal

exponent,n. As stated earliern is best obtained by fitting

experimental PSDs, which are typically published as

histograms. The method used here differs from the

Mathematica subroutine used previously for analysis of

the histograms of the PSDs in binary Ni–Al [63], Ni–Ti

1 The factor of 3 was inadvertently and unfortunately omitted
from Eq. (14) in several previous publications [63, 65, 68], but it
was included in all the calculations.
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[67] and Ni–Ga, Ni–Ge and Ni–Si [68] alloys. Instead, it

is based on equating the standard deviations of the

experimental PSDs to those predicted by the TIDC

coarsening theory for values ofn in the range 2 B n B 3.

This method is very easy to implement and is of far

greater utility than that used previously because no

special computer programming is needed. However, it

is imperfect because probability distributions are typi-

cally characterized by additional parameters, so the

method is expected to be useful mainly as a guide

because most of the theoretical TIDC PSDs are not

heavily skewed. To proceed it is necessary to integrate

Eqs. (13)–(15) numerically, with n as a free parameter.

Numerical integration is possible using a variety of

methods. The one chosen here involves implementation

of the trapezoid method in Microsoft Excel�. The pro-

cedure is presented in ‘‘Appendix A’’, the result of

which produces the theoretical dependency of n on the

standard deviation, rSD, normalized by the average

particle radius hri. The relationship between n and rSD/

hri is expressed by the empirical equation

n ¼ 8:199 � 40:764
rSD
hri

þ 95:032
rSD
hri

� �2

�82:958
rSD
hri

� �3

: ð17Þ

Between the limits 2\ n\ 3, rSD/hri varies

between a maximum value of 0.3536 (for the broad PSD

of the IRC theory of coarsening) to and a minimum

value of 0.2154 (for the narrow PSD of the LSW theory).

Plotnikov et al. [64] published PSDs in the form of

histograms for all their aging times except 2607 h;

they are presented in the Supplementary Material to

the paper. The histograms for 16, 64, 256, 1024 and

4096 h are ostensibly representative of the PSDs of

the c0 precipitates in the coarsening regime of their

aging experiments. The ratio rSD/hri was calculated

from their histograms using the formula

rSD
hri ¼

X

i

gi ui � 1ð Þ2

( )1=2

; ð18Þ

where the subscript i denotes the value of u in the

center of the ith bin, the sum being taken over all the

bins in the histograms. It is important to point out

that the values of rSD/hri calculated using Eq. (18)

are not equal to the values reported by Plotnikov

et al. [64] in Table D1 of the Supplementary Material,

which is most likely a consequence of the fact that

only those c0 particles fully contained within the APT

tip were included in the statistics. To compare the

scaled standard deviations with the reported stan-

dard deviations it is necessary only to divide rSD by

the reported values of hri. The results of the calcula-

tions are summarized in Table 1.

A glance at the 4th column of Table 1 shows that

rSD/hri lies within the acceptable limits of 0.3536 and

0.2154 for only 2 of the 5 PSDs (1024 and 4096 h), with

the PSD for t = 256 h of aging right at the limit for the

smallest allowable value of n = 2. On substituting the

values of rSD/hri for these last two aging times

(Table 1) into Eq. (17), the values of n obtained are

2.16 and 2.06, respectively.

Taking a cue from the results in Table 1, we consider

here the histograms only for the aging times of 256,

1024 and 4096 h and analyze them by comparison with

the theoretical PSDs of the TIDC coarsening theory for

n = 2.0, 2.2 and 2.4. These 3 values of n were chosen

because n = 2.0 is the smallest possible value in the

TIDC coarsening theory and representative of the

histogram for the specimen aged for 256 h, while

n = 2.4 is the value of n that best fits the vast majority of

data on the PSDs in Ni–Al alloys [63]. The approximate

nature of the fitting routine by no means excludes

analysis of the other two PSDs (16 and 64 h). but for our

purposes it is sufficient to consider just the data on the

last three aging times. The results are shown in Fig. 3a.

It appears that the theoretical PSDs describe the

experimental distributions equally well or poorly,

depending on one’s perspective. In terms of visual

appearance, the theoretical PSD for n = 2 appears to

best fit the tail of the experimental histograms, while

the PSD for n = 2.4 appears to best fit the data at the

smaller values of u. The PSD for n = 2.2 is clearly a

good compromise fit to the overall data on the

Table 1 Standard deviations of the particle size distributions in a

Ni–12.5%Al alloys aged at 550 �C

Aging time (h) hri (nm) rSD (nm) rSD/hri

16 3.11 1.122 0.361

64 3.46 1.273 0.368

256 5.65 2.000 0.354

1024 9.43 3.027 0.321

4096 14.59 4.975 0.341

Data of Plotnikov et al. [64] taken from Figure E1 and Table D1 of

Supplementary Material. The second column shows the data on

hri reported in Table D1. The 3rd column shows the standard

deviations calculated from the histograms. The last column is

simply the ratio of rSD and hri in columns 2 and 3
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histograms. As will be seen in an upcoming section,

the intermediate value of n= 2.2 also happens to be one

that comes close to best fitting the data on the kinetics

of growth of c’ precipitates in the alloy investigated by

Plotnikov et al. [64] and is close in magnitude to the

value n = 2.16 for the alloy aged for 1024 h.

Since the data on the experimental PSDs are lim-

ited and of questionable statistical significance given

the small number of particles measured (as noted by

Plotnikov et al. themselves) and the fits to the PSDs

are inconclusive, it is useful to explore an additional

option for fitting the data on the PSDs to find an

acceptable value of n. The option chosen is to convert

the PSDs of Plotnikov et al. to experimental cumu-

lative distribution functions, ECDFs, and compare

them empirically with theoretical CDFs of the TIDC

coarsening theory calculated for n = 2.0, 2.2 and 2.4.

The virtue of comparing ECDFs with theoretical

CDFs is that there are established statistical tests of

goodness of fit, which utilize ECDFs rather than PSDs

for comparing theoretical and experimental statistical

distributions (see, for example, the paper by Stephens

[69]).

The CDFs predicted by the TIDC coarsening theory

were calculated using the formula published by

Ardell [70], who showed that the CDFs for several

different types of coarsening problems can be calcu-

lated quite simply using the equation

HðzÞ ¼ 1 � exp nðzÞf g; ð19Þ

where H(z) is the theoretical CDF and n(z) is given by

Eq. (14) with z as the upper limit of the integral. Even

though the theoretical CDFs must be calculated using

the variable z = r/r*, they are identical to those

expressed in terms of u, taking into account the

equality H(z) = G(u) [70]. To compare the ECDFs with

the theoretical CDFs, using u as the convenient scaled

particle size coordinate, it is essential to transform the

coordinate z to u. Keeping this in mind, the ECDFs

for the data of Plotnikov et al. [64] are shown in

Fig. 3b for n = 2.0, 2.2 and 2.4, where it is apparent

from a visual perspective that the ECDFs confirm the

assessments based on the evaluations of the PSD in

Fig. 3a, namely that the tail of the histograms appears

to be most consistent with n = 2.0, while the data for

smaller values of u are most consistent with n = 2.4,

n = 2.2 being a reasonable compromise value. It is

emphasized here that the fits to the ECDF data are

not rigorous, and that tests of goodness of fit are

possible using known methods of statistical analysis

[69]; goodness-of-fit testing will be implemented in

future work.

Based on the analyses of the PSDs and ECDFs, n =

2.2 was selected as representative of the temporal

exponent for the analysis of the data of Plotnikov

et al. [64] on the kinetics of c’ precipitate coarsening.

Even though the choice of n = 2.2 is arbitrary to some

extent, it can be stated with confidence that the the-

oretical PSDs shown in Fig. 3a fit the data as well as

the theoretical PSDs predicted by the MLSW theory

of Ardell [61], the theory of Brailsford and Wynblatt

Figure 3 a Experimentally measured particle size distributions of

c0 precipitates in a binary Ni–12.5Al alloy aged at 823 K, data of

Plotnikov et al. [64]. Each data point represents the center of a bin

in the originally published histograms. The curves represent the

theoretical PSDs of the TIDC coarsening theory for n = 2.0, 2.2

and 2.4; b the data of Plotnikov et al. in Fig. 3a presented as

experimental cumulative distribution functions, ECDF, compared

with G(u), the CDFs predicted by the TIDC coarsening theory for

n = 2.0, 2.2 and 2.4. The data on the ECDFs are taken at the

maximum value of u for each bin in the experimental histograms.
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[71] and the theory of Akaiwa and Voorhees [72],

shown in Fig. E1 in the Supplementary Material [64].

Those 3 theories predict that the PSD depends on the

volume fraction of precipitate. Given that the coars-

ening behavior of c0 precipitates is independent of

volume fraction, any agreement between these theo-

ries and the experimental histograms can only be

regarded as fortuitous.

Kinetics of particle growth

The most accurate values of the rate constant kn and

the TIDC coarsening theory are best obtained by

plotting hrin versus t, in accordance with Eqs. (4) and

(6); this is true irrespective of the value of n (= 3 for

LSW, 2 for IRC or between 2 and 3 for TIDC coars-

ening). In order to obtain meaningful values of the

parameters that govern any coarsening process it is

essential to use the equations that best represent the

kinetics and PSDs. Having chosen a value of n it is

imperative to insist that analyses of all the data sur-

vive the test of internal consistency. In particular, we

need only to plot hrin versus t, X versus t-1/n and

f versus t-1/n to see whether all the data not only

obey the appropriate rate laws, but also provide a

consistent set of thermo-kinetic parameters. There are

different ways of plotting the temporal dependency

of Nv, but the same standard applies to this variable

as well.

We begin by examining the kinetics of growth of

the average particle, plotted as hri2.2 versus t in Fig. 4.

The error bars represent the standard deviations of

hri2.2, calculated from the standard deviations of hri
reported in Table D1 of the Supplementary Material

of Plotnikov et al. The inset shows the correlation

coefficients, R2, of the fits as a function of the tem-

poral exponent, n. The best fit to the data, i.e., the

maximum value of R2, is obtained for n = 2.24, which

is in exceptionally good agreement with the value of

n = 2.2 used to fit the CDF in Fig. 3b. The rate con-

stant obtained from the slope of the curve in Fig. 4 is

kn = 3.460 ± 0.450 9 10-25 m2.2 s-1.

The kinetics of solute depletion

The kinetics of solute depletion is shown in Fig. 5 for

both the c and c0 phases. The time dependencies of

both XcAl and Xc0Al are identical to that in Eq. (7), i.e.,

they both vary as t-1/2.2 at long aging times, but the

rate constants differ [5]. Here we are concerned only

with the rate constant jn obtained from the analysis

of the data on XcAl (Fig. 5a) The usefulness of both

plots in Fig. 5 is that the extrapolation to t-1/2.2 = 0

(t = ?) provides values of the equilibrium solubili-

ties of Al in both the c and c0 phases at the temper-

ature of the experiment on coarsening. One of the

great benefits of APT is that it is able to provide data

on the solute concentration in the minority phase,

which is difficult to obtain by other means.

Owing to the asymptotic nature of Eq. (7), only the

data for t C 64 h are included in Fig. 5. The addi-

tional datum for 16 h of aging is also shown; it clearly

deviates from the linear fit to the data and its omis-

sion is justified by fact that Eq. (7) is expected to be

valid only at longer aging times, even in the coars-

ening regime. The slope of the curve in Fig. 5a is

j�1=2:2
n = 1.0426 ± 0.2575 s1/2.2. The intercepts indi-

cate that the equilibrium solubilities of Al in the c and

c0 phases are XcAle = 0.1121 ± 0.0005 and Xc0Ale-

= 0.2365 ± 0.0004, respectively. What is not seen in

Fig. 5 is that the difference (Xc0 - Xc) & 0.125 for the

aging times t C 256 h is essentially equal to DXe-

& 0.124 from the extrapolated equilibrium values in

Figure 4 The data of Plotnikov et al. [64] on average radius, hri,
raised to the 2.2 power, as a function of aging time, t. The data

plotted are for t C 16 h, within the coarsening regime. The blue

curve shows the linear fit to the data. The plot inset shows the

correlation coefficient, R2, for the same data as a function of the

temporal exponent n derived from plots of hrin for different values
of n. The best fit is obtained for n = 2.24.
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Fig. 6. This nicely justifies the assumption used to

derive Eq. (10); this assumption is more fully justified

later.

Dependence of volume fraction on aging
time

Plotnikov et al. [64] reported data on the variation of f

with aging time but did not analyze the kinetics. The

variation of the volume fraction, f, with aging time is

shown in Fig. 6, where f is plotted versus t-1/2.2 in

accordance with Eq. (10). Once again, only the data

for t C 64 h are included in the analysis since the

level of approximation is the same as for the kinetics

of solute depletion. The extrapolation to t-1/2.2 = 0

provides an estimate of the equilibrium volume

fraction at the temperature of the experiment, 823 K.

The results of the analysis of the data yield the slope

of the curve j�1=2:2
n /DXe = - 12.930 ± 2.993 s1/2.2,

with fe = 0.1350 ± 0.0053. Using the data obtained

from the analysis of the data in Fig. 5, the calculated

slope of the curve in Fig. 6 is - 10.427 ± 2.414 s1/2.2.

Given the errors in the experimentally measured

values of f and the only fair agreement between the

data and the predictions of Eq. (10), the semiquanti-

tative agreement between the measured and calcu-

lated values of the slope is about as good as can be

expected.

The time dependency of Nv

It has been known for quite some time [6, 66] that the

time dependency of Nv is given by Eq. (11). The

physics behind Eq. (11) derives from the relationship

among hri, Nv and f, which for spherical particles

leads from Eq. (12) to the result

4pwhri3

3
Nv ¼ f ; ð20Þ

recalling that hVi = 4pwhri3/3. Equation (20) is valid

for all aging times. The frequently invoked inverse

time dependency of Nv arises from the asymptotic

Figure 5 Plots illustrating the kinetics of solute depletion for the c
and c0 phases in a Ni–12.5Al alloy aged at 823 K. The

concentrations of Al in the c phase are shown in a, while the

concentrations of Al in the c0 phase are shown in b. The

concentrations in both phases are plotted against aging time raised

to the inverse 1/n power, with n = 2.2. Data of Plotnikov et al.

[64]. The data in red and green were used in the linear fit, while the

datum in black in each figure was excluded.

Figure 6 Data on the measurements of the volume fraction, f, of

c0 precipitates in a Ni–12.5Al alloy aged at 823 K, plotted versus

aging time, t, raised to the - 1/2.2 power. Data of Plotnikov et al.

[64]. The datum in green was omitted from the fit, which includes

only the data for t C 64 h.
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relationship hri3 & kt, which on substitution into

Eq. (20) leads to the result

Nv ¼
3f

4pwk
t�1: ð21Þ

Examination of Eq. (11) suggests two options for

analyzing experimental data. On the one hand, data

plotted as Nvt
3/n versus t-1/n should be linear, with

slope �j�1=n
n =DXewSk

3=n
n and intercept fe=wSk

3=n
n . On

the other hand a plot of Nvt4/n versus t1/n should also

be linear, with the slope and intercepts interchanged,

along with their signs. Unless the data are excep-

tionally reliable, they do not produce comparable

results. This is evident on examining the data ana-

lyzed in Ref. [66]. For the data of Plotnikov et al. [64]

the more reliable method is to plot the product Nvt
4/

2.2 versus t1/2.2, the results of which are shown in

Fig. 7. The linearity expected from Eq. (11) is

approximately observed only for aging times satis-

fying t C 256 h. Exclusion of the other data is justi-

fied by the arguments presented in ‘‘Appendix B.’’ As

predicted by Eq. (11) the intercept in Fig. 7 is nega-

tive, with a magnitude of 3.430 ± 1.719 9 1034 s4/

2.2 m-3. The slope of the curve is

6.946 ± 1.332 9 1031 s-1/2.2 m-3. Using the

previously measured values of kn, fe, j�1=2:2
n and

DXe & 0.124, the calculated values of the slope and

intercept of the curve in Fig. 7 are 6.649 9 1031 s-1/

2.2 m-3 and 4.128 9 1033 s4/2.2 m-3, respectively. The

agreement between the measured and calculated

slopes is remarkably good, but the calculated inter-

cept is about a factor of 8 too small. It will be shown

later that the authors’ reported values of hri3, Nv and

f are themselves internally inconsistent. Given the

uncertainties of the experimentally measured values

of Nv, it is unrealistic to expect the re-analysis of the

data to yield results that are better than those

obtained.

Comments and criticisms

The discussions in this section focus on the primary

distinctions between the approaches used herein to

analyze the data of Plotnikov et al. [64] compared

with those used by the authors themselves. These

approaches differ in significant ways, and the objec-

tive here is to present the interested reader with

persuasive and pedagogically useful arguments that

the approaches used by Plotnikov et al. are flawed, in

some cases mildly and in others quite seriously.

Analyses of the data on the kinetics
of particle growth

The standard practice of Plotnikov et al. [64] is to

treat all the parameters in Eqs. (6) and (7) as

unknowns, to be determined numerically using

multivariate nonlinear regression analysis (MNRA)

of the data. There would be no particular problem

with this approach if all the parameters in the equa-

tions were physically meaningful, but they are not.

The main problem with using MNRA is that the

inclusion of hroi and to unnecessarily compromises

the values of the really important parameters in the

kinetics of particle growth, specifically kn and n.

To illustrate this, consider the data on the kinetics

of particle growth in Fig. 4. Plotnikov et al. write the

equation governing the kinetics of particle growth as

hrin � hroin ¼ kn t� toð Þ; ð22Þ

which includes 3 disposable parameters, the expo-

nent n and two constants of integration, hroi and to.

The only parameters with true physical significance

are n and kn, and there is only one arbitrary constant

Figure 7 The data of Plotnikov et al. [64] on the variation of the

product of the number density, Nv, and aging time, t, raised to the

1/2.2 power. Only the data on the 4 longest aging times, in red,

were used in the linear fit, indicated by the blue line. The 2 data

points in black represent the data at 16 and 64 h and were not used

in the fit.
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on integrating Eq. (4), not two. Nevertheless, the

authors use the Microsoft Excel� Solver macro to

extract the ‘‘best’’ values of the three parameters,

which is done by first rewriting Eq. (22) as

hri ¼ kn t� toð Þ þ hroinf g1=n
: ð23Þ

The target variable in the Solver macro (the

‘‘model’’ variable in the language of Solver) is hri.
MNRA of the data using Eq. (23) produces the

curve shown in Fig. 8a, with n & 2.917, kn-

& 0.528 nm2.917 h-1, to & - 1.403 h and hro-

= 2.50 nm. From the simple standpoint of internal

consistency, it is expected that a plot of hri2.917 versus

t should be characterized by the very same values of

kn and hroi, with to = - hroin/kn, the expectation

being that alternative representations of the very

same set of data would yield consistent results pro-

vided that the parameter values produced by MNRA

are robust. A plot of hri2.917 versus t is shown in

Fig. 8b. The values of kn and hroi obtained from

analysis of the data in Fig. 8b differ from those

obtained from MNRA, kn = 0.552 nm2.917 h-1 being

* 4% larger than the MNRA result and hroin-

= - 5.465 nm2.917 being negative. The value of to
consistent with these parameters is 9.9 h, which is not

only positive, but 7 times larger in magnitude than

the value of to extracted from MNRA of the same set

of data. The negative value of hroi2.917 and positive

value of to are clearly visible in the graph inset in

Fig. 8b. These discrepancies are untenable and

entirely attributed to the misapplication of MNRA to

the data. MNRA is not at fault here. Instead, it is the

elevation of both hroi and to to physical significance

when in fact they have none. It should also be noted

in passing that the fit to the data using n = 2.917 is

not as good as the fit using n = 2.2 (Fig. 4).

The variation of volume fraction with aging
time and quasi-steady coarsening kinetics

It seems that since f increases slowly with aging time

toward its equilibrium value, but is not constant,

Plotnikov et al. [64] as well as Sudbrack et al. [38] and

Booth-Morrison et al. [39, 73] before them, assert that

coarsening proceeds under ‘‘quasi-steady-state’’ con-

ditions. The inference is that true steady-state coars-

ening, as opposed to quasi-steady-state coarsening, is

possible only when f is constant and equal to its

equilibrium value. In fact, however, there is nothing

quasi at all about the conditions under which c0

precipitates coarsen. The volume fraction must

increase with aging time as a natural consequence of

the depletion of solute from the matrix. This is

unarguable and has been an undisputed fact at least

since its publication in 1969 [20]. It is perhaps most

easily appreciated by considering Fig. 9.

The volume fraction2 of the c0 phase during coars-

ening is f & (Xo - XcAl)/(Xc0Al - XcAl). The equilib-

rium volume fraction is fe & (Xo - XcAle)/

(Xc0Ale - XcAle). Since Xc0Al - XcAl & Xc0Ale - XcAle,

Figure 8 a Plot of the average particle size hri versus aging time,

t, compared with the prediction of Eq. (23), solid red curve; b plot

of hri2.917 versus t with the linear fit indicated by the red line. The

insert shows the data on the 2 smallest aging times, 16 and 64 h,

and the same fit to the data nearest the origin, illustrating the

positive value of to and the negative value of hri2.917. The units in
the inset are h for the abscissa and nm2.917 for the ordinate. Data of

Plotnikov et al. [64].

2 Strictly speaking, f is the mass fraction of c0, but since the
mass densities of the c and c0 phases are not very different, the
difference between the mass and volume fractions is small.
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it is easy to see graphically from Fig. 9, using the

lever rule, why f increases with aging time. It is

simply because the ‘‘distance’’ Xo - XcAl increases as

XcAl approaches its equilibrium value XcAle, while the

‘‘distance’’ Xc0Al - XcAl & Xc0Ale - XcAle remains

approximately constant. The increase in f is therefore

not an accidental feature of particle coarsening or the

signature of some kind of ‘‘quasi-steady-state’’ con-

dition, waiting for the eventual arrival of ‘‘steady-

state.’’ Instead, it is part and parcel of the normal

Ostwald ripening process.

Variation of the number density with aging
time

There has been considerable reluctance in some

quarters to accept Eq. (11) as the proper description

of the kinetics of depletion of the number density of

particles with aging time, preferring instead Eq. (21).

Plotnikov et al. [64] are no exception. We consider

here some of the implications of Eq. (21) that any set

of data must obey. These implications also provide

additional theoretical justification for the validity of

Eq. (11).

Temporal dependency of the product Nvt

The easiest way to check the validity of Eq. (21) is to

calculate the product Nv t. If Eq. (21) were correct the

product Nv t would be constant, independent of

aging time. To this end we examine the data of

Plotnikov et al. [64] using their tabulated data as

input (Table D1, Supplementary Material). The

results are presented in Table 2. It is obvious by

inspection that the product Nvt is not even close to

being constant, increasing with aging time by over an

order of magnitude. Granted, there are uncertainties

in the measurements of Nv, but the trend is unmis-

takable and completely belies the longstanding belief

that Nv varies as t-1. The reason for this is obvious.

According to Eq. (21) the inverse dependency of Nv

on t would be valid if f were constant and equal to fe.

Is it not.

Internal consistency among hri, Nv and f

In any series of experiments the results must be

internally consistent to assure credibility and confi-

dence that the reported data are as error-free as

possible on the one hand and truly meaningful on the

other. It is also important to examine any set of data

that fails this requirement with a view to providing

alternative explanations. The data of Plotnikov et al.

[64] are evaluated in this context. There is one easy

check of internal consistency, which involves the

independent measurements of hri, Nv and f.

Equation (20) describes the relationship among hri,
Nv and f for spherical particles. Internal consistency

of the data demands agreement with this equation,

which does not involve any approximations apart

from the assumption of spherical shape. The data on

c0 coarsening in Ni–Al alloys are examined in this

light, yielding the results shown in Table 3 where it is

seen that most of the discrepancies exceed 15%. There

is no rational explanation other than to assert that

something is seriously amiss with the data. It is

impossible to know the source of the large discrep-

ancies, but they are far too great to be attributed to

Figure 9 The Ni-rich region of the Ni–Al phase diagram,

illustrating the approximate compositions of the c and c0 phases
during coarsening, from which the volume fraction of any alloy,

composition Xo, can be calculated using the lever rule. The

residual supersaturations of the c and c0 phases XcAle - XcAl and

Xc0Ale - Xc0Al, respectively, are greatly exaggerated for clarity.

Table 2 Calculations of the

product Nvt as a function of

aging time for the data of

Plotnikov et al. [64] on a

binary Ni–12.5Al alloy

t (h) Nvt (10
23 h m-3)

4 23.12 ± 0.52

16 61.12 ± 1.76

64 170.88 ± 6.72

256 217.60 ± 3.84

1052 245.76 ± 10.24

2607 443.19 ± 13.04

4096 327.68 ± 20.48
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the errors reported in the publication. Since Eq. (20)

is valid at all aging times, the discrepancies cannot be

attributed to assumptions about whether or not the c0

microstructure has entered the coarsening regime.

The suspicion here is that the values of Nv are inac-

curate, which is perhaps not surprising because Nv is

generally very difficult to measure. Moreover, the

inaccuracies in the reported values of Nv do not

appear to be systematic. The behavior shown in

Table 2 and the lack of internal consistency seen in

Table 3 are consistent with the assertion that the

accuracy of the reported values of Nv is highly

suspect.

The role of second-order terms in the asymptotic

expansions of coarsening variables

Detractors of the validity of Eq. (11) and proponents

of Eq. (21) wonder why the time-dependent variables

are not impacted by second-order terms.3 Consider-

ation of higher-order corrections to the time depen-

dencies of hri, X, f and Nv is presented in ‘‘Appendix

B’’, where the answer is provided. In the particular

case of Nv, the second term in Eq. (11) does not arise

from a series expansion of its time dependency.

Instead, it is a consequence of the temporal depen-

dency of fe.

Comparison with literature data

The re-analysis of the data of Plotnikov et al. [64] in

the context of TIDC coarsening has demonstrated

nearly perfect self-consistency, exceeding expecta-

tions given the flaws in the data. The internal agree-

ment includes the data on the ECDFs as well as the

data on kinetics. In this section the results of the TIDC

theory re-analysis are compared with the data

expected from reports in the literature. The parame-

ters in question are the equilibrium solubilities of Al

in the c and c0 phases, XcAle = 0.1121 ± 0.0005 and

Xc0Ale = 0.2365 ± 0.0004, the equilibrium volume

fraction, fe, and the interfacial free energy, r, at the

aging temperature of 550 �C (823 K).

The equilibrium compositions of the c and c0 pha-

ses at 823 K are readily available from the solubility

curves published by Ardell (XcAle) [74] and Ma and

Ardell (Xc0Ale) [75]. The results are XcAle = 0.1074 and

Xc0Ale = 0.2313, respectively, which differ by * 0.05

at.% from the values obtained from the extrapolations

in Fig. 6. The equilibrium volume fraction of c0 pre-

cipitates at 823 K for an alloy containing 12.50 at.% Al

is 0.15, which is * 10% larger than fe obtained from

the intercept in Fig. 10. Interestingly, the values of

XcAle, Xc0Ale and fe happen to be in excellent agree-

ment with those reported by Plotnikov et al. them-

selves, specifically 0.1114 ± 0.0032, 0.2314 ± 0.0047

and 0.128, respectively. All these values are within

the acceptable range of uncertainty.

The interfacial free energy, r, is readily calculated

from the equation

r ¼
DXeG00

mce

2Vmc0ehzi
kn
jn

� �1=n

; ð24Þ

which is valid for the LSW theory with n = 3 (hzi = 1)

and for the TIDC theory for any value of n. Equa-

tion (24) has already been used to estimate r in 5

binary c/c0 alloys, Ni–Al, Ni–Ga, Ni–Ge, Ni–Si and

Ni–Ti [68]. That effort was undertaken for two main

reasons: 1. Thermodynamic modeling was finally

available to provide reliable estimates of G00
mce for all 5

alloys, thereby eliminating the need for simplifying

approximations of the curvature of the Gibbs free

Table 3 Comparison of the measured values of the volume

fraction (fmeas) of c0 precipitates in the Ni–12.5%Al alloy with

those calculated (fcalc) using Eq. (20); data of Plotnikov et al. [64]

t (h) fmeas fcalc diff

4 3.64 3.49 4.1

16 8.62 5.78 33.0

64 9.23 5.56 39.8

256 10.00 7.71 22.9

1052 11.96 10.12 15.4

2607 13.37 10.53 21.3

4096 12.80 12.49 2.4

The input data for each calculation were taken from the tabulated

values of Nv and hri reported in Table D1 of the Supplementary

Material to their paper. The parameter w was taken equal to 1.2.

All the volume fractions are reported as percentages. The column

labeled diff represents the absolute values of the difference

between the measured and calculated values of f, normalized to its

measured value; they are presented in bold-face type as

percentages

3 By way of illustrating this point, Plotnikov et al. [64] state ‘‘If
one adds mathematical corrections terms to these laws, as was
posited by Ardell, and Xiao and Haasen, then it is necessary to
add higher-order terms to all the pertinent physical quantities,
hR(t)i, Nv(t), DC(t), and the PSDs, which are then no longer
unique [127].’’ Their Ref. [127] is a paper by Marqusee and
Jones that does not in fact exist.
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energy of the c phase; 2. the values of r predicted by

both the LSW and TIDC theories of coarsening could

be easily compared. The main conclusions were that

the magnitudes of r were all in the expected range

and that the TIDC analysis produced values of r
about 2/3 as large as the LSW values.

Proper application of Eq. (24) demands that DXe,

Vmc0e and G00
mce have their thermodynamic equilib-

rium values, which of course depend on the equi-

librium compositions of the c and c0 phases at the

temperature of the experiment that produces the

values of kn and jn. Since the equilibrium values of

DXe, Vmc0e and G00
mce as functions of T have not been

reported previously, they are presented in ‘‘Ap-

pendix C’’ along with empirical equations that can be

used to calculate their temperature dependencies.

The source material used in the calculation of DXe is

the temperature dependencies of Xce reported by

Ardell [74] and Xc0e reported by Ma and Ardell [75].

Vmc0e was calculated using the equilibrium lattice

constants of the c0 phase as a function of temperature

[76]. The equilibrium curvatures of the Gibbs free

energies of mixing were calculated using the ther-

modynamic data base of Ansara et al. [77] in con-

junction with the equilibrium solubilities of the c
phase as a function of T [74].

Using as input the data extracted from Figs. 4 and

5a, in conjunction with G00
mce = 338,173 J mol-1 [77],

Vmc0e = 7.03 9 10-6 m3 mol-1 and hzi = 0.9242,

Eq. (24) predicts r = 25.73 ± 0.653 mJ m-2. The large

errors are due entirely to the scatter in the values of

XcAl at the longer aging times (see Fig. 5). Compu-

tational modeling of the c/c0 interfacial free energy

[78–82] indicates that it is temperature dependent,

decreasing with increasing temperature. Values of r
for Ni–Al alloys are also available for aging temper-

atures of 898 and 988 K [68], specifically 22.33 ± 1.31

and 19.52 ± 0.90 mJ m-2, respectively. The data on r
as a function of aging temperature T for the 3 avail-

able aging temperatures are shown in Fig. 10. Within

the limits of experimental error the decrease of r with

T is linear. These results, all obtained from data on

coarsening in binary Ni–Al alloys analyzed using the

TIDC coarsening theory, confirm that the energy of

coherent c/c0 interfaces is temperature dependent, as

predicted theoretically. The comparison between

theory and experiment seen in Fig. 10 indicates that

the temperature dependence of r is much stronger

than that predicted by Mao et al. [79] and more clo-

sely resembles the temperature dependencies pre-

dicted by the theories of Yang et al. [81] and Liu et al.

[82], the latter of which is within striking distance of

good quantitative experimental agreement. The

decrease of r with increasing T has been noted before

[81–83], using the Ni–Al/Ni3Al interfacial free ener-

gies calculated by Ardell [68], but the addition of the

third value places the temperature dependency on a

much firmer footing.

The values of r reported by Plotnikov et al. [64],

28.55 ± 1.61 and 29.94 ± 1.69 mJ m-2 depending on

which thermodynamic data base is used in the cal-

culation (see their Table 7) are comparable in mag-

nitude to the value of r calculated herein from their

data, but with much smaller errors. The main factors

responsible for the differences, apart from their

assumption that MDC coarsening kinetics prevail, is

their use of incorrect values of Vmc0e and G00
mce, both of

which are smaller than the correct values but com-

pensate each other to some extent in Eq. (24).

Specifically, Plotnikov et al. used

G00
mce & 270 kJ mol-1 in their calculations of r (cf. *

338 kJ mol-1), which suggests that they might have

used the curvature of the excess Gibbs free energy

rather than the curvature of the total Gibbs free

energy, which is about 25% larger. Also, their

Figure 10 Data on the temperature dependence of the interfacial

free energy of the c/c0 interface compared with the predictions of

several theories. The two data points attributed to Ardell are taken

from Ref. [68]. The labeled theoretical curves are taken from the

work of Mao et al. [79], Yang et al. [81] and Liu et al. [82].
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reported value of Vmc0e (6.98 9 10-6 m3 mol-1) is

slightly smaller than the one used herein.

The equation used by Plotnikov et al. to calculate r
also includes a fudge factor, F(f) (= 1.83 in their

Table 6) which purports to ‘‘correct’’ for the depen-

dence of the rate constant k on f. Since there is no

effect of f on coarsening in Ni–Al alloys, it is clearly

inappropriate to employ a phantom fudge factor to

account for a phantom effect. The Plotnikov et al.

values of r are about a factor of 1.22 smaller when the

fudge factor is excluded, bringing their values of r
much closer to that reported in this work.

The source of the small error bars on their reported

values of r appears to be related to an underestimate

of the error in the rate constant j, reported in their

Table 6. The value of j-1/3 reported by Plotnikov

et al. is 0.25 ± 0.01 s1/3; the value calculated herein

using their last five data points in a plot of XAl versus

t-1/3 is 0.263 ± 0.068 s1/3. Whereas the magnitudes

of j are comparable, the error in their data is actually

over a factor of 6 larger than that reported, which

accounts for the discrepancy between the error

reported by Plotnikov et al. and the error calculated

in this work.

Summary, conclusions and final thoughts

1. Fitting the PSDs to the theoretical PSD of the

TIDC coarsening theory is the best way to eval-

uate n. If PSDs have not been measured, a suit-

able alternative is to plot hrin versus t for different

values of n and then determine n from a plot of

the correlation coefficient, R2, versus n, as shown

inset in Fig. 4. Plotnikov et al. disavow this

method, but do not offer any scientific or statis-

tical basis for their opinion. A glance at Fig. A1 of

the Supplementary Material to Ref. [64] shows

quite clearly that of the 4 plots shown n = 2.4

provides the best fit to their own data.

2. Regarding the time dependency of Nv, it has

been shown repeatedly [6, 40, 66] that the inverse

time dependency predicted by Eq. (21) is incor-

rect. It truly does not take much effort on the part

of any researcher to check the constancy of the

product Nvt. The data in Table 2 are easily

checked in a matter of minutes, and it requires

little knowledge of mathematics to see that Nvt is

not even close to being constant. Simple scientific

curiosity would stimulate most researchers to at

least try to understand why Eq. (21) fails so

miserably. Perhaps it is because Eq. (21) dates so

far back to the early days of the theory of

coarsening that it is accepted without question.

But its failure, and the relative, if imperfect,

success of Eq. (11) [6, 40, 66] to describe data on

the time dependency of Nv in so many different

types of coarsening problems suggests that the

refusal to accept Eq. (11) is truly staggering.

Plotnikov et al. [64] assert that Eq. (21) is justified

by the theoretical work of Marqusee and Ross

[84] who indeed report a ‘‘second-order correc-

tion’’ to the t-1 dependency of Eq. (20) (as do

Umantsev and Olson [85]). However, the second

term in Eq. (11) is not a consequence of a series

expansion of the time dependency of Nv (see

‘‘Appendix B’’). Instead, it is due to the time

dependency of f and is much too large to ignore.

3. The existence of ‘‘quasi-steady-state’’ or ‘‘quasi-

stationary state’’ coarsening has been a consistent

thread in the papers written by Sudbrack et al.,

Booth-Morrison et al. and Plotnikov et al. The

usage first appears in the Ph.D. dissertation of

Sudbrack [86], who associated it with solute

depletion during coarsening and attributed it to

Kuehmann and Voorhees (K–V) [87]. K–V them-

selves, however, refer only to the quasi-stationary

approximation used to solve Laplace’s equation

for steady-state diffusion. K–V themselves never

use the term quasi-steady-state coarsening. In

subsequent publications [38, 39, 64, 73] the notion

of quasi-steady-state coarsening appears to have

taken on a life of its own, possibly attributed to

the experimentally measured variation of f with

aging time. The upcoming discussion involving

the lever rule (see Fig. 8) illustrates convincingly

that the volume fraction of c0 precipitates must

increase with aging time toward its equilibrium

value as an integral component of Ostwald

ripening behavior. There is nothing ‘‘quasi-

steady’’ about the way this occurs. The idea of

quasi-steady or quasi-stationary state coarsening

is misleading terminology and should be

abandoned.

4. Despite the misgivings accompanying the lack of

internal consistency of some of the data of

Plotnikov et al. [64], their results are entirely

consistent with the predictions of the TIDC

coarsening theory. This conclusion is inescapable.

Indeed, it is almost as if the authors set out to
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provide a critical test of the TIDC coarsening

theory, which nearly perfectly describes their

data both semiquantitatively (Figs. 4, 5, 6, 7) and

quantitatively. The excellent visual fit between

the experimental and theoretical CDFs seen in

Fig. 3b provides additional reassurance that the

TIDC coarsening theory is correct. The only

discrepancy with previous work [63, 68] is the

difference between the values of the temporal

exponent used to fit the data, n = 2.4 previously

and 2.2 in this study. It is most likely the case that

self-consistent results would obtain using the

same value of n to analyze all the data, but that is

work for the future. Lending further credence to

the validity of the TIDC coarsening theory is the

consistency among the values of r obtained from

analysis of the data on Ni–Al alloys. We see in

Fig. 10 a consistent linear decrease of r with

T over the range of T investigated and good

agreement with at least some of the temperature

dependencies predicted theoretically.

5. In the original TIDC coarsening theory [44] the

interface width, d, was assumed to be indepen-

dent of the particle size. The original justification

for temporal exponents satisfying 2 B n B 3

arose from a conjecture that d should increase

as hri increases [44]. The work of Plotnikov et al.

[52] shows that this is not the case, d instead

decreasing very slowly with aging time during

the c0 coarsening regime in a binary Ni–Al alloy.

As demonstrated recently [65], the diffusion

coefficients at the c/c0 interface in binary Ni–Al

alloys can also impact coarsening in such a way

that the temporal exponent is noninteger, leading

to a temporal exponent that satisfies the condi-

tion 2 B n B 3. The influence of other factors

remains to be explored. One is whether dlro, the

transition region between long-range order in the

c0 particle to disorder within the interface [54, 55],

varies with particle size. After all, it is diffusion

within this region of the interface, not within the

entire interface itself (recalling that dlro\ d), that

will have quantitative consequences for TIDC

coarsening. Another, perhaps more subtle, factor

is the change in equilibrium shape that occurs

during coarsening in elastically misfitting c/c0

alloys, typified by Ni–Al alloys, where the shapes

of the c0 precipitate evolve from spherical to

cuboidal as the size increases. This means that the

parameter S, which satisfies the condition 4p/

3 B S B 8 increases with aging time and should

be incorporated into the Gibbs–Thomson equa-

tion which is used to specify the solute concen-

tration in the matrix at the c/c0 interface.
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Appendix A

The procedures described in this appendix provide

an alternative method of fitting the theoretical PSD of

the TIDC coarsening theory to experimentally mea-

sured histograms when a more rigorous mathemati-

cal subroutine is not available. The method utilizes

Microsoft Excel� to implement simple integration

routines using the trapezoid approximation. A side

benefit of the new method is the calculation of other

important parameters related to the PSDs. The first

task is numerical integration of Eqs. (13)–(15) to cal-

culate h(z) for values of n over the interval 2 B n B 3.

After this is done, hzi, hz2i and hz3i are calculated

numerically over the same range of n, thus enabling

calculation of g(u), Eq. (16) and H(z), Eq. (19), as well

as rSD and w. Fitting of the experimentally measured

histograms is done by calculating their unique values

of rSD/hri and equating them to the theoretically

calculated values of rSD/hri, which depend on n via

Eq. (17). The numerical integrations were all per-

formed using the trapezoid approximation with

Dz = 0.005. The numerical calculations for n = 2 and

n = 3 were compared with the analytical solutions for

IRC and MDC coarsening, respectively, and found to

agree to at least the 8th decimal place.

Numerical calculation of hzi, hz2i and hz3i is

straightforward, making use of Eqs. (13) and (15),

and recalling that zmax = n/(n - 1):

hzi ¼ �3

Zzmax

0

z/ðzÞ exp nðzÞf gdz; ð25Þ
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hz2i ¼ �3

Zzmax

0

z2 /ðzÞ exp nðzÞf gdz; ð26Þ

hz3i ¼ �3

Zzmax

0

z3 /ðzÞ exp nðzÞf gdz: ð27Þ

To calculate rSD/hri, note that rSD for the dis-

tributed variable radius r is given by the equation

rSD ¼ hr2i � hri2
� �1=2

¼ hri hr2i
hri2

� 1

( )1=2

¼ hri hz2i
hzi2

� 1

( )1=2

: ð28Þ

Equation (28) is valid for the theoretical PSD in any

type of coarsening problem. Implementation of

Eq. (28) involves the calculation of both hzi and hz2i
using Eqs. (25) and (26). Comparison with experi-

mentally measured PSDs or histograms must be

made using the variable u = r/hri. Since hzi = hri/r*,

and hu2i = hz2i/hzi2, the expression for rSD/hri from

Eq. (28) becomes

rSD
hri ¼ hu2i � 1

� 	1=2
: ð29Þ

Since hu2i depends on n via the dependencies of hzi
and hz2i on n, it is then a simple matter to find the

empirical equation relating n and rSD/hri The result

is the empirical Eq. (17), which helps to find the

value of n associated with an experimental his-

togram. To this end Eq. (18) is used to calculate an

‘‘experimentally measured’’ value of rSD/hri, which is

then used as input in the empirical equation, Eq. (17).

On taking Eqs. (15)–(17) into account, the integrals

in Eqs. (25), (26) and (27) are calculated numerically

to obtain hzi and w as a function of n, and then for n

as a function of rSD/hri. The variations of these

parameters are depicted in Fig. 11. For the sake of

completeness, the empirical equations relating hzi
and w on n are presented as Eqs. (30) and (31):

hzi ¼ � 0:2891 þ 1:1229n� 0:3386n2 þ 0:0358n3

ð30Þ

and

w ¼ 4:6236 � 3:2765nþ 1:0605n2 � 1:1888n3: ð31Þ

Appendix B

We begin with Eq. (1), the kinetics of growth of the

average particle, written in the alternative form

hrin ¼ k t� toð Þ ¼ kt 1 � to
t

� �
¼ ktð1 � sÞ; ð32Þ

where s = to/t is a dimensionless time variable. Even

though s cannot be measured experimentally, we

expect it to be a small quantity for all practical aging

times during coarsening, and especially so at long

aging times, when hri � hroi and t � to; note that

s ? 0 as t ? ?. Equation (32) can be rewritten as

hri ¼ ðktÞ1=nð1 � sÞ1=n � ðktÞ1=n 1 � s
n

� �
ð33Þ

Figure 11 Illustrating the dependencies of: a the average value of hzi = hri/r*; b the value of w = hr3i/hri3 as a function of the temporal

exponent n for the PSDs in TIDC coarsening; c illustrating the dependency of n on the normalized standard deviation of the PSDs, rSD/hri.
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on discarding quadratic and higher-order terms in

the series expansion of (1 - s)1/n. Equation (33) jus-

tifies the approximation hri & (kt)1/n at long aging

times when s � 1.

The kinetics of solute depletion is described by the

equation

Xc � Xce ¼
‘hzi
hri ¼ ‘hzi

ðktÞ1=n 1 � s=nð Þ
: ð34Þ

On recalling Eq. (8) and expanding the denomi-

nator, Eq. (34) can be rewritten as

Xc � Xce ¼ ðjtÞ�1=n 1 þ s=nð Þ: ð35Þ

Equation (7) is recovered when s � 1. Note that

Eq. (35) involves a higher level of temporal expansion

than Eq. (33).

From the discussion involving Fig. 3, the volume

fraction, f, is expressed as

f ¼ fe �
Xc � Xce

DXe

¼ fe �
ðjtÞ�1=n

DXe

1 þ s
n

� �
: ð36Þ

On substitution of Eq. (35) into the denominator,

Equation (10) is recovered to the same level of

approximation as Eq. (35) as s ? 0.

To derive the time dependency of Nv at long aging

times Eq. (12) is rewritten as

Nv ¼
f

wShri3

� fe

wSðktÞ3=n 1 � 3s=nð Þ
1 � ‘hzi 1 þ s=nð Þ

feDXe ktð Þ1=n

( )

� fe 1 þ 3s=nð Þ
wS ktð Þ3=n

1 � ‘hzi 1 þ s=nð Þ
feDXe ktð Þ1=n

( )

: ð37Þ

Equation (11) is recovered at long aging times, as

s ? 0. The level of approximation is even higher than

those of Eqs. (35) and (36), which is why Eq. (11) is

expected to be valid at aging times exceeding the

validity of Eqs. (7) and (10). It is important to realize

and acknowledge that the second term in brackets in

Eq. (37), which depends on time as t-1/n, does not

arise from a series expansion involving Nv versus t.

Appendix C

This Appendix provides the reader with the tem-

perature dependencies of several important parame-

ters associated with the c and c0 phases of

Figure 12 a The

dependencies of the difference

between the equilibrium

compositions of the c and c0

phases, DXe ¼ Xc0e � Xce;

b the equilibrium molar

volume of the c0 phase, Vmc0e,

on temperature, T.

Figure 13 The temperature dependencies of the curvature of the

total Gibbs free energy of mixing of the c phase of equilibrium

composition, G00
mce, as a function of temperature, T (curve in red).

The curve labeled ‘‘Dupin’’ represents her calculation of G00
mce

(Dupin, personal communication 1999).
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thermodynamic equilibrium compositions, namely

DXe, Vmc0e and G00
mce. DXe was calculated using the

equilibrium solute concentrations of the c and c0

phases [74, 75], respectively. The equilibrium solu-

bility of the c0 phase was then used to calculate Vmc0e,

in conjunction with the empirical equation describing

its equilibrium lattice constants [76] as a function of

temperature. The results are presented in Fig. 12.

The empirical equation that describes the differ-

ence between the equilibrium compositions of the c
and c0 phases is

DXe ¼ 0:1957 � 5:9259 � 10�4T � 3:3796 � 10�4T2:

ð38Þ

The empirical equation that describes the equilib-

rium molar volume of the c0 phase is

Vmc0e ¼ 6:7487 þ 3:1836 � 10�4T; ð39Þ

where Vmc0e is in 106 m3 mol-1. In both equations T is

in K. The errors associated with these parameters are

difficult to estimate with any precision because errors

in both the equilibrium compositions and lattice

constants contribute. Equations (38) and (39) are

estimated to be accurate to within ± 0.2%, which is

twice the uncertainty reported in Ref. [76].

The temperature dependency of G00
mce was calcu-

lated using the parameters published in the thermo-

dynamic model of the binary Ni–Al alloy system due

to Ansara et al. [77]. It is shown in Fig. 13. The tem-

perature dependency of G00
mce is given by the empiri-

cal equation

G00
mce ¼ 203:3014 þ 0:2127T � 6:8338 � 10�5T2; ð40Þ

where G00
mce is in kJ mol-1 and T is in K. The uncer-

tainties associated with G00
mce are also difficult to

estimate because there are no reported errors asso-

ciated with the Redlich–Kister interaction terms used

by Ansara et al. [77] in their thermodynamic model of

the Ni–Al alloy system. The origin of the curve

labeled ‘‘Dupin’’ is a personal communication (Dupin

1999). Her calculations of G00
mce are about 3% larger

because she used slightly larger values of the equi-

librium Al concentration of the c0 phase (Dupin,

personal communication, 1999).
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