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ABSTRACT

Designing a battery-type electrode material with high electrochemical perfor-

mance based on eco-friendly and sustainable strategy has great significance for

the development of supercapacitors. Herein, NiS nanoparticles are deposited on

the surface of the porous hollow carbon spheres (PHCSs) derived from inex-

pensive and pollution-free yeast cells wall by an in situ hydrothermal process,

forming a litchi shell-like three-dimensional (3D) double-shell structure. The

PHCSs as a carbon substrate can effectively suppress the aggregation of NiS

nanoparticles and ensure more ground storage sites to enhance the performance

of the electrode material. More notably, the reaction concentration of nickel ion

has a remarkable effect on the electrochemical performance of composites. The

optimized sample shows a high specific capacity of 531.5 C g-1 at 1 A g-1,

excellent rate capability of 412.1 C g-1 at 10 A g-1 and outstanding cycling life

span of 83.3% after 5000 cycles. Furthermore, the assembled hybrid device

delivers a high energy density of 24.4 Wh kg-1 at a power density of 767 W kg-1

and an excellent cycle stability by delivering 89.3% capacitance retention after

5000 ultralong cycles. This work offers a feasible strategy to synthesize eco-

nomical and efficient electrode materials and demonstrates its enormous

potential in energy storage.
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GRAPHIC ABSTRACT

A novel NiS/porous hollow carbon sphere composite with double-shell struc-

ture was synthesized by a green and available self-template method, which

exhibits superior supercapacitor performance.

Introduction

Driven by the rapid growth of renewable and sus-

tainable energy demand and the burden of continued

environment degradation, researchers have devel-

oped energetically a new generation of environmen-

tally friendly and high-performance energy storage

systems [1–10]. Supercapacitors (SCs) have generated

considerable interest owing to advanced characteris-

tics, such as high power density, rapid charging,

pollution-free operation and ultralong cycle life span

([ 100,000 cycles) [11–13]. They properly make up for

the inadequacy of traditional capacitors and batteries

[14]. Nevertheless, supercapacitors still suffer from

the inherent disadvantage of low energy density [15].

Thus, much attention was paid to pursue superior

supercapacitors with high energy density, without

sacrificing their power density and life span in the

past decades. Hybrid supercapacitors composed of

capacitive and battery-type electrodes present a new

opportunity to develop SCs with higher energy

density by delivering a large voltage window and

high capacity [16, 17].
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Recently, tremendous efforts have been focused on

designing high-performance electrode materials of

hybrid devices. As a new type of battery-type elec-

trode material, transition metal sulfides have been

extensively studied by researchers [18, 19]. In par-

ticular, NiS has been recognized as a potential anode

material because of its excellent redox reversibility,

low toxicity and high conductivity [20]. The various

oxidation states at the crystal interface of NiS enable

nickel ions (Ni2?) to have more abundant and active

redox reactions [21]. Compared with the corre-

sponding NiO and Ni(OH)2, it has a lower band gap,

which is conducive to electron transition to signifi-

cantly enhance the conductivity [22, 23]. Meanwhile,

the substitution of sulfur for oxygen can provide a

more flexible structure because sulfur is less elec-

tronegative than oxygen, preventing the collapse of

the structure owing to the stretching between the

layers [24]. So far, different microstructures of NiS

have been prepared, including NiS nanorods [25],

NiS nanoparticles [26], NiS nanoflakes [27], flower-

like b-NiS [28], hierarchical hollow cube-like NiS [29]

and hierarchical nest-like Ni3S2@NiS [30]. However,

NiS is still affected by the huge volume changes

during the intercalation/deintercalation, which leads

to structural fracture and poor connectivity of elec-

trode materials resulting in a drop in capacity [31].

To alleviate the mentioned problem, numerous

researchers have combined structurally stable carbon

materials with NiS to enhance chemical stability and

electrical conductivity [32, 33]. Cai et al. [34] reported

a self-assembly synthesis method that does not

require a binder to anchor NiS nanoparticles on the

reduced graphene oxide (rGO) aerogels, which

exhibits an excellent capacitance value of 852 F g-1 at

2 A g-1. Sun et al. [35] successfully compounded a-
NiS in carbon nanorods by phase-controlled method,

and the composite prepared possesses outstanding

electrochemical properties. The specific capacitance

reached 957 F g-1 at 1 A g-1 and barely decreased

during the 2000 charging/discharging cycles. B. Joji

Reddy and colleagues [36] fabricated a NiS/N-doped

graphene composite as positive material with a high

specific capacitance of 1120 F g-1 at 1 A g-1 and

outstanding electrochemical stability of 82% initial

capacitance over 3000 cycles. Among numerous car-

bon materials, porous hollow carbon spheres

(PHCSs) stand out owing to the typical spatial

structure and high chemical stability than other

materials [37].

Inspired by yeast cell walls that are widely used in

food production, animal immunity and environ-

mental fields, the macromolecular saccharide poly-

mers extracted from them are selected as carbon

framework to fabricate electrode materials owing to

the following advantages. On the one hand, yeast cell

walls possess an ideal natural hollow structure: inner

cavity acting as ion repositories can quickly provide

electrolyte ions for electrochemical reactions; carbon

shell with good electrical conductivity facilitates

electron transfer. Simultaneously, abundant func-

tional groups distributed on the surface can also

improve the wettability of active materials [21]. On

the other hand, they are readily available from a

variety of raw materials, such as starch, liquor and

waste water [38]. The low cost, easy to regenerate,

green and pollution-free properties are important for

the preparation process of the electrode materials. Up

to now, the attempts for porous hollow carbon

spheres incorporating with nickel sulfide have been

scarce.

In this work, a green and available self-templating

method is proposed to synthesize a 3D double-shell

structure of PHCSs/NiS composite electrode materi-

als. The PHCSs obtained from readily available and

pollution-free yeast cell walls provide support for

NiS accompanied with dramatic volume change. NiS

nanoparticles deposited on the PHCSs by a simple

in situ hydrothermal method make considerable

capacitive contribution, improving the electrochemi-

cal performance of the materials. In addition, the

thickness of deposited NiS nanoparticles can be

tuned by adjusting the addition of Ni2? concentra-

tion. The resulting composite shows a remarkable

specific capacity of 531.5 C g-1 at 1 A g-1 and

excellent cycle life (83.3% capacitance retention after

5000 charge/discharge cycles). A maximum energy

density of 24.3 Wh kg-1 for the prepared hybrid

device is achieved at a power density of 767 W kg-1

and maintains 13.3 Wh kg-1 at 8263 W kg-1. This

strategy for designing and manufacturing composite

electrodes using universal, renewable materials sheds

light on the development of next-generation

advanced supercapacitors.
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Experimental

Materials

The yeast cell walls were purchased from Yantai

Huahai Biological Products Co., Ltd., China. All

chemicals used in the experimental process were of

AR grade, without any purification.

Preparation of porous hollow carbon sphere/
NiS composites

The schematic diagram of preparing PHCSs/NiS

composites is shown in Fig. 1. Yeast cell walls were

washed several times with deionized water to elimi-

nate impurities and thoroughly dried at 80 �C over-

night. The dried yeast cell walls were carbonized at

800 �C for 2 h (5 �C min-1) under nitrogen atmo-

sphere. Then, 3 mmol Ni (NO3)2 and 12 mmol

thiourea were dispersed into 30 mL of ethylene gly-

col solution to obtain a transparent green solution.

The as-prepared PHCS (100 mg) was slowly added to

the above green solution. After 30 min of ultrasound,

the mixed solution was transferred to a 100-mL

Teflon-lined stainless steel autoclave and kept at

160 �C for 16 h. After naturally cooling to room

temperature, the as-obtained composites were fil-

tered, washed three times with deionized water and

dried at 80 �C for 12 h, labeled as PHCSs/NiS-3.

In the following experiments, the other two com-

posites were obtained by adding different amounts

(2 mmol and 4 mmol) of Ni(NO3)2, which were

labeled as PHCSs/NiS-2 and PHCSs/NiS-4,

respectively. For comparison, pure NiS was also

fabricated by the similar manner of preparing the

PHCSs/NiS-3, but without the PHCSs substrate.

Material characterizations

The morphology and microstructure of samples were

characterized by scanning electron microscopy (SEM,

JSM-7610F, Japan) and transmission electron micro-

scopy (TEM, JEM-2100, Japan). X-ray diffraction

(XRD, Shimadzu XRD-7000, Cu Ka, k = 0.15418 Å)

was used to detect structures. Measurement of

Fourier transform infrared spectroscopy (FTIR) was

carried out on Shimadzu IR Prestige-21 using KBr

powder tableting method. X-ray photoelectron spec-

troscopy (XPS) spectra were conducted by Thermo

Fisher Scientific ESCALAB 250Xi instrument with

monochromatic Al Ka radiation source.

Electrochemical measurements

The electrochemical characterizations were acquired

by a CHI660D instrument (Shanghai Chenhua

Instruments Co., China). In a three-electrode system,

the prepared PHCSs/NiS electrode as a working

electrode, the saturated calomel electrode (SCE) and

platinum foil as reference electrode and counter

electrode. Typically, the working electrode was pre-

pared by mixing 80 wt% active materials, 10 wt%

acetylene black and 10 wt% polyvinylidene fluoride

to form homogenous mixture. The mixture was then

loaded onto the nickel foam with a coating mass of

about 3 mg. Cyclic voltammetry (CV) was performed

Figure 1 Schematic diagram

of the process of PHCSs/NiS

composites.
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at a voltage window from 0 to 0.5 V. Galvanostatic

charge–discharge (GCD) was performed at current

densities of 1–10 A g-1. Electrochemical impedance

spectroscopy (EIS) was tested at 5 mV amplitude

from 100 kHz to 0.01 Hz.

The hybrid device was fabricated using PHCSs/

NiS-3 composites and commercial activated carbon

(AC) as anode and cathode. Reference PHCSs/NiS-3

anode, the cathode were prepared. The mass distri-

bution of two electrodes was calculated by Eq. (1)

[39]:

mþ
m�

¼ Cs� � DV�
Csþ � DVþ

ð1Þ

where ? and - indicate the positive and negative

electrodes, Cs/F g-1 is the specific capacitance, DV/V
is the potential window of electrode and m/g repre-

sents the loading mass of active materials.

The specific capacity of the supercapacitors was

determined from GCD curves by Eqs. (2) and (3) [40]:

Cq ¼
I � Dt
m

ð2Þ

where Cq/C g-1 represents the specific capacity of

the electrode, I/A is the current density, Dt/s is the

discharge time and m/g represents the loading mass

of active material.

Cm ¼ I � Dt
3600�m

ð3Þ

where Cm/m Ah g-1 represents the specific capacity

of the electrode, I/mA is the current density, Dt/s is

the discharge time and DV/V refers the operating

voltage.

The specific capacitance (Cs/F g-1) of the electrode

materials was determined from GCD curves by

Eq. (4) [40]:

Cs ¼
I � Dt
m� DV

ð4Þ

where I/A represents the current density, Dt/s rep-

resents the discharge time, DV/V represents the

operating voltage, m/g is the loading mass of active

material.

The energy density (E/Wh kg-1) and power den-

sity (P/Wh kg-1) of the hybrid devices were deter-

mined using Eqs. (5) and (6) [41]:

E ¼ 1

2
CsDV

2 ð5Þ

P ¼ E

Dt
ð6Þ

Results and discussion

Material characterizations

The morphologies of PHCSs and PHCSs/NiS com-

posites are presented in Fig. 2. As shown in Fig. 2a,

the majority of carbonized yeast cell walls still

maintain regular spherical structure with a size of

2–3 lm. From the broken parts of the sphere enlarged

in Fig. 2b, the PHCSs present a hollow internal

structure and rich porous morphology on the surface

of the shell. The formation of porous morphology is

attributed to the rapid decomposition of polysac-

charides (such as b-glucan and mannan) in the yeast

cell walls into monosaccharides and oligosaccharides

during the pyrolysis process [42]. In the image of the

PHCSs/NiS-2 sample (Fig. 2c), NiS particles were

sparsely distributed over the shell of PHCS, which is

because the low concentration of Ni2? results in the

generation of fewer NiS particles during hydrother-

mal process. Differently, NiS particles are uniformly

accumulated on the carbon spheres in the PHCSs/

NiS-3 sample, forming a rough surface that like litchi

shell structure in Fig. 2d, e. This proper deposition

thickness of the NiS nanoparticles not only is con-

ducive to maintaining the stability of the structure,

but also effectively increases the number of active

sites to expand the contact space between the elec-

trode and electrolyte [43]. With the increase in Ni2?

concentration, excessive NiS particles accumulate on

the shell in the PHCSs/NiS-4 sample (Fig. 2f), which

is detrimental to the transmission of electrons,

resulting in a decrease in conductivity. To investigate

the elemental distribution of the composite, the ele-

mental mapping of PHCSs/NiS-3 sample is pre-

sented in Fig. 2g–i. The C, Ni and S elements were

uniformly accumulated on the carbon sphere shell,

demonstrating the NiS particles were successfully

introduced into the surface of the PHCSs.

Figure 3 displays the TEM images of PHCSs, pure

NiS particles and PHCSs/NiS-3 composite. As can be

seen from Fig. 3a, b, PHCSs show a regular spherical

morphology and an internal hollow structure, which

is consistent with the SEM analysis. The pure NiS

presents nanoscale irregular particles in Fig. 3c. After

compounding, the shell of the PHCSs is covered with

the uniformly distributed NiS particles with an

average size of 100 nm, as shown in Fig. 3d, e. The

uniquely designed structure can effectively alleviate

the drawbacks of volume expansion of pure NiS to
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Figure 2 SEM images of a, b PHCSs, c PHCSs/NiS-2, d, e PHCSs/NiS-3, f PHCSs/NiS-4, g, h, i elemental mapping of C, Ni and S of e.

Figure 3 TEM images of a, b PHCSs, c pure NiS, d, e PHCSs/NiS-3, f SADE pattern of PHCSs/NiS-3.
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improve the electrochemical stability of electrodes.

The selected area electron diffraction (SAED) pattern

reveals that the PHCSs/NiS-3 composite is an

amorphous material (Fig. 3f). The two blurred

diffraction rings are confirmed as the (100) and (101)

planes of NiS phase, respectively, which agrees well

with the results of XRD analysis.

Figure 4a exhibits the structural characterization of

materials by XRD patterns. The broad peaks located

at 25� and the inconspicuous peak located at 43� of

the PHCSs represent the graphitic (002) and (100)

planes, denoting the amorphous state of the carbon

material [44, 45]. Different amounts of Ni(NO3)2 were

used in the synthesis process to obtain three different

composite samples. There are four diffraction peaks

at 30.2�, 34.7�, 46�, 53.5� in the patterns of all PHCSs/

NiS composites, which correspond to the (100), (101),

(102) and (110) planes of NiS phase, respectively

(JCPDS 02-1280) [23, 46]. The results confirm that the

existence of PHCSs substrate did not change the

crystal structure of the NiS. Moreover, Fig. 4b exhi-

bits the FTIR spectra of PHCSs and PHCSs/NiS-3.

There are same peaks at 3420 and 1367 cm-1 of the

two samples, indicating the -OH bending vibration

and stretching vibration. The absorption peaks at

1640 and 792 cm-1 in these two samples are marked

as the C=O stretching vibration and the C–H plane

bending vibration [47]. It is worth noting that the

peak at 1106 cm-1 is assigned to C–O stretching

vibration and the peak at 617 cm-1 is related to the

Ni–O stretching in the spectrum of PHCSs/NiS-3

sample. These peaks indicate that NiS was chemically

bound to the carbon matrix by C–O–Ni bonds [48].

The chemical bonds enhance the strong bond

between the carbon matrix and the NiS particles,

facilitating the transmission of electrons and ions.

Therefore, the electrical conductivity of composite is

superior to the corresponding pure carbon material.

The chemical composition and state of the PHCSs/

NiS-3 material were measured by XPS analysis

(Fig. 5). The broad scan spectrum exhibits the coex-

istence of the C, Ni and S in Fig. 5a. Two prominent

peaks of 854 eV and 872.4 eV of Ni 2p are observed in

Fig. 5b, indicating two spin–orbit doublets of Ni 2p3/2
and Ni 2p1/2, accompanied by two related satellite

peaks [49]. The energy band difference between these

two peaks is about 18.4 eV, strongly confirming the

presence of divalent nickel ions. In the spectrum of C

1 s (Fig. 5c), two center peaks of 284.6 and 286.4 eV

represent C=C and C–O, and the peak of 284.9 eV

corresponds to C–S, implying that sulfur has entered

the crystal lattice of carbon materials [44]. The S 2p

contains two spin–orbit peaks of 162.9 eV (S 2p3/2)

and 164.1 eV (S 2p1/2) in Fig. 5d, and the additional

peak of 169.5 eV is attributed to Ni–S bond [50]. The

above XPS results further demonstrate that the exis-

tence of C–O and O-S bonds promotes the connection

between the carbon shell and the NiS nanoparticles,

which will improve the electrochemical performance

of the composite as an electrode.

Electrochemical performance

The structural details of the PHCSs/NiS composites

are sketched in Fig. 6a. Synergistic effect of the

unique natural spherical microstructure and the

redox reaction of NiS nanoparticles results in

remarkable electrochemical performance. During the

electrochemical test processes, the Faradaic redox

reaction occurred is shown in the following formula

[51, 52]:

NiSþOH� $ NiSðOHÞ þ e� ð5Þ

Figure 6b illustrates the electron transportation

mechanism of composite materials in the reaction.

The OH– in the electrolyte solution and NiS in the

Figure 4 a XRD patterns of

PHCSs, PHCSs/NiS-2,

PHCSs/NiS-3 and PHCSs/

NiS-4, b FTIR spectra of

PHCSs and PHCSs/NiS-3.
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Figure 5 XPS spectra of the PHCSs/NiS-3. a survey spectra, b Ni 2p, c C 1 s and (d) S 2p.

Figure 6 a Structural

illustration of PHCSs/NiS

composite, b The electron

transportation mechanism of

the PHCSs/NiS composite

electrodes.
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electrode material exchange ions, generating an

interfacial electric field on the surface of the PHCSs/

NiS composites to promote electron transfer during

charging/discharging processes [53].

The CV curves of pure NiS nanoparticles and

PHCSs/NiS composites at 5 mV s-1 are shown in

Fig. 7a. All samples exhibit distinct redox peaks,

which is attributed to the faraday behavior related to

redox reactions. The samples have different CV

integral areas at the same scanning rate which are

clearly observed, indicating that the thickness of NiS

deposition influences the electrochemical properties

of composites. The PHCSs/NiS-3 has the highest

specific capacity, in virtue of the largest integral area.

The GCD curves of different samples at 1 A g-1 are

represented in Fig. 7b. The specific capacity values of

PHCSs/NiS-2, PHCSs/NiS-3, PHCSs/NiS-4 and

pure NiS are calculated using Eqs. (2) and (3) as 366.7

C g-1 (101.9 mAh g-1), 531.5 C g-1 (147.6 mAh g-1),

504.0 C g-1 (140.0 mAh g-1) and 445.2 C g-1 (123.7

mAh g-1), respectively. The specific capacity of

PHCSs/NiS-3 composites is the largest because the

optimal deposition thickness of NiS provides a

greater contribution of capacity. The deposition

thickness of NiS in PHCSs/NiS-2 sample is too thin

to achieve the ideal performance. For PHCSs/NiS-4

samples, excessive deposition of NiS nanoparticles

hinders the transport of ions, resulting in decreased

conductivity. Moreover, the specific capacity value of

PHCSs/NiS-3 exceeds the pure NiS nanoparticles,

which indicates that the carbon spheres effectively

prevent the huge volume expansion, inhibit

Figure 7 Electrochemical

performances of samples in

6 M KOH electrolyte. a CV

curves at the scan rate of

5 mV s-1, b GCD curves at

the current density of 1 A g-1,

c CV curves at the different

scan rates, d GCD curves at

the different current densities

of PHCSs/NiS-3 sample,

e Nyquist plots of different

samples. f Cycle life of

PHCSs/NiS-3 sample at the

current density of 10 A g-1.
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polymerization of the particles and further accelerate

the redox reaction and improve the charge storage

ability [54].

Figure 7c presents the CV curves of PHCSs/NiS-3

at 5–200 mV s-1. The symmetrical redox peaks with

similar shapes can be observed, exhibiting the ideal

rate capability. When the scan rate reaches

200 mV s-1, polarization occurs because internal

resistance prevents charge collection and ion diffu-

sion [55]. Figure 7d displays the GCD curves of

PHCSs/NiS-3 at 0.5–10 A g-1. Almost symmetrical

curves indicate fast and excellent electrochemical

reversibility. The specific capacity values of PHCSs/

NiS-3 sample are 531.5 C g-1 (147.6 mAh g-1), 511.2

C g-1 (142.0 mAh g-1), 460.9 C g-1 (128.0 mAh g-1)

and 412.1 C g-1 (114.5 mAh g-1) at 1, 2, 5 and 10 A

g-1, which show excellent rate capability of the

material. The Nyquist plots of different materials are

revealed in Fig. 7e. The illustration displays the

equivalent circuit diagram, which consists of equiv-

alent series resistance (Rs), electric double-layer

capacitor (Cd), charge transfer resistance (Rct) and

Warburg impedance (Zw). In the high-frequency

region (inset of Fig. 7e), the intercept of the curve and

the diameters of semicircles react to the Rs and Rct

[56–58]. The Rs values of PHCSs/NiS-2, PHCSs/NiS-

3, PHCSs/NiS-4 and NiS are 0.47, 0.39, 0.67 and 0.59

X, respectively. The Rct values are 3.70, 1.12, 4.02 and

1.28 X, respectively. This indicates that PHCSs/NiS-3

sample has the fastest electron transport speed and

the lowest interface charge transfer impedance. In the

low-frequency region, the slope reflects the ion dif-

fusion resistance from the electrolyte solution to the

electrode interface [59, 60]. The PHCSs/NiS-3 has the

least ionic diffusion resistance because of the highest

inclination. These results illustrate that PHCSs/NiS-3

has faster ion transport capability and lower

resistance.

The long-term GCD test is commonly used to

characterize the electrochemical stability of the sam-

ple. Figure 7f shows the cycling stability of PHCSs/

NiS-3 sample at 10 A g-1. The PHCSs/NiS-3 com-

posite manifests good cycling stability by maintain-

ing an 81.3% of initial capacitance after 5000 cycles.

Initial specific capacitance is decreased rapidly

because of the potential shedding of some unbound

NiS particles from the carbon matrix. The capacitance

almost keeps constant during the 2000–4500th cycle,

because the electrode material is more wetted and the

electrolyte ions diffuse better into the electrode

resulting in a more complete ion intercalation/dein-

tercalation process [61]. After this stage, a slight

continuous increase in specific capacitance can be

observed. This interesting phenomenon can be

attributed to the further activation of electrode

materials during the long-term cycle owing to the

increased surface area accessible for electrolyte ions

[26, 62].

The SEM and XRD characterizations were per-

formed on the PHCSs/NiS-3 electrode after 5000

cycles. The SEM image (Fig. 8a) shows that the

morphology of PHCSs/NiS-3was almost maintained

after a long period of circulation, and no discernible

aggregation is found, indicating the superior stability

of spherical structure. In Fig. 8b, the XRD pattern

confirms the retention of the phase of PHCSs/NiS-3

electrode material after cycling process. The peaks

marked with symbols r and § correspond to the

amorphous carbon and Ni foam in the electrode

preparation process. After a long-term stability test in

6 M KOH electrolyte, the peak of the composite

material was indexed to the initial NiS phase (JCPDS

02-1280) and no other heterogeneous phase was

observed, which demonstrates that the phase struc-

ture of NiS has not changed during cycling. The

above results reveal that PHCSs/NiS-3 composite is a

promising electrode material with excellent electro-

chemical performance. For comparison with the

previously reported related electrodes, we calculated

the specific capacitance according to Eq. (4). The

specific capacitances of PHCSs/NiS-3 designed are

1436.5, 1381.6, 1245.8, and 1113.8 F g-1 at current

densities of 1, 2, 5 and 10 A g-1, respectively. The

PHCSs/NiS-3 electrode obtained in this work has

comparable or even better electrochemical perfor-

mance, such as box-in-box hollow structure of b-NiS

(668 F g-1 at 1 A g-1) [45], nanosheet frame of Ni3S4
(1213 F g-1 at 2 A g-1) [63], Ni3S4–MoS2 heterojunc-

tion (985.2 F g-1 at 1 A g-1) [64] and NiCo2S4–rGO

composite (1107 F g-1 at 1 A g-1) [65] (for more

examples, refer to Table 1).

The hybrid device (PHCSs/NiS-3//AC) was

assembled using the PHCSs/NiS-3 as the cathode,

the commercial AC as the anode (Fig. 9a). Commer-

cial AC with ideal electrical double-layer behavior

has typical operating potential windows of -1 to 0 V,

and PHCSs/NiS-3 composite has good redox

behavior of 0 and 0.5 V (Fig. 9b). To maintain charge

balance, the cathode/anode mass ratio is approxi-

mately 1:4.09. CV tests were performed at different
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potential windows to estimate the optimal operating

voltage range in Fig. 9c. The CV curves remain

stable within 1.5 V; while the voltage window

reaches 1.6 V, the electrolyte decomposes signifi-

cantly and is accompanied by hydrogen/oxygen

evolution reactions, which means 1.5 V is an appro-

priate window. Figure 9d shows the CV curves at

different scan rates, with no significant polarization

occurring even at 200 mV s-1, indicating the

remarkable rate capability. The ideally highly linear

appearance of the nearly symmetric GCD curve in

Fig. 9e demonstrates the electrode has excellent

redox reversibility. And the unapparent I–R drop at

high current represents the characteristics of low

resistance [72]. Figure 9f summarizes the Cs values of

hybrid device at different current densities, which are

78.2, 65.3, 58.8, 58.7, 53.0, and 42.7 F g-1 at 1, 2, 4, 5, 8

and 10 A g-1, implying the good rate capability.

Here, the performance of hybrid device is limited by

the commercial AC anode material (about 130 F g-1).

Therefore, higher capacitance anode materials can

further promote the electrochemical performance of

device [73].

Energy density (E) and power density (P) are two

critical parameters to characterize the electrochemical

properties of supercapacitor device, which can be

determined according to Eqs. (3) and (4). Figure 9g

exhibits the Ragone plot of PHCSs/NiS-3//AC

device. The energy density for hybrid device reaches

the maximum of 24.4 Wh kg-1 at a power density of

767 W kg-1 and still maintains 13.3 Wh kg-1 with the

power density up to 8263 W kg-1. More significantly,

the weight energy density is superior to other pre-

viously reported sulfide-based hybrid devices,

including Ni3S2/MWCNT-NC//AC (19.8 Wh kg-1 at

798 W kg-1) [67], NiCo2S4/CFP//AC (17.3 Wh kg-1

at 180 W kg-1) [74], MoS2/Ni3S2//rGO (21.7 Wh

kg-1 at 400 W kg-1) [75], NiCoS@N-pCNFs//

AC@N-pCNFs (21.6 Wh kg-1 at 134.9 W kg-1) [76].

EIS measurements were performed on PHCSs/NiS-

Figure 8 a SEM image of

PHCSs/NiS-3 after life cycling

test, b XRD pattern of PHCSs/

NiS-3 after 5000 cycling

process.

Table 1 Electrochemical performance of various nickel sulfide-based electrodes in recent typical works under the three-electrode system

Electrode materials Specific capacitance Cyclic stability References

Retention (%) Cycles

NiS microflowers 1127.1 F g-1, 1 A g-1 97.8 1000 [25]

b-NiS box-in-box hollow structures 668 F g-1, 1 A g-1 93.4 3000 [52]

Ni3S4/nanosheet frames 1213 F g-1, 2 A g-1 60 2000 [63]

Ni3S4–MoS2 electrodes 985.21 F g-1, 1 A g-1 58.2 20,000 [64]

NiCo2S4–rGO 1107 F g-1, 1 A g-1 90 5000 [65]

Porous square rod-like NiS2 1020.2 F g-1, 1 A g-1 93.4 1000 [66]

Ni3S2/CNTs composites 800 F g-1, 1 A g-1 74.6 1000 [67]

Al-doped b-NiS nanoflowers 1394.6 F g-1, 1 A g-1 80 2500 [68]

NiCo2S4 hollow nanoprisms 674.8 F g-1, 10 A g-1 86.5 1500 [69]

3D Ni3S2/Ni foam 1370.4F g-1, 2 A g-1 91.4 1000 [70]

Ni3S2/carbon nanosheets 883 F g-1, 2 A g-1 83.5 1000 [71]

Porous hollow carbon sphere/NiS composites 1436.9 F g-1, 1 A g-1 83.3 5000 This work

J Mater Sci (2020) 55:14431–14446 14441



3//AC device (Fig. 9h). In the low frequency, larger

inclination rate indicates high ion diffusion efficiency.

In the amplified high-frequency region, the Rs of 1.06

X and Rct of 2.2 X were obtained, which means the

high ion diffusion efficiency and favorable charge-

transfer power in this system [77]. Figure 9i presents

the cycle test result undergoing 5000 continuous

GCDs at 10 A g-1. An 89.3% capacitor retention rate

is still kept after the ultralong 5000 cycles, suggesting

outstanding cycle stability of the device. From the

internal illustration of Fig. 8i, two charged hybrid

devices illuminate a red light-emitting diode (LED),

which proves that PHCSs/NiS-3//AC has great

potential in practical applications.

Conclusions

In summary, the litchi shell-like PHCSs/NiS com-

posites were successfully synthesized by facile

pyrolysis carbonization and hydrothermal process.

Benefiting from the remarkable architecture of

PHCSs derived from yeast cell walls and redox per-

formance of NiS, the prepared battery-type electrode

possesses the remarkable electrochemical perfor-

mance. The specific capacitance reaches 531.5 and

412.1 C g-1 at the current densities of 1 and 10 A g-1,

respectively. Furthermore, the assembled PHCSs/

NiS-3//AC device delivers a maximum energy

density of 24.4 Wh kg-1 at 767 W kg-1 and a maxi-

mum power density of 13.3 Wh kg-1 at 8263 W kg-1.

The capacitance retention of hybrid reaches nearly

Figure 9 Electrochemical characterization of PHCSs/NiS-3//AC

device. a Schematic illustration of the hybrid device configuration,

b Comparative CV curves of PHCSs and PHCSs/NiS-3 at the scan

rate of 10 mV s-1 in three-electrode system, c CV curves in

different operation windows at the scan rate of 20 mV s-1, d CV

curves at the different scan rates. e GCD curves at different current

densities. f The specific capacitance at various current densities,

g Ragone plot of the hybrid device, h Nyquist plot of the hybrid

device, i cycle stability curve at the current density of 10 A g-1.
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89.3% after 5000 cycles. Combining low-cost pro-

duction with outstanding energy storage perfor-

mance through a green, simple self-template

approach, this material is an attractive candidate for

energy storage devices.
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