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ABSTRACT

To enhance the piezoelectric responses, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics

were fabricated by a sol–gel method in various sintering atmospheres. The

effects of oxygen partial pressure on the microstructure and electrical properties

of BCZT ceramics were systematically investigated. The samples sintered in air,

O2 and N2 are the coexistence of the orthorhombic (O)-tetragonal (T) phase at

room temperature. The phase transition temperature of the O–T phase of BCZT

samples sintered in air, O2 and N2 is gradually closer to room temperature. The

results of EDS, XPS and the activation energy confirm the significant effect of

oxygen sintering atmosphere. BCZT samples sintered in oxygen atmosphere

show excellent ferroelectricity (2Pr = 31.62 lC/cm2, 2EC = 3.46 kV/cm) and

significantly enhanced piezoelectricity (d33 = 604.3 pC/N, d33
* = 647.5 pm/V

and kp = 58%), resulting from the minimum oxygen vacancy, the phase transi-

tion temperature of O–T closer to room temperature and dense microstructure.

These results demonstrate that adjusting oxygen partial pressure in sintering is

an effective way to enhance the piezoelectric responses of BCZT ceramics.

Introduction

Pb(Zr,Ti)O3 (PZT) materials are extensively used as

ultrasonic transducers, sensors and actuators on

account of their high piezoelectric constant

(d33 * 600 pC/N) [1, 2]. But the heavy use of lead

will bring serious environmental pollution. Hence, it

is particularly important to discover lead-free candi-

dates with superior piezoelectricity [3, 4]. Lead-free

BaTiO3 (BT) [5, 6]-, (Bi,Na)TiO3 (BNT) [7, 8]- and

(K,Na)NbO3 (KNN) [9, 10]-based piezoceramics have

been investigated. BaTiO3-based ceramics have
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become popular among these piezoelectric ceramics

[11, 12]. In particularly, Liu and Ren discovered that

the high piezoelectric constant (d33 = 550 * 620 pC/

N) of Ba1-xCaxZryTi1-yO3 (x = 0.15, y = 0.1, short for

BCZT) piezoceramics stems from a tricritical point-

type morphotropic phase boundary (MPB) [13].

The optimization of preparation process [14–16],

crystallographic texture [17, 18] and doping (LiTaO3,

Sn4?, Hf4?, Mn4?, Nd3?, et al.) [19–23] have been

used to enhance the piezoelectricity of BCZT ceram-

ics. It is hard to obtain excellent piezoelectric

response (d33[ 550 pC/N) in BCZT ceramics, and an

important reason may be that the phase transition

temperature of rhombohedral-tetragonal or

orthorhombic-tetragonal is above the room tempera-

ture [13, 24, 25]. Therefore, if the phase transition

temperature of BCZT ceramics could shift to room

temperature, its piezoelectric properties will be fur-

ther improved. There is no doubt that the phase

transition temperature of BCZT ceramics is influ-

enced by grain size [26–28]. In our previous study,

the construction of the O-T phase boundary near

room temperature has been realized by gaining super

grain size ([ 50 lm), which leads to the high piezo-

electric coefficient (d33 = 585.6 pC/N, d33
* = 898 pm/

V) of BCZT ceramics [27]. Moreover, doping is a

common method to shift the phase transition point of

BCZT ceramics. Wu et al. shifted the tricritical point

to room temperature by adding ZnO and improved

the piezoelectric response (d33 * 521 pC/N) of BCZT

ceramics [25]. Zhao et al. found that the introduction

of (Cu1/3Nb2/3)xO3 in BCZT ceramics could obtain a

room-temperature polymorphic phase transition

point and enhance its piezoelectric responses [29].

Cu/Y-coping BCZT ceramics could make the Curie

temperature increase by 5–15 �C and lead to the

coexistence of the O-T phase close to room tempera-

ture, which resulted in an improved piezoelectric

property (d33 = 552 pC/N) [30]. In general, the

introduction of acceptor dopants in BCZT ceramics

will bring about the formation of oxygen vacancies.

Besides acceptor doping, it is easy to form the oxygen

vacancies during the high-temperature sintering.

Domain-stabilizing defect pairs will form through the

interaction of oxygen vacancies and cations [22, 31].

An inner bias field caused by the formed defect pairs

leads to the reduction in the polarization rotation and

the motion of domain wall [32], resulting in the

decrease in the piezoelectric coefficient. In other

words, the existence of oxygen vacancies may

unfavorable for excellent piezoelectric properties of

BCZT ceramics. However, Zhang et al. fabricated

BCZT piezoceramics in N2 and air atmospheres,

respectively, and found that the sintering atmosphere

has no significant effects on the piezoelectric coeffi-

cient and phase structure [33]. Thus, it seems rather

confusing to understand the effects of oxygen

vacancy. Besides, the correlations between the oxy-

gen vacancy and phase structure in other piezoelec-

tric ceramics such as PbZr1-xTixO3 and PbZn1/3Nb2/

3O3-based materials have been investigated, and the

results show that the oxygen vacancy significantly

influences the phase structure and electrical perfor-

mances [34, 35]. Therefore, the effects of oxygen

vacancy on the phase structure and electrical prop-

erties of BCZT ceramics need to be further clarified.

In summary, the phase coexistence near room

temperature of BCZT ceramics is favorable to the

improvement of piezoelectricity. The phase structure

and electrical properties of BCZT ceramics should be

influenced by oxygen vacancy. Therefore, adjusting

oxygen partial pressure in sintering for BCZT

ceramics is expected to further improve the piezo-

electric responses by affecting phase structure and

reducing oxygen vacancy. Besides, the solid-state

method is not easy to obtain the piezoelectric

ceramics with homogeneous composition, and the

sol–gel method has been widely used to fabricate

BaTiO3-based ceramics because of its obvious

advantages such as accurate stoichiometric ratio and

compositional homogeneity [36, 37]. To figure out the

effects of oxygen vacancy and improve the piezo-

electric responses, BCZT ceramics were prepared by

chemical synthesis method and sintering in various

atmospheres, and the influences of oxygen vacancy

on its microstructure and electrical properties were

systematically investigated.

Experimental

The synthesis process of BCZT powders is shown in

Fig. 1. The experimental details from raw materials to

dry gel have been described in our previous paper

[27]. Finally, the dry gel was calcined at 800 �C for 2 h

to obtain BCZT powders.

BCZT powders were pressed into the pellets at

16 MPa and then sintered at 1500 �C for 10 h in

various atmospheres to get BCZT ceramics. BCZT-
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Air, BCZT-O2 and BCZT-N2 represent BCZT ceramics

sintered in air, O2 and N2, respectively.

The XRD (SmartLab-9, Rigaku, Japan) was applied

to obtain the phase structure of samples. The surface

morphology of samples was characterized by SEM (S-

3700 N, Hitachi, Japan). The elemental analysis of

BCZT ceramics was carried out by EDS (ApolloII,

EDAX, USA). The XPS (K-Alpha, Thermo Fisher

Scientific, USA) was applied to oxygen elemental

analysis. The variations of dielectric properties with

the temperature in a range of 20–200 �C and the

impedance spectroscopy of BCZT ceramics were

tested by an LCR meter (HP 4980A, Agilent, USA).

The ferroelectric test system (TF2000E, aixACCT

Germany) was applied to obtain ferroelectric prop-

erties and strain behaviors of the samples under the

electric field. The ceramic sample was poled under

the DC field of 20 kV/cm for 20 min at 25 �C, and its

quasi-static piezoelectric constant (d33) was measured

by a quasi-static d33 m (ZJ-4AN, Institute of Acous-

tics, China). The planer mode electromechanical

coupling coefficient (kp) was obtained by an impe-

dance analyzer (HP 4294A, Agilent, USA)

Results and discussion

Microstructure

Figure 2 exhibits the XRD patterns of all BCZT

ceramics. There is no impurity observed in all sam-

ples, indicating that all samples are pure phase. To

reveal the phase structure of BCZT ceramics fabri-

cated in different sintering atmospheres, the fine

scanning XRD patterns around 45� and Rietveld

refinement of crystal structure were performed (see

Fig. 2 and insert in Fig. 2a–c). Generally speaking, the

diffraction peaks of barium titanate around 45� may

be (200)R of rhombohedral phase, (022)/(200)O of

orthorhombic phase or (002)/(200)T of tetragonal

phase [16]. The hidden diffraction peaks around 45�
in all samples were determined by Gaussian fitting

and comparing to the diffraction peaks correspond-

ing to the tetragonal, rhombohedral and orthorhom-

bic phase of BaTiO3 standard cards [15, 38, 39]. The

fitting results show that the BCZT samples sintered in

air, O2 and N2 are the coexistence of the O–T phase,

and the content of the O and T phase for different

samples is different, indicating that sintering atmo-

sphere has significant effects on the phase content.

The content of the O and T phases in all BCZT

ceramics is given in Table 1. The content of the O

phase of BCZT samples sintered in air, O2 and N2

gradually decreases, and the content of the T phase

gradually increases, indicating that O–T phase coex-

istence of BCZT ceramics gradually becomes more

uniform. Furthermore, there is an interesting phe-

nomenon that the intensity of (200) peak around 45o

of BCZT samples sintered in O2, air and N2 gradually

increases, and (200) peak of BCZT-N2 samples

becomes the strongest, which indicates that BCZT

ceramics gradually show (100) orientation as the

oxygen content of sintering atmosphere decreases.

The result may ascribe to the competitive growth

mode among various orientations at different sinter-

ing atmospheres [40–42]. Zhang [43] and Yang [42]

also found a similar phenomenon in other ferroelec-

tric materials (Bi0.5Na0.5TiO3 and Sr2Bi4Ti5O18 sin-

tered in N2 atmosphere). The orientation may be due

to that the different surface energy of grain growth

leads to the anisotropy of nucleation and growth

rates of different directions when the samples are

sintered in various atmospheres [44]. Furthermore,

Figure 1 Synthesis process of BCZT powders.

9974 J Mater Sci (2020) 55:9972–9992



Figure 2 XRD patterns and

Rietveld refinement of BCZT

samples: a air, b O2 and c N2.
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Table 1 shows the lattice parameters of all samples

obtained by the Rietveld refinement method. The

result shows that the lattice constants of BCZT sam-

ples sintered in O2, air and N2 gradually decrease,

which attributes to the increase in the oxygen

vacancy concentration.

The SEM images and grain size distribution of all

samples were obtained and are shown in Fig. 3.

Firstly, BCZT-O2 and BCZT-N2 samples show more

compact than BCZT-Air samples. The relative density

of BCZT samples sintered in air, O2 and N2 is 94.7%,

97.6% and 96.9%, respectively, indicating that the

oxygen-enriched sintering is conducive to getting

dense BCZT samples. Secondly, the samples sintered

in air, O2 and N2 have the average grain size (Ga) of

37.8 lm, 32.6 lm and 13.5 lm, respectively. In gen-

eral, the oxygen vacancies are propitious to the

growth of grain in the ceramic sample, and more

oxygen vacancies lead to the larger grain size.

Therefore, the Ga of BCZT-Air samples with rela-

tively higher oxygen vacancy concentration is larger

than that of BCZT-O2 samples with lower oxygen

vacancy concentration. But the Ga of BCZT-N2 sam-

ples with the maximum oxygen vacancy concentra-

tion among all the samples is the smallest. It reveals

that the nitrogen atmosphere goes against the growth

of BCZT ceramics, which may be due to the existence

of a small amount of grain boundary pinning phase.

Tkach [45] and Zhang [46] also found that a similar

phenomenon that the Ga of some ceramics such as

SrTiO3 and Ca0.6Sr0.4TiO3 sintered in N2 is smaller

than that of the sample sintered in air. Moreover,

compared to BCZT-O2 and BCZT-N2 samples, the

grain of BCZT-Air sample is more uniform (see

Fig. 3d–f).

To find out the composition difference of the

samples sintered in various atmospheres, the EDS

analysis of all ceramic samples is given in Fig. 4.

Although the content of oxygen as a light element

determined by EDS is not accurate enough, the

comparison of oxygen content in BCZT ceramics

sintered in various atmospheres is still meaningful.

The oxygen content of BCZT-O2, BCZT-Air and

BCZT-N2 ceramics gradually decreases, suggesting

the gradually increased oxygen vacancy

concentration.

To further confirm the difference in oxygen

vacancy concentration of the samples, the XPS mea-

surement was taken. The typical XPS survey spec-

trum (shown in Fig. 5a) suggests that there are

barium (Ba), calcium (Ca), zirconium (Zr), titanium

(Ti), oxygen (O) and carbon (C) in BCZT-O2 ceramics.

The existence of carbon is due to atmosphere con-

tamination [47]. The O1s spectra of all BCZT samples

were fitted and are shown in Fig. 5b–d. The unsym-

metrical O1s peak was fitted into three component

peaks with specific positions. The O1s(I) peak

(529.31 eV) represents lattice oxygen ions (O2-), the

O1s(II) peak (530.95 eV) represents O2
-/O- ions

induced by oxygen vacancy and the O1s(III) peak

(531.74 eV) relates to the organic oxygen on the sur-

face of the samples [47]. The O1s spectra of the

samples sintered in different atmospheres exhibit

obvious differences except for the area of O1s(III)

peak. The area of O1s(I) peak in the sample sintered

in O2 is the maximum, and the area of O1s(II) peak in

BCZT sample sintered in O2 is the minimum, indi-

cating that the oxygen vacancy compensation has

been realized by oxygen-enriched sintering. The XPS

result is consistent with the EDS results.

Dielectric properties

Figure 6 shows the variations of the dielectric con-

stant and loss of BCZT samples sintered in various

atmospheres with the temperature. Firstly, there is a

distinct peak of dielectric constant between 80 �C and

Table 1 Lattice parameters of BCZT ceramics sintered in different atmospheres

Samples Lattice parameters Phase content (%) Rwp (%) Rp (%)

Tetragonal phase Orthorhombic phase O T

a (nm) c (nm) Cell volume (nm3) Tetragonality (c/a) a (nm) b (nm) c (nm)

Air 0.3984 0.4002 0.0635 1.0046 0.3992 0.5656 0.5671 80 20 7.91 5.91

O2 0.3989 0.4008 0.0638 1.0048 0.3998 0.5663 0.5698 56 44 9.74 7.42

N2 0.3982 0.4002 0.0634 1.0050 0.3989 0.5643 0.5662 52 48 6.34 5.14
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90 �C corresponding to the Curie temperature (TC) of

tetragonal-cubic phase transition in all BCZT sam-

ples. All samples show a relatively flat peak of

dielectric constant near 30 �C. According to the

analysis of XRD results, there is the coexistence of the

O and T phase for BCZT samples sintered in air, O2

Figure 3 Surface morphology and grain distribution of the samples sintered in various atmospheres: a, d air, b, e O2 and c, f N2.
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and N2 at room temperature. Based on the above

results, the peak of dielectric constant near 30 �C
corresponds to the phase transition behavior of O–T

[48], and TO-T (the transition temperature of O-T

phase) of BCZT-Air, BCZT-O2 and BCZT-N2 samples

is 32 �C, 30 �C and 28 �C, respectively. Secondly, as

the frequency increases, the Curie temperature (TC)

of all BCZT samples remain unchanged, indicating

no frequency dispersion. But the dielectric constant

peak (em) of all samples gradually reduces with the

increase in frequency, which results from the differ-

ent relaxation behaviors of polarization mechanisms

(dipole, electron, ionic and space-charge polarization)

[27, 49]. Moreover, there is a dielectric loss peak near

the Curie temperature corresponding to phase tran-

sition in all BCZT ceramics.

Figure 7 shows the variations of dielectric constant

and loss of all BCZT samples with temperature

measured at 1 kHz, and the maximum dielectric

constant and room-temperature dielectric loss are

shown in Table 2. Firstly, the TC of BCZT-Air, BCZT-

O2 and BCZT-N2 samples is 89.1 �C, 86 �C and

80.9 �C, respectively. The combined action of internal

stress and tetragonality (c/a) leads to the change of

TC. On the one hand, the TC of piezoceramics with

the smaller grain size is lower [50, 51], resulting from

the higher internal stress of fine grain because of

lacking 90� ferroelectric domain walls [52]. On the

other hand, the TC of BaTiO3-based ceramics falls

with the decrease in the tetragonality [53]. The pre-

vious XRD and SEM results reveal that the tetrago-

nality (shown in Table 1) of BCZT-Air, BCZT-O2 and

BCZT-N2 samples increases little by little, while the

grain size gradually decreases. The gradually

decreased TC of our BCZT samples sintered in air, O2

and N2 indicates that the grain size has a greater

impact on the TC than tetragonality. The change of

TO-T of our BCZT samples is similar to the Curie

temperature. Secondly, the em of BCZT samples sin-

tered in air, O2 and N2 is 22167, 25372 and 20992,

respectively. The em of BCZT-N2 samples is the

minimum among all samples, resulting from its

obvious grain refinement and increased oxygen

vacancy concentration. On the one hand, oxygen

vacancies would interact with cations to form

domain-stabilizing defect pairs, which could prohibit

the movement of ferroelectric domain walls so that

the polarization decreases [22]. On the other hand,

the grain refinement of ferroelectric ceramics results

in the decreased total contribution of grains to the

polarization [54] in BCZT-N2 ceramics. Thirdly, the

dielectric loss of the sample sintered in air is slightly

higher than that of the samples sintered in O2 and N2.

Despite the higher oxygen vacancy concentration in

BCZT-N2 samples, its better densification has greater

effects on dielectric loss and leads to its lower

dielectric loss. Moreover, the maximum dielectric

Figure 4 EDS results of the samples sintered in various

atmospheres: a air, b O2 and c N2.
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constant peak of all BCZT samples shows obvious

broadening, indicating the diffuse phase transition

characteristic.

The modified Curie–Weiss law has been used to

characterize the diffuse phase transition:

1

er
� 1

em
¼ ðT � TmÞc

C0 ð1Þ

where c is the diffuseness constant and C0 is constant.

The plots of ln(1/e - 1/em) and ln(T - Tm) of all

samples exhibit obvious linear characteristics (shown

in Fig. 8). The slope (c) of linear fitting plots for

BCZT-Air, BCZT-O2 and BCZT-N2 ceramics is 1.56,

1.57 and 1.61, respectively, indicating that the diffuse

phase transition gradually enhances. The enhanced

diffuse phase transition of BCZT-N2 samples results

from its obvious grain refinement.

Ferroelectric properties

Figure 9 shows the polarization hysteresis loops (P–

E) and switching current curves (I–E) of BCZT sam-

ples measured at 10 Hz. The coercive electric field

(2EC) and remnant polarization (2Pr) are given in

Table 2. Firstly, the P–E loops of all samples show

good rectangularity (especially for BCZT-O2), indi-

cating that they have excellent ferroelectric proper-

ties. Two obvious peaks near the coercive electric

field in the I–E curves of all BCZT samples corre-

spond to the switching of ferroelectric domains.

Secondly, BCZT-O2 samples have the highest rem-

nant polarization (2Pr = 31.62 lC/cm2) and the low-

est coercive electric field (2EC = 3.46 kV/cm) among

all the samples. The Pr and EC of our BCZT ceramic

sample are higher and lower than that reported in the

studies [16, 19, 20, 48], indicating the excellent fer-

roelectricity of our BCZT-O2 samples. The

Figure 5 aXPS survey spectrum of BCZT-O2 samples and high-resolution O1s spectrum of the samples sintered in various atmospheres:

b air, c O2 and d N2.
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ferroelectricity of BCZT ceramics is affected by many

factors, such as grain size and oxygen vacancy. In

general, the increased energy barrier with the grain

refinement make the ferroelectric domain more dif-

ficult to switch so that the smaller grain size results in

a higher coercive electric field [55, 56], and the greater

contribution of grain to the polarization than grain

boundary leads to the lower Pr of the sample with the

smaller grain size [57]. Moreover, the formed defect

pairs caused by oxygen vacancies can hinder the

motion of the ferroelectric domain (called as domain

wall pinning effect) so that the coercive electric field

increases and the remnant polarization decreases

[22]. But our results are different. For example, BCZT-

N2 samples with the obviously smaller grain size and

higher oxygen vacancy concentration have higher Pr

and lower EC than that of BCZT-Air samples. It

suggests that there are other more important influ-

encing factors expect for grain size and domain wall

pinning effect on the ferroelectricity for our samples.

TO-T corresponding to the phase transition of O–T

phase of BCZT-O2 and BCZT-N2 ceramics is closer to

room temperature than that of BCZT-Air ceramics

according to the above-mentioned results (shown in

Fig. 6). As everyone knows, the polarization aniso-

tropy close to the phase transition almost disappears,

Figure 6 Variations of dielectric constant and loss of BCZT

samples sintered in various atmospheres with the temperature:

a air, b O2 and c N2.

Figure 7 Variations of dielectric properties of BCZT samples

sintered in various atmospheres with the temperature measured at

1 kHz.

Table 2 Remnant polarization (2Pr), coercive electric field (2EC),

the maximum dielectric constant (em), room-temperature dielectric

loss (tanh), quasi-static piezoelectric coefficient (d33), dynamic

piezoelectric coefficient (d33
* ) and electromechanical coupling

coefficient (kp) of BCZT ceramics sintered in different

atmospheres

Samples BCZT-Air BCZT-O2 BCZT-N2

2Pr (lC/cm
2) 25.94 31.62 27.55

2EC (kV/cm) 4.76 3.46 3.59

em 22167 25372 20992

tanh 0.027 0.023 0.020

d33 (pC/N) 528.4 604.3 558.2

d33
* (pm/V) 481.5 647.5 627

kp (%) 48 59 52
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which is conducive to the polarization rotation and

then results in the decreased coercive electric field

and increased polarization [13]. Therefore, for our

BCZT samples, the O-T phase transition near room

temperature has greater influences on the remnant

polarization and coercive electric field than grain size

and domain wall pinning effect caused by oxygen

vacancy. It results in the superior room-temperature

ferroelectricity of BCZT-O2 and BCZT-N2 ceramics

with the smaller grain size. Furthermore, the maxi-

mum remnant polarization of BCZT-O2 ceramics is

Figure 8 Ln(1/e - 1/em) and ln(T - Tm) curves of BCZT

samples: a air, b O2 and c N2.

Figure 9 Room-temperature P–E and I–E curves of the samples:

a BCZT-Air, b BCZT-O2 and c BCZT-N2.
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also closely related to the best densification and the

least oxygen vacancy concentration.

Impedance properties

Impedance spectroscopy can be applied to find out

the contributions of grain and grain boundary to the

electrical responses. To analyze the conduction

mechanisms, the real part of complex impedance (Z’)

of BCZT samples as a function of frequency mea-

sured at different temperatures (300 * 500 �C) is

given in Fig. 10. Firstly, the Z’ of all BCZT samples

reduces with the increase in the frequency and the

rise of temperature, indicating that the conductivity

of all BCZT samples gradually enhances. Moreover,

there is no significant change in the Z’ of all BCZT

samples with the temperature at higher frequency

([ 50 kHz). Secondly, the Z’ of BCZT samples sin-

tered in air, O2 and N2 gradually decreases, indicat-

ing that the insulating property weakens. The

variation of Z’ of BCZT samples with the sintering

atmosphere is consistent with that of its grain size. In

general, the insulating property of grain in ferro-

electric ceramics is better than that of grain boundary

[46, 58, 59]. In other words, the ceramics with the

larger grain size should exhibit better insulating

properties. Moreover, the higher oxygen vacancy

concentration of BCZT-N2 samples makes its insu-

lating property decrease. Therefore, the gradually

reduced insulating property of BCZT-Air, BCZT-O2

and BCZT-N2 ceramics stems from the interaction of

grain size and oxygen vacancy.

Figure 11 shows the imaginary part of impedance

(Z’’) of BCZT samples as a function of frequency at

different temperatures. Firstly, the Z’’ of all BCZT

ceramics displays peak value (the maximum of Z’’)

with the changing of frequency. The decreased

maximum Z’’ of all BCZT samples with the rise of

temperature suggests that the insulating property

gradually reduces. The result is consistent with that

of real Z’. Secondly, the peak of Z’’ of all BCZT

sample shifts to the higher-frequency region and

gradually widens as the temperature rises. The result

further proves that there is a relaxation phenomenon

in all BCZT ceramics [60]. Finally, the electrical con-

ductivity of BCZT samples sintered in N2 is superior

to that of the other samples at the same temperature.

Figure 12 displays the AC impedance spectroscopy

of all BCZT samples measured at the temperature

range from 300 to 500 �C. The AC impedance spec-

troscopy of all BCZT samples gradually shows two

semicircular arcs as the temperature rises, indicating

that there are two different contributions to

Figure 10 Frequency dependences of the Z’ of samples measured

at various temperatures: a BCZT-Air, b BCZT-O2 and c BCZT-

N2.

9982 J Mater Sci (2020) 55:9972–9992



impedance. The first semicircular arc at high fre-

quency and the second semicircular arc at low fre-

quency represent the function of the grain and grain

boundary, respectively. It can be found that there is a

non-Debye type of relaxation process because the

centers of the semicircles located below the real axis

[61].

To obtain the resistance of grain (Rg), the capaci-

tance of grain (CPE1), the resistance of grain

Figure 11 Z’’ of the samples as a function of frequency measured

at different temperatures: a BCZT-Air, b BCZT-O2 and c BCZT-

N2.

Figure 12 Complex impedance spectra of the samples measured

at various temperatures: a BCZT-Air, b BCZT-O2 and c BCZT-

N2.
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boundary (Rgb) and the capacitance of grain bound-

ary (CPE2), the Nyquist plots (Z’ vs. Z’’) of all BCZT

ceramics were fitted by Z-view software, and the

fitted results are shown in Fig. 12 (see red lines). The

equivalent circuit diagram of CPE and R series par-

allel was used and is shown in Fig. 13. The conduc-

tivity (rg and rgb) of grain and grain boundary were

obtained by r¼ 1
q¼ t

RS (where r represents the con-

ductivity of the sample, q is the resistivity, t is the

thickness of the sample, R is the resistance and S is

the surface area of the sample). All obtained param-

eters are shown in Table 3. Firstly, the rg and rgb of

all BCZT ceramics increase as the temperature rises,

which shows obvious positive temperature coeffi-

cient characteristics [62]. Secondly, it is noteworthy

that the conductivity of grain boundary is higher than

that of grain in all BCZT ceramics measured at

300 �C, but the conductivity of grain boundary is

relatively close to that of grain when the temperature

is above 300 �C, which may be related to the gener-

ation or accumulation of defects such as oxygen

vacancy. It has been reported that the transition

temperature of some conduction mechanisms (such

as electrons or holes) and oxygen vacancy conduction

mechanism are around 300 �C in BCZT ceramics

[62, 63]. In other words, the oxygen vacancy con-

duction mechanism may play a dominant role when

the temperature is above 300 �C. Thirdly, according

to the obtained resistance (R) and capacitance (CPE),

the relaxation time (sg and sgb) of grain and grain

boundary can be calculated by s ¼ R� CPE(where R

and CPE are the resistance and capacitance of sam-

ple, respectively) and is shown in Table 3. It is seen

that sg and sgb gradually decrease as the temperature

rises (except for 300 �C). The result indicates that the

carrier mobility increases gradually as the tempera-

ture rises, which is because the carrier mobility is

inversely proportional to the relaxation time [63]. The

increased carrier mobility is due to that the carriers

(electron, hole or point defects) move more easily at

the higher temperature. Moreover, the relaxation

time of grain boundary (sgb) of all BCZT ceramics is

much higher than that of grain (sg), suggesting that

the carrier mobility of grain boundary is much lower.

The result indicates that the defects such as oxygen

vacancy (V��
O ) migrate more easily in the grain.

Finally, compared to BCZT-N2 and BCZT-O2 ceram-

ics, BCZT-Air ceramics exhibit lower conductivity.

As mentioned above, the oxygen vacancy concen-

tration of BCZT samples sintered in O2 is lower than

that of BCZT samples sintered in air and N2 accord-

ing to EDS and XPS analysis. However, the conduc-

tivity of BCZT-O2 ceramics is not the minimum

among all samples. It is because that the conductivity

depends on not only carrier concentration but also

carrier mobility. The grain and grain boundary in

BCZT-Air ceramics have greater relaxation time (s)

than BCZT-O2 ceramics, suggesting BCZT-Air

ceramics have lower carrier mobility than that of

BCZT-O2 ceramics. Therefore, although BCZT-Air

ceramics have higher oxygen vacancy concentration

than BCZT-O2 ceramics, the lower carrier mobility of

BCZT-Air ceramics plays a more important role and

leads to lower conductivity. According to the same

principle, BCZT-N2 samples with the highest oxygen

vacancy concentration and carrier mobility show the

best conductivity among all the samples.

As everyone knows, there is usually the generation

of oxygen vacancies during the high-temperature

preparing process of oxide ceramics. The ionization

of the oxygen vacancy (V��
O ) simultaneously forms

electrons, described by Kröger–Vink process [61]:

OO $ VO þ 1

2
O2 ð2Þ

VO $ V�
O þ e0 ð3Þ

V�
O $ V��

O þ e0 ð4Þ

where V�
O and V��

O represent the first and secondary

ionization, respectively. In general, the lower oxygen

vacancy concentration of the materials with per-

ovskite structure corresponds to its higher activation

energy (Ea) at high temperature [64]. Therefore, the

activation energy of BCZT ceramics sintered in dif-

ferent atmospheres was calculated by Arrhenius law

to find out the difference in oxygen vacancy content:

r ¼ r0 expð
Ea

KBT
Þ ð5Þ

Figure 13 Equivalent circuit diagram of CPE and R series

parallel.
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where r represents the electrical conductivity, r0

represents the preexponential term, Ea represents the

activation energy and KB represents the Boltzmann

constant. According to Eq. (5), the activation energy

(Ea) of all BCZT ceramics was obtained by linear fit-

ting (shown in Fig. 14). The Ea of grain and grain

boundary of BCZT-Air, BCZT-O2 and BCZT-N2

samples are 0.942 eV and 0.813 eV, 1.023 eV and

0.953 eV, and 0.936 eV and 0.743 eV, respectively.

According to the studies [62, 63, 65], the Ea of oxygen

vacancy at secondary ionization (V��
O ) in BaTiO3-

based materials is between 0.6 eV and 1.28 eV. The Ea

of our BCZT ceramics is good agreement with that of

oxygen vacancy, which further confirms that the

oxygen vacancy conduction mechanism of our BCZT

samples dominates in the range of 300–500 �C and

this is consistent with our previous hypothesis.

Moreover, the highest activation energy of BCZT-O2

ceramics suggests that it has the lowest oxygen

vacancy concentration among all samples, which

further supports the effects of oxygen atmosphere

sintering. Based on similar principles, the lowest

activation energy of BCZT-N2 samples confirms its

highest oxygen vacancy concentration.

Piezoelectric properties

To obtain the piezoelectric responses of BCZT sam-

ples, the unipolar electric field-induced strain (short

for strain) curves, dynamic piezoelectric coefficient

(d33
* = Smax/Emax) (shown in Fig. 15), quasi-static

piezoelectric coefficient d33 (shown in Fig. 17) and

electromechanical coupling coefficient (kp) were

measured and are shown in Table 2. Figure 15 shows

the strain and d33
* of BCZT samples measured at

various temperatures. Firstly, the strain and d33
* of

BCZT samples sintered in air, O2 and N2 at room

temperature (25 �C) are 0.096% and 481.5 pm/V,

0.130% and 647.5 pm/V, and 0.125% and 627 pm/V,

respectively, suggesting the most excellent piezo-

electric responses of BCZT-O2 samples. Secondly, the

maximum strain and d33
* of all BCZT samples first

increase and then decrease as temperature rises, and

the maximum strain and d33
* of BCZT samples sin-

tered in air, O2 and N2 are 0.110% and 549.5 pm/V,

0.136% and 684.5 pm/V, and 0.131% and 653.5 pm/

V, respectively (shown in Fig. 15d–f). The corre-

sponding temperature to the maximum strain and d33
*

of BCZT samples sintered in air, O2 and N2 is 32 �C,

30 �C and 28 �C, respectively, which is the same as

TO-T. The result confirms that the construction of the

O-T phase boundary can significantly enhance the

piezoelectric responses of BCZT samples, which is in

accordance with the studies [13, 39]. In other words,

if the transition temperature of the O–T phase in

BCZT ceramics can shift to room temperature, the

room-temperature piezoelectric responses can be

significantly enhanced. Thirdly, the room-tempera-

ture strain of BCZT-O2 samples is higher than that of

BCZT-Air samples with the larger grain size, result-

ing from the phase boundary of the O–T phase closer

Table 3 Resistance (R), conductivity (r), capacitance (CPE) and relaxation time (s) of grain and grain boundary of all BCZT ceramics

Samples T (�C) Rg

(kX)
rg
(MX-1�cm-1)

CPE1

(nF)

sg (9 10-5 s) Rgb

(kX)
rgb
(MX-1�cm-1)

CPE2

(nF)

sgb (9 10-2

s)

BCZT-

Air

300 1912 0.08 0.2128 40.7 859.2 0.18 24.8 2.13

350 445.1 0.35 0.1661 7.39 443.2 0.35 54.21 2.40

400 140.5 1.10 0.1397 1.96 155.1 1.00 96.04 1.49

450 46.44 3.34 0.1257 0.58 45.62 3.40 198.3 0.90

500 17.29 8.97 0.1217 0.09 17.27 8.98 415.6 0.72

BCZT-O2 300 1675 0.09 0.2186 36.62 559.5 0.28 30.74 1.72

350 384.7 0.40 0.1832 7.05 351.3 0.44 71.43 2.51

400 91.65 1.69 0.1534 1.41 106 1.46 138.1 1.46

450 24.33 6.38 0.1342 0.33 33.3 4.66 308.8 1.03

500 8.622 18.00 0.1393 0.12 11.29 13.74 662.5 0.75

BCZT-N2 300 1385 0.11 0.226 31.30 533.9 0.29 21.53 1.15

350 325.6 0.48 0.1741 5.67 275.4 0.57 49.58 1.37

400 85.17 1.85 0.1398 1.19 81.08 1.94 113.6 0.92

450 28.63 5.49 0.1212 0.35 29.52 5.33 276.2 0.82

500 8.446 18.61 0.1121 0.09 12.53 12.55 823.4 1.03
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to room temperature in BCZT-O2 ceramics. It is

noteworthy that BCZT-O2 ceramics still show the

maximum piezoelectric response when all the sam-

ples are in the O–T phase boundary, which suggests

that the least oxygen vacancy and the best densifi-

cation of BCZT-O2 ceramics are also important fac-

tors affecting the piezoelectric response besides the

construction of O–T phase boundary. The less oxygen

Figure 14 Arrhenius plots and the fitted activation energy (Ea) values of BCZT samples sintered in various atmospheres: a, d air, b, e O2

and c, f N2.
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vacancy can weaken the pinning effect of the domain

and make the domain easier to switch and then

enhance the piezoelectric responses [66, 67]. More-

over, the relatively larger grain size exhibits less grain

boundary volume, and the decreased grain boundary

results in the increase in the maximum field-induced

strain so that the excellent piezoelectric response in

piezoelectric ceramics with the larger grain size has

been obtained [68, 69]. Based on the previous SEM,

EDS, XPS and impedance spectroscopy, BCZT-O2

Figure 15 Strain and d33
* of samples measured at various temperatures: a, d BCZT-Air, b, e BCZT-O2 and c, f BCZT-N2.
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ceramics have the best densification, larger grain size,

the lowest oxygen vacancy concentration and O-T

phase boundary near room temperature, which cau-

ses its most excellent piezoelectric responses. The

piezoelectric responses of BCZT-N2 samples are

higher than those of BCZT-Air samples. Although

BCZT-N2 samples have more oxygen vacancy and

smaller grain size than that of BCZT-Air samples, the

piezoelectric response of BCZT-N2 samples is supe-

rior to BCZT-Air samples. The result suggests that

the effects of the O-T phase transition temperature

closer to room temperature of BCZT-N2 samples on

piezoelectric response mask the anticipated effects of

reduced grain size and increased oxygen vacancy.

Meanwhile, the (001) orientation characteristics and

uniform O-T phase coexistence of BCZT-N2 samples

could be the other reasons for its better piezoelectric

properties. Finally, based on the above results, the

phase diagram of BCZT samples sintered in different

atmospheres was constructed and is given in Fig. 16.

Figure 17 shows the room-temperature d33 of all

BCZT samples. Firstly, the d33 of BCZT samples sin-

tered in air, O2 and N2 is 528.4 pC/N, 604.3 pC/N

and 558.2 pC/N, respectively, further confirming that

the piezoelectric responses of BCZT-O2 ceramics are

superior to the other ceramics. The result agrees with

the strain behavior. Moreover, the electromechanical

coupling coefficient kp of BCZT samples sintered in

air, O2 and N2 is 48%, 59% and 52%, respectively. In

general, the piezoelectric properties originate from

the intrinsic (lattice) and extrinsic (domain wall

motions) contributions [70, 71]. The excellent

piezoelectricity (d33
* = 647.5 pm/V, d33 = 604.3 pC/N

and kp = 59%) of BCZT-O2 ceramics is related to the

intrinsic contribution caused by the construction of

O–T phase boundary (the coexistence of O–T phase)

closer to room temperature and the extrinsic contri-

bution caused by the high polarization which results

from its relatively larger grain size and weakened

domain wall pinning effect. The adjusting oxygen

partial pressure in sintering is an effective approach

to enhance the piezoelectric responses of BCZT

ceramics, which has excellent developmental poten-

tial for actuator applications.

Conclusions

BCZT ceramics with enhanced piezoelectric respon-

ses have been successfully synthesized. BCZT

ceramics sintered in air, O2 and N2 are the coexis-

tence of orthorhombic and tetragonal phase at room

temperature, but the content of phase coexistence is

different, indicating that sintering atmosphere has

significant influences on phase structure. The phase

transition temperature of the O-T phase of BCZT

ceramics sintered in air, O2 and N2 atmospheres is

gradually closer to room temperature due to the

combined action of internal stress and tetragonality.

All BCZT ceramics sintered in various atmospheres

exhibit distinct diffuse phase transition, and the dif-

fuseness is enhanced with the refinement of grain.

BCZT ceramics sintered in O2 have the maximum Pr

and the minimum EC, which results from the

decrease in oxygen vacancy and the shift of phase
Figure 16 Phase diagram of BCZT samples sintered in various

atmospheres.

Fig. 17 Quasi-static piezoelectric coefficient (d33) of BCZT

ceramics.
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transition temperature. The results of EDS, XPS and

the activation energy confirm the lowest oxygen

vacancy concentration of the ceramic sample sintered

in O2. The same mechanism caused by the decreased

oxygen vacancy and shift of phase transition tem-

perature makes BCZT ceramics sintered in O2 achieve

the improved piezoelectric responses (d33 = 604.3

pC/N and d33
* = 647.5 pm/V).
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