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ABSTRACT

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

(PEDOT:PSS) fiber has been developed as a more promising candidate com-

pared with bulk and film to achieve wearable thermoelectric energy harvesting.

Single-walled carbon nanotubes (SWCNTs) with nanostructures are considered

as an effective conductive filter for the further improvement in the thermo-

electric (TE) performance of PEDOT:PSS fibers. However, the previous research

primarily focused on PEDOT:PSS/SWCNT films instead of fibers. In this study,

PEDOT:PSS/SWCNT hybrid fibers were synthesized via gelation process,

which presents a 30% enhancement of the electrical conductivity with negligible

changes in Seebeck coefficient. Moreover, there was a significant increase in the

Young’s modulus in accordance with the addition of an appropriate amount of

SWCNTs. Thereafter, the as-prepared hybrid fibers were treated using ethylene

glycol (EG) to further optimize the TE performance. Moreover, the influence of

the treatment time and temperature was systematically investigated. The EG

treatment resulted in a significant improvement in the electrical conductivity

without a significant decrease in the Seebeck coefficient. Furthermore, the

hybrid fibers were subject to EG treatment at elevated temperature, whose

optimal power factor was approximately 30% higher than that of the EG-treated

PEDOT:PSS/SWCNT fibers at 25 �C. This indicates that the solvent treatment at

higher temperature improves the TE performance of hybrid fibers. The findings

of this study can serve as a guide for the preparation of flexible and metal-free

hybrid fiber with enhanced TE performance and Young’s modulus.
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Introduction

The extensive development of wearable electronic

device facilitated the progress of self-powering tex-

tiles, which involved photovoltaic [1], triboelectric

[2], electrochemical [3] and thermoelectric (TE) [4]

energy generation and storage techniques. Compared

with thin films and bulks, fiber-shaped materials can

be widely used in wearable energy supplying tech-

niques, primarily because they can be significantly

integrated into common textiles with minimal impact

on comfort and breathability [5, 6]. Moreover, TE

materials can utilize the temperature gradient

between the human body and environment to gen-

erate power for wearable electronic devices [7–11].

The TE performance of a semiconductive material is

evaluated as ZT = rS2T/j, where r, S, T and j rep-

resent the electrical conductivity, Seebeck coefficient,

absolute temperature and thermal conductivity,

respectively. For organic TE materials with inherently

low thermal conductivity, the evaluation of their TE

performance using the power factor (PF = rS2) is

widely accepted as well.

As one of the most promising organic thermoelec-

tric materials, commercially available poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate)

(PEDOT:PSS) has been extensively researched due to

its easy processability, high electrical conductivity

and nontoxicity [12–15]. Due to its simple preparation

process and structural advantages, the PEDOT:PSS-

based hydrogel fiber has attracted significant

research attention in many fields [16–19]. In a previ-

ous study, a TE fiber was synthesized from PED-

OT:PSS via a sulfuric acid-assisted gelation process.

The resultant PEDOT:PSS fiber was then treated with

ethylene glycol to further increase its electrical con-

ductivity in accordance with a slight decrease in its

Seebeck coefficient, whose optimized r, S and PF

values were calculated as 175 S cm-1, 16 lV K-1 and

4.77 lW m-1 K-2, respectively [20]. The tensile

properties the abovementioned PEDOT:PSS fibers,

which are critical for wearable thermoelectric energy

harvesting applications, were not presented. Fur-

thermore, the TE performance of the fibers can be

further optimized by introducing nanostructured

materials with excellent TE performance to the

organic matrix.

In recent years, metal-free hybrid TE materials

have been extensively developed due to their great

potential to fulfill both merits of each component,

thus leading to enhanced TE performance. Further-

more, their excellent mechanical reliability allows

them to be implemented in wearable application

[21–25]. As a highly conductive filler, single-walled

carbon nanotubes (SWCNTs) have been extensively

employed to enhance the TE performance of PED-

OT:PSS based on the carrier scattering effect [26–29].

The junctions in the hybrid semiconducting materials

are critical to high TE performance material. When

charge carriers are transported through these junc-

tions, charge carriers with low energy are scattered

by the energy barrier in the junctions, which would

benefit the Seebeck coefficient [30]. Yu et al. reported

that r of the PEDOT:PSS/CNT composite was

increased to 13500 S cm-1 with an almost constant

S ranging from 27–47 lV K-1 in accordance with an

increase in weight content of the CNTs from 35 to 60

wt % [31]. Moreover, the introduction of SWCNTs

can also increase the Young’s modulus of polymer-

based materials [32], which may be due to the strong

p–p interaction between the PEDOT chains and

SWCNTs. However, most of the previous studies

were mainly focused on the PEDOT:PSS/SWCNT

bulk or film. The thermoelectric and tensile proper-

ties of PEDOT:PSS/SWCNT fibers with respect to

wearable thermoelectric energy harvesting applica-

tions should be considered. Moreover, EG post-

treatment was verified as an effective method for the

improvement in the TE performance of PEDOT:PSS-

based materials due to the removal of insulating PSS

chains from highly conductive PEDOT chains, thus

inducing the enrichment of the conductive phase in

the surface region [20, 27, 33]. The information pre-

sented above can serve as a basis for the realization of

hybrid fibers with enhanced TE and tensile

performance.

In this study, PEDOT:PSS/SWCNT hybrid fibers

were prepared via a gelation method. The TE and

tensile properties of the hybrid fibers were compre-

hensively characterized. EG post-treatment was then

employed, and its effect on the TE performance of the

as-prepared hybrid fibers was systematically inves-

tigated. Changes in the micromorphology and

chemical composition of the as-prepared fibers, as

induced by EG post-treatment, were detected using

scanning electron microscopy (SEM) and X-ray pho-

toelectron spectroscopy (XPS). The proposed hybrid

fibers represent a novel scheme for the development

of fiber-based TE energy harvesting system.
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Experimental

Materials

The PEDOT:PSS aqueous solution (Clevios PH1000)

was obtained from HC Stark. SWCNT dispersion in

water (0.2 wt %, TUBALLTM BATT) was purchased

from OCSiAl (www.ocsial.com). Sulfuric acid

(H2SO4) was obtained from Xilong Chemical Co. Ltd.

Anhydrous ethanol (EtOH) was obtained from Sino-

pharm Chemical Reagent Co., Ltd. Hydrazine

hydrate (N2H4�H2O, 80%) and ethylene glycol (EG)

were obtained from J&K Scientific Ltd. All the

chemical agents were used as received.

Fabrication of PEDOT:PSS/SWCNT hybrid
fiber

The PEDOT:PSS hybrid fibers were synthesized

mainly based on a method employed in a previous

study [20]. In particular, 5 mL of PEDOT:PSS and

SWCNT hybrid solution which contained 0.05 M

H2SO4 was injected into a polytetrafluoroethylene

tube mold (inner diameter = 1.0 mm) that was then

set in an oven at a temperature of 90 �C for 3 h. To

optimize the TE performance of as-prepared hybrid

fibers, they were immersed in the EG solution for a

given period of time. The as-prepared hybrid fibers

were denoted as EGx-PEDOT:PSS/SWCNTy, where x

and y represent the EG treatment temperature and

weight content of the SWCNTs.

Measurement

The diameter and micromorphology of the as-pre-

pared fibers were obtained using SEM (JSM-7500F;

JEOL, Japan). The surface composition of the PED-

OT:PSS fiber was detected using an Escalab 250Xi

X-ray photoelectron spectroscope (XPS, Thermo

Fisher Scientific, USA).

The tensile properties of the as-prepared hybrid

fibers were determined using a tensile testing

machine (ZQ-990LB). A 5 cm fiber was fixed on the

test machine, which was then stretched at

1 mm min-1. A minimum of five tests were carried

out for each sample. A standard four-point probe

technique was employed to measure the electrical

conductivity and the sheet resistance Rs of the fibers.

The Rs was calculated as Rs = 2prR/L, where L, R and

r represent the length, resistance and the radius of

fibers, respectively. S is estimated as S = -4V/4T,

where 4V and 4T represent the temperature differ-

ence-induced voltage and the in-plane temperature

gradient of fibers in the axial direction, respectively.

The thermopower along the axial direction under the

temperature gradient was measured using a data

acquisition system (Keithley 2700), which was

established with a heat resistor and controlled by

regulated direct current.

Results and discussion

Based on a previous report [20], PEDOT:PSS fibers

can be obtained when PEDOT:PSS and sulfuric acid

hybrid solution was kept at 90 �C for 3 h. To further

improve the TE performance, solution-processable

SWCNTs were introduced into the PEDOT:PSS

matrix. First, the effect of the SWCNTs weight con-

tent on the gelation of PEDOT:PSS, with the use of

sulfuric acid, was investigated. The formation of the

fibers can be attributed to the introduction of sulfuric

acid, which eliminates a portion of PSS, thus leading

to the enhancement of the hydrophobic attraction and

p–p stacking interaction between PEDOT:PSS grains

[16]. Additional SWCNT hindered the formation of

the cross-linking network. As shown in Fig. 1, the

continuity of hybrid fibers significantly decreased in

accordance with an increase in the SWCNT weight

content. The PEDOT:PSS cross-linking network was

unable to bear the SWCNT overload and underwent

breakage when the SWCNT weight content exceeded

70 wt %. Figure 2 presents the SEM images of the as-

prepared hybrid fibers. The diameters of the PED-

OT:PSS/SWCNT0.6, EG25-PEDOT:PSS/SWCNT0.6

and EG100-PEDOT:PSS/SWCNT0.6 hybrid fibers were

calculated as 77.14 ± 4.81 lm, 66.11 ± 4.26 lm and

56.76 ± 2.77 lm, respectively. The diameters of

hybrid fibers slightly decreased after EG treatment.

Moreover, the surface of the hybrid fibers was rela-

tively smooth. After EG treatment, more wrinkles

were observed, which was in accordance with the

findings of a previous study [34]. An assumption was

made that the surface composite may be affected by

the EG treatment.

Figure 3a, b and c presents the S2p XPS of the

PEDOT:PSS/SWCNT0.6, EG25-PEDOT:PSS/

SWCNT0.6 and EG100-PEDOT:PSS/SWCNT0.6 fibers,

for an accurate determination of the chemical struc-

ture. In general, the doublet at 166–170 eV can be
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attributed to the sulfur atom from the sulfonate

group in PSS, and the doublet at 162–166 eV can be

attributed to the sulfur atom from the thiophene

group in PEDOT [35]. The ratio between PEDOT and

PSS of the PEDOT:PSS/SWCNT0.6, EG25-PED-

OT:PSS/SWCNT0.6 and EG100-PEDOT:PSS/

SWCNT0.6 fiber was quantified as 1:1.77, 1:1.56 and

1:1.39, respectively. After the EG treatment, the

insulative PSS molecules were readily removed from

the surface region of the hybrid fibers, which can be

mainly attributed to the weakening of the Coulombic

force between the PEDOT and PSS chains, as induced

by the EG screen effect [36]. Moreover, compared

with the hybrid fibers subject to EG treatment at

25 �C, the PEDOT/PSS ratio of the EG100-PED-

OT:PSS/SWCNT0.6 fibers decreased further. This

indicates that the organic solvent treatment at an

elevated temperature promotes the phase separation

of PSS from PEDOT chains, thus resulting in the

further enhancement of the electrical conductivity.

The representative strain–stress curves of the

PEDOT:PSS/SWCNT hybrid fibers are shown in

Fig. 4. All the hybrid fibers exhibited bilinear strain–

stress curves, thus indicating linear strain-hardening

characteristics [37]. The bilinear curves represent two

sequential deformations during the stretching pro-

cess. The first linear curve indicates the elastic

behavior, and the second linear curve indicates

plastic behavior when subject to additional stress.

The bilinear behavior can be described by a simple

Prandtl–Reuss elasto-plastic model, where

H (H = (rm-ry)/D), rm, ry and D represent the clas-

sical linear hardening parameter, final tensile stress,

yield stress and plastic strain, respectively. All the

tensile properties of the hybrid fibers are listed in

Table 1. The introduction of SWCNT promotes the

Young’s modulus of the PEDOT:PSS fibers from 0.8

to 1.6 when the SWCNTs weight content reached 20

wt %, which can be attributed to the intrinsic high

stiffness of the SWCNTs [38, 39]. With a further

increase in the SWCNTs loading, the SWCNTs were

not homogeneously dispersed in the PEDOT:PSS

matrix and aggregation occurred. Consequently, the

Young’s modulus, fracture strain and rm were

decreased. It should be noted that the Young’s

modulus of polymer-based materials is inversely

proportional to the relative humidity (RH) [40].

Tensile tests were conducted on samples under 65%

RH. A higher Young’s modulus was obtained under

a lower RH. Moreover, the Young’s modulus values

of the PEDOT:PSS-based materials are listed in

Table 2. The hybrid fibers synthesized in this study

demonstrate a relative low Young’s modulus when

compared with previous reports.

The TE performance characteristics of the PED-

OT:PSS/SWCNT fibers are presented in Fig. 5.

Hybrid fibers were obtained when the SWCNTs

weight content was below 65 wt %. When SWCNTs

weight content was higher than 65 wt %, the hybrid

fibers were excessively weak; thus, they could not be

extracted from EtOH, which was mainly because the

PEDOT:PSS network lacked the strength to bear the

Figure 1 Images of

PEDOT:PSS/SWCNT with

different SWCNTs weight

contents ranging from 0–70

wt %.
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Figure 2 SEM images of PEDOT:PSS/SWCNT0.6 (a), EG25-

PEDOT:PSS/SWCNT0.6 (b) and EG100-PEDOT:PSS/

SWCNT0.6 (c). Figure 3 S2p XPS of PEDOT:PSS/SWCNT0.6 (a), EG25-

PEDOT:PSS/SWCNT0.6 (b) and EG100-PEDOT:PSS/

SWCNT0.6 (c).
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excessive SWCNTs content. The TE performance of

the hybrid fibers remained almost constant when the

SWCNTs weight content was less than 50 wt %. With

an increase in the SWCNTs weight content, r of the

hybrid fibers increased from 58.6 to 76.3 S cm-1 and

then decreased significantly to 37.3 S cm-1. The

increase in electrical conductivity can be mainly

attributed to (1) the intrinsic higher electrical con-

ductivity of the SWCNTs with a highly conductive p-
conjugated path for the transport of charge carriers

(78.9 S cm-1) [47] and the (2) filling of the junctions

between the SWCNTs by PEDOT:PSS, thus decreas-

ing the resistance of the junctions [26, 31].

The Seebeck coefficient of the SWCNTs

(13.6 lV K-1) was relatively lower than that of

PEDOT:PSS fibers (17.3 lV K-1). Moreover, the See-

beck coefficient of the hybrid fibers did not decrease

significantly upon mixture with the SWCNTs, which

was possibly due to the energy filtering effect. In

particular, the work functions of the PEDOT:PSS and

SWCNT were different, i.e., the Fermi level that

represents the average kinetic energy of the charge

carriers in the two semiconducting materials was

different. When the two components were in contact

with each other, interfacial barriers were formed due

to band bending, which could preferentially scatter

low-energy carriers and allow for the passage of

high-energy carrier [48–51]. The variation in the TE

performance of the hybrid fibers with respect to the

SWCNTs content was in agreement with the findings

of previous reports [47, 52].

When the SWCNTs weight content was greater

than 60 wt %, r and S decreased simultaneously. It

should be noted that the PEDOT:PSS matrix cannot

contain a significant amount of SWCNTs, and an

excessive amount SWCNTs severely impacts the

continuity of the conductive network. In general, the

optimal power factor of the hybrid fibers was

2.22 lW m-1 K-2, which was 24 and 53% higher than

those of the PEDOT:PSS fibers and SWCNTs,

Figure 4 Representative strain–stress of PEDOT:PSS/SWCNT

hybrid fibers.

Table 1 Tensile properties of

PEDOT:PSS/SWCNT hybrid

fibers

SWCNT (wt %) Young’s modulus (GPa) rm (MPa) ry (MPa) D (%) H (MPa)

0 0.8 47.1 36.4 12.5 85.4

10 1.2 35.2 20.2 9.6 156.2

20 1.6 33.3 30.4 11.0 26.4

30 1.0 19.1 13.0 12.1 51.2

40 0.5 14.0 10.4 14.0 25.7

50 0.4 18.8 11.1 8.5 90.1

Table 2 Young’s modulus of

PEDOT:PSS-based materials Materials Young’s modulus (GPa) References

PEDOT/PSS fiber 8.3 [41]

PEDOT:PSS film 2.7 [40]

PEDOT:PSS-SWCNT hybrid fiber 5.2 [42]

PEDOT/PSS fiber 4.0 [43]

PEDOT/PSS film 1.0 [44]

Polyurethane/PEDOT:PSS 0.2 [45]

PEDOT:PSS/Paper 1.6 [46]

PEDOT:PSS/SWCNT fiber 1.6 This work
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respectively, when the SWCNTs weight content was

60 wt %.

The insulating nature of the PSS chains in the

hybrid fibers limits the charge carrier transport

between conductive PEDOT chains. Post-treatment

with polar solvents [53], such as H2SO4 [54], dimethyl

sulfoxide (DMSO) [55–57] and EG [58], is widely

considered as an efficient method for the removal of

PSS and the promotion of charge carrier transport in

the hybrid fibers. Figure 6 presents the TE perfor-

mance of the hybrid fibers subject to EG treatment for

several minutes at 25 �C. Due to the immersion

treatment processing, the sheet resistance decreased,

whereas the electrical conductivity significantly

increased, which was mainly due to the partial

removal of the insulating PSS chains in the surface

region of hybrid fibers as confirmed by XPS results.

This resulted in the enrichment of conductive PEDOT

chains. Moreover, slight changes were observed in

the Seebeck coefficient of the hybrid fiber. The opti-

mal power factor of this hybrid fiber reached

5.57 lW m-1 K-2 after EG treatment for 45 min,

which was higher than that of the untreated PED-

OT:PSS/SWCNT0.6 fibers by a factor of approxi-

mately 1.5.

The treatment temperature was assumed to have

an effect on the TE performance of the PEDOT:PSS/

SWCNT hybrid fibers. First, the hybrid fibers were

subject to EG treatment under a series of elevated

temperatures. As shown in Fig. 7a, the EG treatment

at higher temperature improved the TE performance

of the hybrid fiber. Thereafter, the TE performance of

the hybrid fibers subject to EG treatment at 100 �C for

varying durations was systematically investigated.

Figure 5 Thermoelectric

performance of PEDOT:PSS/

SWCNT fibers.

Figure 6 Sheet resistance, electrical conductivity a, Seebeck

coefficient and power factor b of PEDOT:PSS/SWCNT0.6 treated

with EG at 25 �C.
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As shown in Fig. 7b, the variation trend of the elec-

trical conductivity and Seebeck coefficient of hybrid

fibers was the same as that presented in Fig. 6; thus

indicating that EG treatment at an elevated temper-

ature may further facilitate the removal of insulating

PSS chains, as previously confirmed by XPS results.

The optimal power factor of the hybrid fiber reached

7.23 lW m-1 K-2 after EG treatment at 100 �C for

45 min, which was approximately 30% higher than

that of EG25-PEDOT:PSS/SWCNT0.6.

Table 3 presents a summary of the TE performance

of the PEDOT:PSS/SWCNT hybrid materials. The

electrical conductivity of the pristine PEDOT:PSS

fibers was found to be significantly lower than that of

the films. The significant decrease in electrical con-

ductivity can be attributed to the abundance of insu-

lating PSS chains within the hydrogel fibers when

compared with that of the thin films. The cause for the

formation of the PEDOT:PSS hydrogel is the enhanced

hydrophobic interaction between PEDOT:PSS grains

in addition to the p–p stacking interaction between the

PEDOT chains, as induced by sulfuric acid [16]. In this

self-assembly process, many insulating PSS chains

may be wrapped within and on the surface regions of

the fibers. Moreover, EG treatment can only remove

the PSS chains in the surface regions. The remaining

PSS chains within the fibers then limit the charge car-

rier transport. It should be noted that the electrical

Figure 7 TE performance of

PEDOT:PSS/SWCNT fibers

subject to EG treatment for

45 min at different

temperatures (a) and hybrid

fibers subject to EG treatment

at 100 �C for varying

durations (b).
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conductivity of the PEDOT:PSS fibers without any

treatment mainly ranged from 0.4 to 74 S cm-1, when

prepared via a wet spinning technique [43, 59] or

gelation [16, 20], which was relatively lower than that

of the films. In particular, PSS chains allow for the

solution to exhibit suitable processability; however, an

excess of PSS chains leads to a decrease in the electrical

conductivity. Hence, further research is required on

the effective regulation of the amount of PSS chains

necessary to balance the solution processability (also

referred to as ‘spinnability’ for spinning dope) and

electrical conductivity for the PEDOT:PSS-based

fibers. Furthermore, according to the SWCNT disper-

sion formula, polyvinylpyrrolidone (PVP) was added

to provide the SWCNTs with suitable dispersity in

aqueous solutions, which severely deteriorated the

charge transport between the PEDOT chains and

SWCNTs [60].

The variation in electrical resistance of the optimal

hybrid fibers with respect to the bending angle was

investigated. As shown in Fig. 8a, there were negligi-

ble changes in the electrical conductivity after bending

at an angle of 300�. Thereafter, the fiber was subject to

approximately 1000 bend-and-release cycles at an

angle of 300�. As shown in Fig. 8b, the fibers exhibited

slight differences in electrical conductivity before and

after 1000 bend-and-release cycles at an angle of 300�.
The experimental results demonstrated the good

mechanical reliability of the hybrid fibers.

Conclusions

In summary, the development of PEDOT:PSS/

SWCNT hybrid fibers with enhanced TE and tensile

performance was realized. First, the PEDOT:PSS/

SWCNT hybrid fibers were fabricated via the injec-

tion of PEDOT:PSS and SWCNT homogeneous dis-

persion with 0.05 M H2SO4 into a tube mold. It

should be noted that hybrid fibers were not obtained

when the SWCNT weight content exceeded 65 wt %.

Table 3 TE performance of PEDOT:PSS hybrid materials

Materials Shape r
(S cm-1)

S

(lV K-1)

rS2

(lW m-1 K-2)

References

PEDOT:PSS/SWCNT Film 1000 40 160 [31]

PEDOT:PSS/SWCNT Film 241 38.9 21.1 [61]

EG-treated PEDOT:PSS/SWCNT Film 780 ± 51 43.7 ± 3.3 151 ± 34 [27]

DMSO-treated PEDOT:PSS/SWCNT Film 3800 28 300 [57]

PEDOT:PSS/SWCNT Film 533 44.3 105 [60]

PEDOT:PSS/SWCNT Fiber 361 ± 90 16.6 ± 3.3 10.1 ± 4.5 [62]

Hydrazine-treated PEDOT:PSS/SWCNT 318 ± 33 - 33.4 ± 0.7 35.6 ± 5.2

EG-treated PEDOT:PSS/SWCNT Fiber 243.3 17.23 7.23 This work

Figure 8 Electrical conductivity of EG100-PEDOT:PSS/SWCNT0.6 hybrid fibers subject to bending a at different angles and b at 300�
for multiple cycles.
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The Young’s modulus was increased from 0.8 GPa to

1.6 GPa when the SWCNTs weight content reached

20 wt %. Compared with the power factor of the

PEDOT:PSS fibers, that of the hybrid fibers was cal-

culated as 2.22 lW m-1 K-2, which was 24% higher

than that of PEDOT:PSS fibers. Thereafter, EG post-

treatment was employed to further optimize the TE

performance of the hybrid fibers, thus resulting in a

significant enhancement of the electrical conductivity

with negligible changes in the Seebeck coefficient.

This resulted in an increase in the power factor by

approximately 2.5 to a value of 5.57 lW m-1 K-2.

This was primarily because the EG treatment facili-

tated the separation of the insulating PSS chains from

the highly conductive PEDOT chains in the surface

region of the hybrid fibers. Moreover, EG treatment

at elevated temperature could further improve the TE

performance of the hybrid fibers, whose power factor

was 7.23 lW m-1 K-2, indicating that solvent treat-

ment under higher temperature is a more effective

method for the improvement in the TE performance

of hybrid fibers. The findings of this study can serve

as a guide for the preparation of PEDOT:PSS-based

fiber with enhanced TE performance.
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