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Miguel José-Yacamán9

1Catedras Conacyt, Instituto Politécnico Nacional, CICATA Unidad Legaria, 11500 Ciudad de México, Mexico
2 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
3Laboratory of Synthesis and Modification of Nanostructures and Bidimensional Materials, Centro de Investigación en Materiales

Avanzados Unidad Monterrey, 66628 Monterrey, Nuevo Leon, Mexico
4Deparment of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
5Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, 76230 Querétaro, Querétaro, Mexico
6Department of Physics & Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA
7 INM- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
8Universidad Tecnológica de Manzanillo, 28869 Manzanillo, Colima, Mexico
9Department of Applied Physics and Materials Science, Center for Materials Interfaces Research and Applications (MIRA), Northern

Arizona University, Flagstaff, AZ 86011, USA

Received: 5 December 2019

Accepted: 26 May 2020

Published online:

4 June 2020

� Springer Science+Business

Media, LLC, part of Springer

Nature 2020

ABSTRACT

Two-dimensional (2D) materials based on molybdenum sulfide (MoS2) have

shown promising applications in semiconductors, optoelectronics, and catalysis.

The variety of applications implies a controlled manipulation of purity, shape,

and phase of such materials. This work elaborates on the structural characteri-

zation of MoS2 micro-assemblies produced in a chemical vapor deposition

(CVD) system with emphasis on the pyramidal structures formed at high

temperature and low gas rate, on a silicon dioxide (SiO2) substrate. A precise

control of temperature and gas rate in the CVD process prompts the growth of

pyramidal and other micron-size arrangements of MoS2 layers. An integrative

set of high-resolution and analytical electron microscopy techniques, in con-

junction with Raman and X-ray photoelectron spectroscopy (XPS), revealed the

structural features of the MoS2 microstructures. Raman and XPS confirmed the

presence of MoS2 and some residual oxide phases. Ultra-high-resolution scan-

ning electron microscopy provided direct observation of the distinctive stacking

of layers forming the pyramidal microstructures. Cross section samples from

selected structures were done using focused ion beam. An extent of transmis-

sion electron microscopy and Cs-corrected scanning transmission electron

microscopy (Cs-corrected STEM) results is discussed. This approach allowed to
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understand the growth mechanism of the triangular MoS2 microstructures

through spiral grow around a screw dislocation, initiated at the center of the

assembly.

Introduction

Two-dimensional (2D) transition metal dichalco-

genides (TMDs) are a versatile family of nanomate-

rials with more than forty layered composites. They

have the general formula MX2, where M is a transi-

tion metal of the groups 4–10 of the periodic table,

and X is the respective chalcogen [1–4]. Molybdenum

(IV) disulfide (MoS2) is one in this type of 2D layered

materials that come up with a variety of promising

applications in nanoelectronics, photonics, sensing,

energy storage, and optoelectronics [3, 5–8]. For

instance, MoS2 exhibits weak interlayer Van der

Waals interactions that allow it to act as an efficient

host for a variety of electron donating atoms, such as

lithium or sodium, to produce nano-batteries [9]. In

bulk, MoS2 exhibits a semiconductor behavior with

an indirect bandgap of 1.29 eV, but it drastically

differs when becomes a monolayer, having a transi-

tion to a direct bandgap of around 1.8 eV [8, 10]. The

displayed properties are directly related to its crys-

talline structure and particular three-dimensional

arrangement. One of the biggest challenges in the

synthesis of MoS2 materials is advancing reliable

methods to produce specific nanometric-size

arrangements and fine tune their properties. Among

the different methods employed to modify and con-

trol the structural properties of MoS2 are: mechanical

synthesis [11], wet chemistry [12], exfoliation [13],

and chemical vapor deposition (CVD) [14]. CVD is

particularly useful for large-scale production of 2D

MoS2, enabling direct growth of materials over-acti-

vated solid substrates using gas-phase precursors. An

efficient control of the reaction conditions allows the

production of uniform thin layers [15], or vertically

aligned MoS2 films [16]. Moreover, this method

enables the overall shape control of deposited layers,

using elemental molybdenum and sulfur as precur-

sors, to produce high-quality single-layer MoS2 thin

flakes, with triangular and hexagonal shapes, exten-

ded on solid substrates [17, 18]. Shape and structure

effect the properties and consequently the applica-

tions of multilayered materials; e.g., a preferred

pyramidal arrangement of layers exposes a

succession of edges over the pyramidal steps which

have potential catalytic applications [19–22]. Hence,

the detailed study of morphological and structural

features of 2D materials becomes of paramount

importance to understand their evolution and

properties.

Previous reports described the growth of 2D MoS2
as a screw-dislocation-driven process [23–29], and the

study of layered microstructures has been conducted

using atomic force microscopy (AFM) and Raman

spectroscopy. Typically, MoS2 exhibits a centrosym-

metric 2H-hexagonal phase described by an ABAB

stacking of S–Mo–S layers, with coplanar S–Mo–S

atoms in the first layer opposite to the second layer.

However, other non-centrosymmetric phases have

been reported specially when dealing with few lay-

ered materials and screw-dislocation pyramidal

morphologies [24, 25, 30, 31]. In this work, pyramidal

microstructures made of MoS2 were produced in a

CVD system. Their structural characteristics were

investigated using spectroscopy and electron micro-

scopy techniques, namely Raman, X-ray photoelec-

tron spectroscopy (XPS), ultra-high-resolution

scanning electron microscopy (UHR-SEM), focused

ion beam (FIB), and transmission electron microscopy

(TEM). Emphasis placed on the structural character-

istics is aimed to expand the understanding on the

growth of MoS2 microstructures.

Experimental section

Synthesis

MoS2 microstructures were synthesized via CVD,

protocol adapted from Chen et al. [24]. The experi-

ment setup is illustrated in Fig. 1. A 5 9 5 mm sec-

tion of ultra-flat [100] SiO2 wafer was used as a

substrate for the preferential growth of MoS2. The

SiO2 piece was previously cleaned using an isopropyl

alcohol/acetone (1:1 volume) solution. In a typical

growth reaction, 0.3 g of molybdenum trioxide

(MoO3) powder (99%, Sigma-Aldrich) was placed in

an alumina boat located at the center of a quartz tube
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(2.5 cm in diameter and 60 cm long). The boat posi-

tion was at the center of the heating zone of the fur-

nace (Lindberg Blue STF55433). Next, 0.6 g of sulfur

powder (99% Sigma-Aldrich) was placed in the inlet

of the furnace 15 cm away from the center. During a

typical procedure, the furnace temperature was set to

900 �C following a linear ramp of 10 �C min-1 under

a 20 sccm flow of N2 gas. The system was maintained

during 20 min at 900 �C, time in which the sulfur

evaporated entirely and reached the center of the

reactor to interact with the MoO3 [32, 33]. Finally, the

system was cooled down to room temperature under

N2 atmosphere.

Characterization

Raman spectroscopy studies were performed with a

LabRam HR Evolution from Horiba at ambient con-

ditions with controlled light and a back-scattering

configuration at a wavelength of 633 nm laser. For

mapping, an acquisition time of 5 s and 10 accumu-

lations were used for each point with a grid of

10 9 10, an objective lens of 1009 Vis and grating of

500 nm. X-ray photoelectron spectroscopy (XPS)

spectra were obtained in an ESCALAB 250Xi

(Thermo Scientific) X-ray photoelectron spectroscope

using monochromatic AlKa radiation (hm = 1486.7

eV). Images of the surface morphology of the MoS2
pyramids were acquired with an opto-digital micro-

scope (Olympus DSX500), an ultra-high-resolution

field-emission scanning electron microscope (UHR

FE-SEM Hitachi 5500), and with a FIB-scanning

electron microscope (FIB-SEM, ZEISS Crossbeam

340). A cross section of the pyramidal structure was

obtained through FIB microsectioning using Ga ions

at 30, 5, and 2 kV. The pyramid was previously

coated with a layer of carbon and platinum to protect

the sample from gallium ions. Plain-view imaging of

the microstructure was performed with a high-reso-

lution transmission electron microscope (HRTEM,

JEOL 2010F). Experimental HRTEM images are

compared with a simulated 2H.MoS2 structure gen-

erated by SimulaTEM software [34]. Atomic resolu-

tion imaging was carried out in a Cs-corrected

transmission electron microscope (JEOL ARM-200F)

operated in scanning mode (STEM) at 200 kV.

Results and discussion

The SiO2 substrate was explored through optical

microscopy to determine the structures obtained

through the CVD process (Fig. 2). It is possible to

observe pyramidal microstructures obtained through

the CVD process in the images of bright-field (2a–b)

and dark-field (2c–d) mode, such structures are

indicated with arrows.

The deposit of MoS2 on the SiO2 substrate as a

result of the CVD process was observed with more

detail through SEM imaging, Fig. 3. It�s noticed the

formation of an irregular film (or ‘‘islands’’) on the

substrate, Fig. 3a. At the edge of this irregular film, it

Figure 1 The schematic

shows the location of substrate

and precursor materials in the

CVD system used for the

growth of MoS2 pyramids.

Figure 2 Bright-field (a, b) and selected area dark-field optical

images (c, d) of the SiO2 piece after the CVD process.
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is possible to observe the abundant formation of tri-

angular structures, with some degree of truncation or

shape irregularity (Fig. 3b). Some of these

microstructures present a perfect triangular shape,

such as the one shown in Fig. 3c, with a size of 3.8 lm
per side, where the stepped surface is visible.

The Raman spectrum of the micropyramid are

shown in Fig. 4, where the color of each spectrum

colors corresponds to the color assigned to each circle

shown in the mapped area. Mapping analysis

revealed the appearance of characteristic MoS2 sig-

nals at 179 (A1g (M) - LA (M)), 230 (LA(M)), 383

(E1
2g), 409 (A1g), 421 (B2

2g þ E2
1uÞ, 454 (2LA), and

465 cm-1 (A2u) [35–37] corresponding to the spectra

of the shown areas. However, there are some differ-

ences between the spectrum obtained from the cen-

tral area of the micropyramid (red spectrum or

labeled with the letter d) and the spectrum obtained

on the edge labeled with the letter b, black circle. The

spectrum obtained from the central area shows a

value of the I2LA(M)/IA2u ratio of 0.98, while the

I2LA(M)/IA2u ratio for the black spectrum was 1.05,

which indicates that the 2LA(M) mode shows a high

value of intensity at the edge of the micro pyramid.

According to Chakraborty et al. [36], the relative

intensity of the 2LA(M) mode respect to the A2u

mode decreases as a function of the number of layers,

correlating with our results since at the center of the

micropyramid the number of layers is greater than in

the edge. The relationship between the 2LA(M) and

A2u modes for the spectra c and e indicates a 2H-type

structure similar to the to the bulk material, while in

the a spectrum the presence of MoS2 is null since the

mapping was carried out outside the micropyramid.

Another vibrational mode observed in the spectrum

and taken at the edge of the micropyramid is located

at 230 cm-1 (mode LA (M)) taken at the edge of the

micropyramid. This mode is identified as first-order

mode, and it is attributed to the dispersion of pho-

nons due to defects induced in the structure and the

presence of a few atomic layers. Finally, a slight sig-

nal was also observed around 300 cm-1, which may

be due to the presence of molybdenum oxides

remaining from the synthesis [38–40].

The XPS analysis of the MoS2 pyramids is dis-

played in Fig. 5. In the high-resolution spectrum of

the S2p region (Fig. 5a), the 2p1/2 and 2p3/2 signals of

the MoS2 are observed at 163.1 and 161.8 eV. Also,

two signals are observed at 162.4 and 161.3 eV, which

can be assigned to non-stoichiometric MoxSy due to

the presence of surface defects introduced during the

CVD growth [41, 42].The S2s-Mo3d region is dis-

played in Fig. 5b. The S2s (226.50 eV) and Mo 3d

Figure 3 a SEM images of the ‘‘islands’’ and b and c pyramidal structures of MoS2 at different magnifications.

Figure 4 Raman spectra of different points on the MoS2
pyramids grown by CVD (633 nm laser).
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(229.1 and 232.2 eV for 3d5/2 and 3d3/2, respectively)

correspond to signals of MoS2 are observed [43–45].

Other signals located at 233.3 eV and 236 eV, are

observed, assigned to the 3d5/2 and 3d3/2 of the

Mo(VI) species [46–48]. These results show that the

obtained microstructures are almost entirely com-

posed of MoS2; however, some molybdenum oxide

and non-stoichiometric MoxSy phases presented.

A more detailed morphological analysis was car-

ried out by SEM tilting the sample up to 54o, which

allows the observation of a distinguishable stepped

surface of the micropyramids. The pyramid has a

triangular base consisting of several layers of MoS2.

The pyramids correspond to a truncated trigonal

morphology with a high density of surface steps,

which can be correlated to the speed of growth in the

direction of the [0001] axis. It slightly varies since

each step has a different number of layers. The

obtained pyramidal morphology is related to screw

dislocations occurring during the growth of the

nucleus along the vertical axis, and to the triangular-

shaped layers in the lateral dimension that form the

MoS2 pyramid. A spiral structure of MoS2 pyramids

can be clearly seen, and the direction of growth that

occurred in a clockwise direction is indicated with

white arrows in Fig. 6a. A schematic of the MoS2
pyramid growth with a spiral structure is shown in

Fig. 6b. The different steps that are formed during the

growth of the pyramid are clearly observed in Fig. 6c.

The image shows defects at the edges, which cause

deviation from the perfect triangular shape. The

combination of morphological features between

hexagonal and triangular shapes in the microstruc-

tures is due to a complex growth that includes two

dislocations that share a common core [29]. In some

of the MoS2 pyramids, we observed the formation of

small particles at the edges of the layers and some

larger particles dispersed throughout the pyramid.

These round particles corresponded to nucleation

points for the growth of monolayers of MoS2 [14].

These images help to understand the growth mech-

anism of the triangular crystallites. The growth pro-

ceeded along emerging screw dislocation on the

surface, as demonstrated by the Burton, Cabrera, and

Frank theory (BCF) [49, 50]. This type of growth

mechanism has been reported in other nanomaterials

such as cobalt, nickel hydroxide, zinc hydroxy sul-

fate, and other pure metals [51–54]. The formation of

a screw dislocation in MoS2 requires the generation of

slipped planes (screw defects) in the first layers of the

pyramid; otherwise, the growth will preferentially

follow an in-plane growth mode, producing mono-

layers of MoS2 [25, 55]. Screw dislocations developed

under low supersaturation conditions created stag-

gered edges in the bottom layer that act as nucleation

sites for the addition of the following precursor

atoms, driving the growth of the second layer in the

top of the bottom layer. This gradually leads to the

continuous growth of spirals, resulting in a pyrami-

dal growth [50]. These conditions of low-saturation

conditions were reached in our experiment set up by

the low sulfur concentration present at the center of

Figure 5 High-resolution XPS spectrum of S2p a and S2s-Mo3d b regions of the MoS2 micropyramids.

J Mater Sci (2020) 55:12203–12213 12207



the reactor and by controlling the low drag flow

velocity. For most of the reported experiments for the

growth of MoS2 using CVD the rate of the carrier gas

is usually high, ranging from 100 to 500 sccm

[14, 56, 57], in comparison with our process at only 20

sccm.

Dichalcogenide MoS2 present typically a 2H-

hexagonal phase with an ABAB stacking. This

stacking order can vary depending on the morphol-

ogy, thickness, growth mechanism, etc.

[24, 25, 31, 58]. To confirm the structural arrangement

of the produced MoS2 pyramids, HRTEM and

atomic-resolution STEM imaging were performed.

First, complete structures were recovered by scraping

the surface of the SiO2 substrate with a thin blade,

then placed into an ethanol solution and resuspended

with an ultrasonic bath for 20 min. Afterward, 7lL of

the ethanol solution was placed onto a carbon-coated

TEM grid, and the solvent was allowed to evaporate

at room temperature. A second sample was prepared

by FIB cross-sectioning, attaching the fabricated

lamella on a copper lift-out grid. Figure 7a (scraped

sample) shows an HR-TEM micrograph of a scraped

MoS2 pyramid, confirming the crystalline arrange-

ment achieved during the CVD production process.

No perceivable defects were found in the analyzed

areas. The three interplanar distances were 0.27 nm,

with 60� between them. These distances matched

with the 0�110ð Þ, 1�100ð Þ, and 10�10ð Þ planes of the 2H-

MoS2 structure, viewed along the 0001½ � direction.

The corresponding electron diffraction pattern is

shown in Fig. 7b. The pattern shows sharp reflections

characteristic of 2H-MoS2. Satellite reflections fol-

lowing the hexagonal symmetry of the pattern are

also observed, indicating a rotation of * 2.6� of some

layers around the [0001] axis due to the spiral growth.

Micrographs of the pyramid cross section, Fig. 7c,

exhibit an area with a periodicity of layers or steps

forming the pyramidal arrangement. The overall

imaged area was approximately 1 lm2, and it is

composed of about 68 layers. The interlayer distance

Figure 6 a SEM image of MoS2 pyramid showing the spiral growth mechanism. b Schematic model of the MoS2 pyramid. c SEM image

of a MoS2 pyramid is showing the multiple layered steps.

Figure 7 a TEM image of MoS2 pyramid viewed from different

zone axis b electron diffraction pattern of MoS2 pyramid viewed

from [0001] direction. c Cross section area and d electron

diffraction pattern of the pyramid and composed of 68 layers, their

evenly space of 0.65 nm which correspond to the (0002) planes of

MoS2. e, f Experimental (left) and simulated (right) HRTEM

images of a small area of the single pyramid. The lattice pattern is

in agreement with a 2H-ABAB layer stacking.

12208 J Mater Sci (2020) 55:12203–12213



is 0.6 nm, corresponding to {0001} planes. The elec-

tron diffraction pattern of the MoS2 (Fig. 7c, up inset)

confirmed the [0001] growth direction. A magnified

area of the image indicated with the blue square in

Fig. 7a is presented in the left panel in Fig. 7e high-

lighting the lattice pattern. An HRTEM image of a

MoS2 flake with 2H-ABAB structure viewed from the

[0001] axis zone was simulated, right panel in Fig. 6e,

taking into consideration the experimental

acquisition conditions. By tilting the sample around

the 10�10½ � axis, a second HRTEM image was taken

along the 03�31
� �

axis zone, and its corresponding

simulated image is also shown, right panel in Fig. 7f.

As noticed, the simulated images are in good agree-

ment with the observed experimental lattice patterns

along two different axis zones.

Aberration-corrected HAADF-STEM imaging was

employed to get a deeper insight into the pyramid�s.

Figure 8 a TEM image of the MoS2 pyramid with a white

rectangle where the cross section cut was made. b SEM image of

cross section obtained using the FIB-SEM. c, d Aberration-

corrected STEM imaging showing the position and height of the

atomic steps and separation between the MoS2 layers e atomic

model of the MoS2 structure showing the steps. f Atomic

resolution imaging of the lattice of a MoS2 with the

superimposed model of the structure. g Atomic resolution

imaging of the layer stacking of MoS2. h Deconvolution of a

line profile spectrum of MoS2 (black line) with peak overlaps of

Mo (Blue line), and S (purple line) elements, taken from figure (f).
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Figure 8a shows a MoS2 pyramid coated with a layer

of carbon and platinum to protect it before sectioning.

The prepared pyramid�s cross section is observed in

Fig. 8b. This process enabled to determine that the

sample height was of approximately 125 nm close to

its center with * 200 monolayers of MoS2, offering a

considerable amount of chemically active reactive

sites for efficient catalytic applications or to act as

support for other functional nanostructured materi-

als. The cross section view revealed four steps clearly

defined, the height of each step depending on the

number of layers of MoS2 conforming them (Fig. 8c).

In the analyzed area, each step was formed by 3 to 7

layers, which corresponded to a size of 1.8 and

4.2 nm, respectively (Fig. 8d). A schematic of the

pyramid showing the different number of layers in

each step is presented in Fig. 8e. The cross-sectional

atomic-resolution HAADF-STEM image in Fig. 8f

enables direct visualization of the stacking order of

the pyramid layers. The brightest atomic columns

correspond to projected Mo atomic columns, while

the dim ones are exclusively S columns. An atomistic

model is inserted in the image for comparison. This

arrangement corresponds to an ABAB stacking of

MoS2 layers, characteristic of the 2H phase, viewed

along the 1�100½ � direction. An atomistic model is

inserted in the image for comparison.

An intercalated stacking of MoS2 originated by the

screw dislocation closer to the center of the pyramid

is observed in Fig. 8g. It is noted that the ABAB

stacking order is retained with very small deviations

due to layers deformation or rotation, which can

cause the satellite reflections observed in the

diffraction pattern in Fig. 6b. The nucleation at the

initial stage generates a dislocation center with high

spiral activity, which allows maintaining the screw

dislocation in the MoS2 layers. A deconvoluted

intensity profile of the selected area shown in Fig. 8f

highlights the location of heavy atomic columns (Mo)

and light atomic columns (S) throughout the line

profile (Fig. 8h). Interplanar distances of 0.6 nm and

0.15 nm were measured, corresponding to interlayer

Mo-Mo columns and in-plane Mo-Mo columns,

respectively. The difference in the intensities of the S

columns in the profile is due to a slight deviation of

the sample from the exact axis zone. These cross-

sectional images present a direct observation of the

MoS2 layer intercalation produced by the screw-dis-

location-driven growth and confirm the 2H-ABAB

stacking order of the produced pyramids in agree-

ment with spectroscopy results [29].

Conclusions

MoS2 micropyramids were produced by using a CVD

growth method using at high temperatures and low

gas rates. Raman spectroscopy demonstrated the

characteristics signals of MoS2 on the SiO2 substrate

and highlighted the differences between the vibra-

tional modes at the center and in the edge of pyra-

mids. Signals at 230 and 454 cm-1 attributed to few

layers MoS2 were located at the edge of the pyramids

suggesting a one-step formation, while at the center,

the signal corresponds to the bulk material. XPS

confirmed the presence of the MoS2 phase in its

majority, however, the presence of the Mo (VI) sig-

nals are also observed attributed to the presence of an

oxide phase. UHR-SEM imaging revealed the pref-

erential formation of pyramidal structures ranging in

size between 1 and 4 lm per side. In combination

with FIB-SEM, it was possible to determine that the

growth mechanism of these materials is dominated

by a spiral growth at screw dislocations, particularly

due to the low concentration of the sulfur used dur-

ing the optimized process. Cross sections of MoS2
pyramids obtained by FIB allowed to reveal the

internal arrangement of the materials. In combination

with atomic resolution, S/TEM imaging allowed the

direct determination of the 2H-ABAB structural

stacking along the [0001] direction of the produced

pyramids, with horizontal growth along the 10�10½ �
and 0�110½ � directions. The high contrast and resolu-

tion of the HAADF signal undoubtedly showed the

precise organization of MoS2 into defined atomic

steps of S-Mo-S, and the intercalation of layers one by

one originated by the screw-dislocation-driven

growth.
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