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ABSTRACT

Herein, a series of phosphorus-doped CoMoO4 rod bundles electrocatalysts

on 3D nickel foams have been successfully synthesized and exploited as

efficient hydrogen evolution reaction (HER) electrocatalyst in 1 M KOH. The

incorporation of phosphorus into CoMoO4 can significantly promote the HER

activity, and the CoMoO4 bundles phosphorized at 350 �C exhibited the

optimum activity, which only required low overpotentials of 56 and 148 mV

to deliver cathodic current densities of 10 mA cm-2 and 100 mA cm-2,

respectively. This electrode also presented considerable long-term electro-

chemical stability with negligible delay after 30 h operation and 3000 accel-

erated cyclic voltammetry cycles. Our study provides a superior earth-

abundant catalyst for efficient HER in alkaline media, which also suggests

that P doping engineering is an effective way to boost the HER activity of

transition metal-based oxides.

Introduction

Water electrolysis driven by renewable energy sour-

ces is widely considered as a clean technique to pro-

duce pure hydrogen [1–3]. Generally, electrochemical

water splitting proceeds through two half-reactions,

namely hydrogen evolution reaction (HER) and oxy-

gen evolution reaction (OER) [4]. As for HER, by far,

the benchmark electrocatalysts are still limited to Pt-

based precious metal catalysts [5, 6]. Their large-scale

industrial application, however, is largely restricted

by the scarcity and high cost. Consequently, the

development of effective HER catalysts using earth-

abundant materials is urgently needed [1, 2].

Recent years, transition metals oxides, phosphides,

and sulfides have shown a great promise [7–19].

Among them, Co- and Mo-based oxides have been

attracting increasing attention for designing low-cost

electrocatalysts, due to the unique electron configu-

rations [10]. Particularly, bimetallic CoMoO4 com-

posite oxide exhibits promising electrochemical

activity because of the synergistic interactions
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between different elements [15–24]. However, for

pure CoMoO4, large overpotentials ([ 200 mV) are

usually required to deliver a current density of

- 10 mA cm-2 [16–18].

To boost the HER activity, there are some strategies

like designing special microstructure and construct-

ing heterostructures. For example, CoMoO4/Co9S8
arrays and heterostructured CoMoO4–Co2Mo3O8

composite have been constructed for HER catalysts

with enhanced performance [15, 22]. Further, ele-

mental doping with a variety of element choice is

proven to be an efficient way to modulate the

physicochemical properties of parent oxides. For

example, Li et al. [21]reported that phosphorus-

doped b-CoMoO4 nanoplates on Ti foil show greatly

enhanced HER activity, which only requires an

overpotential of 138 mV at - 10 mA cm-2 in 1 M

KOH.

Encouraged by this work, herein, we fabricated

and evaluated 3D free-standing P-doped CoMoO4

rod bundles anchored on NF as HER electrocatalysts.

Phosphorus heterodoping was achieved through

phosphorization with NaH2PO2 at higher tempera-

tures. Electrochemical measurement confirmed that

phosphorus incorporation can dramatically enhance

the electrocatalytic activity toward HER in alkaline

media. Among treated samples, the CoMoO4 bundles

phosphorized at 350 �C exhibited the highest activity

with a low overpotential of 56 mV @ - 10 mA cm-2

and a small Tafel slope of 78 mV dec-1. High HER

activity with excellent stability makes it a very

promising Pt-free catalyst for hydrogen evolving

application.

Experimental section

Chemicals and materials

Analytical grade of (NH4)6Mo7O24�4H2O, Co(NO3)2�
6H2O, CO(NH2)2, NH4F, NaH2PO2�H2O, KOH were

all purchased from Aladdin Ltd. Nickel foam (NF,

1 mm in thickness) was obtained from Heze Tianyu

Technology Co. Ltd. Deionized (DI) water from a

Millipore system was used throughout the

experiment.

Catalyst synthesis

Co(OH)F precursors on NFs were first synthesized

via a facile hydrothermal method. Nickel foams

(2 9 4 cm2) with a thickness of 1 mm were cleaned

with 6 M HCl, acetone, ethanol and DI water for

10 min each in an ultrasound bath consecutively.

Then, 2 mmol Co(NO3)2�6H2O, 8 mmol NH4F, and

10 mmol CO(NH2)2 were slowly dropped into 36 ml

DI water to form a pink solution. NFs and the solu-

tion were transferred to a 50-ml Teflon-lined auto-

clave and kept at 100 �C for 6 h. After cooling, the

NFs were dried at 60 �C for 6 h to obtain a Co(OH)F

coated on NF. After that, 0.48 mmol of (NH4)6
Mo7O24�4H2O was dissolved in 40 mL water and the

solution was then transferred to a 50-mL Teflon-lined

autoclave with Co(OH)F on NF. The autoclaves were

sealed and heated at 140 �C for 4 h. After cooling

naturally, NFs coated with CoMoO4 were washed by

DI water for 3 times and dried at 60 �C overnight.

Finally, the foam specimens (at downstream) and

NaH2PO2 (1 g, at upstream) were placed in 2 sepa-

rate quartz boats in a tube furnace, which were cal-

cined at 300 �C, 350 �C and 400 �C for 2 h using a

ramping rate of 2 �C min-1 in N2 flow. As-obtained

samples were taken out after cooling and named

accordingly as P-CoMoO4-300, P-CoMoO4-350 and

P-CoMoO4-400. The loadings of CoMoO4-based cat-

alysts on NFs were estimated by a Sartorius BP211D

high-precision balance (about 9–11 mg cm-2).

Characterization

The crystal phases were examined by a Rigaku

D/max-2600 X-ray diffraction diffractometer with

Cu-Ka radiation. Raman measurement was carried

out using a Hobriba J-Y LabRAM spectroscope using

532 nm radiation. The sample morphologies were

recorded by using a Hitachi SU-70 field-emission

scanning electron microscopy (FE-SEM) and an FEI

Tecai G2 F20 transmission electron microscopy

(TEM). Further, the chemical states in catalysts were

determined by a Thermo-fisher K-Alpha X-ray pho-

toelectron spectroscopy (XPS) with Al Ka radiation,

and all the binding energies were referenced using

the adventurous carbon (C1s) peak at 284.8 eV.
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Electrochemical evaluation

A typical three-electrode configuration consisting of a

foam electrocatalyst as working electrode, a graphite

rod and a saturated calomel electrode (SCE) as

counter electrode and reference electrodes were used.

Electrochemical tests were carried out with a Chen-

hua CHI 660E electrochemical workstation in 1 M

KOH electrolyte. Linear sweep voltammetry (LSV)

curves were collected at a slow scan rate of 2 mV s-1.

All LSV curves were iR-corrected unless noted, and

all potentials were converted to reversible hydrogen

electrode (RHE) scale using the equation of RHE = E

versus SCE ? 0.059 9 pH ? 0.2415(V). Electrochem-

ical impedance spectroscopy (EIS) measurements

were recorded within a frequency range of 100 kHz

to 0.01 Hz at an AC amplitude of 5 mV. Cyclic

voltammetry (CV) test was carried out at non-far-

adaic region to probe the electrochemical double-

layer capacitance (Cdl) of various samples. A series of

CV sweeps were performed at various scan rates (20,

40, 60, 80, 100 and 120 mV s-1) in the region of

- 0.45 to - 0.35 V versus SCE. By plotting the dif-

ference of current density (ja - jc) between the anodic

and cathodic sweeps at - 0.4 V versus SCE against

the scan rate, a linear trend was observed. The slope

of the fitting line is equal to twice of the geometric

Cdl, which is proportional to the effective electrode

surface area (ECSA) of the catalysts. Therefore, the

ECSAs of different samples can be compared based

on their Cdl values. Preliminary electrochemical sta-

bility of the P-CoMoO4-350 catalyst was investigated

by galvanostatically at a current density of

- 10 mA cm-2 for 30 h. Accelerated degradation test

was performed using CV scans within 0 to - 0.2 V

versus RHE at 100 mV s-1 for 3000 continuous scans.

Results and discussion

A synthesis procedure of P-doped CoMoO4 bundles

on NF is schematically shown in Fig. 1. The crystal

phases of obtained catalysts on NF foams were

determined by XRD (Fig. 2a). After the first

hydrothermal process, the color of NF changes to

reddish-brown (Fig. 1) and its diffraction peaks for

the precursor could be perfectly indexed as Co(OH)F

(JCPDS No. 50-0827) except for the peaks of NF

support. The second hydrothermal process changed

the sample color to purple, and all the other peaks

revealed a mixture of two phases, which can be

indexed as the orthorhombic CoMoO4 (JCPDS No.

15-0439) and CoMoO4�0.9H2O (JCPDS No. 14-0086)

[25, 26]. Further phosphorization with NaH2PO2 at

higher temperatures resulted in black foams and the

corresponding XRD patterns suggested the samples

treated at 350 and 400 �C transformed to monoclinic

CoMoO4 (b-phase, JCPDS No. 21-0868). No addi-

tional peaks from phosphides like CoP and MoP are

detected, indicating no secondary phases were yiel-

ded during phosphorization treatment. XRD patterns

of P-CoMoO4-350 and pure CoMoO4 annealed at

350 �C in the air (named as CoMoO4-350-air) were

also compared as shown in Fig. 2b. Phosphorization

treatment did not change the diffraction peaks obvi-

ously. A closer look at the main peak of CoMoO4

at & 26.5� shows a positive shift of 0.2�, suggesting
the lattice contraction due to the incorporation of

smaller P ions into CoMoO4 lattice [27]. Raman

spectra were further probed, and the results are

shown in Fig. 2c. The Raman spectrum of pristine

CoMoO4 exhibits five Raman bands. The intense

doublet at * 938 cm-1 could be assigned to Mo=O

bond, and the bands at 817 and 857 cm-1 are asso-

ciated with O–Mo–O bond. Moreover, the peaks at

334 and 358 cm-1 can be assimilated to Co–O–Mo

bond [6, 28]. No obvious new peak is observed in

phosphorized and air-annealed CoMoO4 bundles.

Compared with CoMoO4-350-air sample, the peaks

between 800 and 1000 cm-1 (P-CoMoO4-350) show

slight blueshift by about 3 cm-1 that could originate

from P doping in CoMoO4 lattice. These further

confirm the formation of CoMoO4 phase and P dop-

ing did not change the crystal structure, consistent

with the XRD analysis.

The morphology and microstructure evolution of

catalysts were investigated by SEM and TEM tech-

niques. As shown in Fig. 3a, b, the Co(OH)F precur-

sor clearly shows nanosaw feature which uniformly

covers on NF surface. After the introduction of Mo

ions in hydrothermal condition, the precursor trans-

formed into bundles, as revealed in Fig. 3c, d. These

bundles consist of several microrods with a square-

like top of about 2 lm in width and 10–15 lm in

length. The bundle surface is relatively smooth. Fur-

ther phosphating treatment retains the bundle char-

acter, and a closer look at enlarged image of

P-CoMoO4-350 reveals that some particles are formed

(Fig. 3e, f). With the increasing of phosphorization

temperature, the bundle surface appears to be more

6504 J Mater Sci (2020) 55:6502–6512



coarse (Figure S1), probably due to the hydrate dis-

sociation [21]. The granule size also increases for

samples at higher temperatures. In Fig. 3g, EDS

mapping images from selected area clearly show

even distribution of Mo, Co, O and P elements across

the bundles, which also confirms the successful

doping of P into CoMoO4 lattice [29], and P doping

content is estimated to be 5.6% in P-CoMoO4-350

catalyst (Figure S2).

The microrod character with some nanoparticles

on the surface is also confirmed by TEM analysis

(Fig. 4a). Figure 4b presents a high-resolution TEM

(HR-TEM) image of P-CoMoO4-350. Lattice fringes

with spacings of 0.69 nm and 0.21 nm can be ascribed

to the (001) and (222) planes of CoMoO4, respectively,

which are in good agreement with XRD analysis

[30, 31]. It is anticipated that the unique bundle

morphology constructed with many microrods could

Figure 1 A diagram for the

fabrication process of

P-CoMoO4 rods on Ni foam

(NF). First, reddish-brown

Co(OH)F nanosaws were

hydrothermally grown on Ni

foam, which were then

hydrothermally transferred to

purple CoMoO4 rods. Finally,

black P-CoMoO4 rods were

obtained via phosphorization

treatment.
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facilitate both mass transfer and diffusion of gaseous

products and provide a high concentration of active

sites that are very beneficial to catalytic activity

enhancement.

The chemical states and surface electronic structure

of the CoMoO4 and P-CoMoO4-350 samples were

examined by XPS. The survey spectrum of fresh

CoMoO4 in Figure S3 clearly verifies the presence of

Co, Mo, O and Ni elements. For P-CoMoO4-350 cat-

alyst, two new weak peaks at * 134.1 eV and

191.7 eV can be ascribed to P 2p and P 2s signals,

respectively. High-resolution P 2p spectrum in Fig. 5a

Figure 3 SEM images of a,

b Co(OH)F, c, d CoMoO4, e,

f P-CoMoO4-350 and g EDS

elemental mapping images of

Co, Mo, O, and P in

P-CoMoO4-350.

Figure 4 TEM (a) and HR-

TEM (b) images of

P-CoMoO4-350.
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demonstrates a strong peak at 134.1 eV in treated

CoMoO4, which is associated with surface oxidized

P–O species [32]. This is another solid evidence of P

doping, in accordance with EDS analysis. In the Co

2p region (Fig. 5b), two peaks at * 781.1 and

797.5 eV are attributed to the Co 2p3/2 and 2p1/2

levels, respectively. [19, 33] After phosphating, the Co

2p3/2 peak of P-CoMoO4-350 shifts to higher energy,

which implies that the electronic structure of Co

centers has been modified through P doping [34]. The

Mo 3d spectrum of bare sample (Fig. 5c) exhibits two

main peaks. The one at low binding energy can be

specified as Mo 3d5/2, while the other one is Mo 3d3/

2. The splitting width of two peaks is 3.1 eV, signi-

fying a majority of Mo6? oxidation state [35]. Those

peaks shift positively by about 0.2 eV in P-doped

CoMoO4, and more importantly, two new peaks

located at 230.4 eV and 233.6 eV due to Mo5? species

can be deconvoluted. In O 1s spectra (Fig. 5d), two

fitted peaks at 530.5 and 532.1 eV can be assigned to

the typical metal–oxygen bond (Mo–O–Co) and sur-

face absorbed hydroxyls, respectively [22, 36].

Whereas a new peak at the high energy of 531.4 eV

appeared after phosphating which is attributed to P–

O [37].

The HER catalytic performance of pristine CoMoO4

and P-CoMoO4 samples treated at different temper-

atures were evaluated and compared. The NF sup-

port, commercial 20% Pt/C (Johnson Matthey),

Co(OH)F precursor and CoMoO4-350-air were also

examined in the same condition for reference. LSV

polarization curves after iR drop compensation are

plotted in Fig. 6a and Figure S4. It can be found that

benchmark Pt/C exhibits superior activity with zero

onset overpotential, while the NF and Co(OH)F pre-

cursor show very poor HER performance. Appar-

ently, the phosphated CoMoO4 bundles display

much better activity toward HER than undoped one.

Among CoMoO4-based catalysts, the P-CoMoO4-350

demonstrates the highest activity (Table S1) with the

lowest overpotential of 56 mV at a cathodic current

density of - 10 mA cm-2. For comparison, the

required overpotentials to supply the same current

density are 169 mV, 73 mV and 63 mV for pure

CoMoO4, P-CoMoO4-300 and P-CoMoO4-400,

respectively. To afford a higher current density of

- 100 mA cm-2, the P-CoMoO4-350 requires an

overpotential of 148 mV, still much lower than other

tested catalysts except Pt/C (Table S1). Such superior

HER electrocatalytic activity of P-CoMoO4-350
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electrode outperforms other reported Mo-based oxi-

des electrocatalysts, for example, CoMoO4–

Co2Mo3O8 (58 mV@ - 10 mA cm-2) [18], P-doped-b-
CoMoO4 nanoplates (138 mV@ - 10 mA cm-2) [21]

and CoMoO4 nanowires (121 mV@ - 10 mA cm-2)

[23], (see Table S2 for details).

The HER kinetics of these electrodes is analyzed by

corresponding Tafel plots. The smallest Tafel slope of

20% Pt/C (38 mV dec-1) is in agreement with a

previous report [38], which therefore confirms the

reliability of our electrochemical test. As expected,

P-CoMoO4-350 exhibits a Tafel slope of 78 mV dec-1,

which is smaller than that of P-CoMoO4-300 (108 mV

dec-1), P-CoMoO4-400 (90 mV dec-1), pure-CoMoO4

(112 mV dec-1). A smaller Tafel slope implies the

higher HER catalyst activity, [39] suggesting the

higher intrinsic activity of P-CoMoO4-350. Mean-

while, the Tafel slope is usually used to analysis the

HER mechanism and rate-determining step. In this

work, the experimentally obtained Tafel slope of

P-CoMoO4-350 implies that the HER reaction takes

place via a Volmer–Heyrovsky mechanism where

Heyrovsky process is considered as the rate-limiting

step.

To further study the electron transfer kinetics at

catalyst–electrolyte interface, impedance spectra

were collected and the Nyquist plots are given in

Fig. 6c. By fitting the impedance spectra with a sim-

plified Randles equivalent circuit (insert in Fig. 6c),

the charge transfer resistances (Rct) were obtained

and listed in Table S1. It is obvious that P-CoMoO4-

350 shows a much smaller Rct value (2.5 X) than that

of P-CoMoO4-300 (6.3 X), P-CoMoO4-400 (2.9 X), bare
CoMoO4 (30.1 X) and CoMoO4-350-air (29.0 X),
indicating the fastest charge transfer process among

the CoMoO4-based catalysts, confirming the above-

mentioned rapid HER kinetics in P-CoMoO4-350

catalyst. To redouble study the intrinsic catalytic

activity of P-CoMoO4-350, the turnover frequencies

(TOFs) that reflect all the active sites involved in the

HER reaction were measured according to references

[40, 41]. As shown in Figure S5, the TOF value of

P-CoMoO4-350 catalyst is 0.59 s-1 at an overpotential

of 100 mV, much greater than that of CoMoO4

(0.092 s-1). The high TOF value of P-CoMoO4-350

indicates its high intrinsic activity due to the suc-

cessful P doping, which can improve the electrical

conductivity and reduce the hydrogen adsorption

free energy, as supported by theoretical calculations

by Li et al. in P-doped CoMoO4 nanoplates [42].

These are also evidenced by impedance spectra and
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electrochemical performance in P-doped CoMoO4

rod bundles in our study.

In order to measure the density of active sites, the

electrochemically active surface areas (ECSAs) of the

foam catalysts were determined by using electro-

chemical double-layer capacitance (Cdl), which were

calculated using CV scans from - 0.35 to - 0.45 V

versus SCE at scan rates range of 20–120 mV s-1

(Figure S6). As depicted in Fig. 6d, P-CoMoO4-350

exhibits the highest Cdl value (4.03 mF cm-2) among

tested samples, which is about 4.3 and 70 times

higher than that of pristine CoMoO4 (0.94 mF cm-2)

and Co(OH)F (0.06 mF cm-2). The dramatically

increased ECSA of P-CoMoO4-350 reflects the more

accessible active sites, due to the P uniformly dope in

rods; the rough surface also enables greatly increased

exposed surface area [42]. The ECSAs were calculated

from Cdl values using the specific capacitance value

of a standard 1 cm2 flat surface which is usually

between 20 and 60 lF cm-2. An average value of 40

lF cm-2 was used for calculation [17]. Moreover, LSV

plots normalized by ECSA and mass of typical elec-

trodes are given in Figure S7a, b, which further con-

firms the high specific activity of P-CoMoO4-350

catalyst.

In addition to HER activity, considerable stability

of a catalyst is also very important for practical

application. The durability was first tested by accel-

erated CV cycling at a scan rate of 100 mV s-1. As

compared in Fig. 7a, the polarization curve of

P-CoMoO4 approximates to the initial one even after

3000 CV cycles. At the current densities of - 10 and

- 100 mA cm-2, the initial overpotentials are 48 and

154 mV, respectively. After test, the corresponding

values reached 51 and 157 mV. Furthermore,

chronopotentiometric test at - 10 mA cm-2 was

carried out (insert in Fig. 7a). Its overpotential shows

a slight increase of 0.7 mV after testing for 30 h. Both

CV and chronopotentiometric tests prove its strong

stability. The XRD peaks turn to be weak after test

(Fig. 7b) but a comparison of Raman results (Fig. 7c)

for P-CoMoO4-350 catalyst before and after test sug-

gests no detectable phase change occurred. SEM

images in Fig. 7d show that the rod bundle feature is

maintained, and the enlarged view in the insert

reveals a more rough surface with the formation of

more particles. The excellent stability of provides

more evidence of P-CoMoO4-350 to be a reliable

catalyst in alkaline water reduction.

Based on the discussion above, it is clear that

phosphorus doping is an effective strategy in
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Figure 7 Comparisons of

P-CoMoO4-350 catalyst

before and after 3000 CV

cycles, a polarization curves

(insert: chronoamperometric

curve without iR correction at

the constant overpotential of

- 1.13 V, b XRD patterns,

c Raman spectra and d SEM

images.
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engineering HER activities and the greatly enhanced

activity of phosphorized CoMoO4 bundles can be

ascribed to the following combined reasons: (1) The

unique bundle morphology with rough surface

enables the exposure of more active sites with high

accessibility and facile diffusion of the electrolyte and

gaseous product, (2) direct anchoring of bundles on

conductive NF eliminates the use of additional

polymer binder and thus enables strong interfaces at

the electrocatalyst/electrode, and (3) P doping mod-

ulates the electronic structure that enables greatly

enhanced HER kinetics.

Conclusion

Phosphorus-doped CoMoO4 rod bundles were suc-

cessfully prepared by combined hydrothermal and

phosphorization processes. The introduction of P

ions into CoMoO4 lattice is evidenced by combined

XRD, Raman, EDS and XPS techniques. The electro-

chemical test confirmed that phosphorus incorpora-

tion can efficiently promote the electrocatalytic

performance. The self-supported CoMoO4 bundles

phosphorized at 350 �C exhibited the highest activity

in 1 M KOH with low overpotentials of 56 mV @

- 10 mA cm-2 and 148 mV @ - 100 mA cm-2 as

well as a low Tafel slope of 78 mV dec-1. The excel-

lent HER activity and high stability enable

P-CoMoO4-350 a promising HER electrocatalyst in

basic media. Our work suggests that P doping engi-

neering is an effective route to tune the HER perfor-

mance of transition metal oxides.
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