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ABSTRACT

The ultimate prospect of tissue engineering is to create autologous tissue grafts

for future replacement therapies through utilization of cells and biomaterials

simultaneously. Bio-printing is a novel technique, a growing field that is leading

to the global revolution in medical sciences that has gained significant attention.

Bio-printing has the potential to be used in producing human engineered tissues

like bone and skin which then ultimately can be used in the clinics. In this paper,

the 3D bio-printing applications of the engineered human tissues that are

available (skin and bone) are reviewed. It is evident that various tissue engi-

neering techniques have been applied in the fabrication of skin tissue; therefore,

it leads to introduce tissue substitutes such as complementary, split-thickness

skin graft, allografts, acellular dermal substitutes and cellularized graft-like

commercial products, i.e., Dermagraft and Apligraf. Also, some bone scaffolds

based on hydroxyapatite and biphasic calcium phosphate are available in the

market. The technology of bio-printing has got validated for bone and skin

tissue fabrication, and it is hoped that other tissues could be produced by this

technique.

Introduction

Regenerative medicine holds the promise to restitute

the normal function of cells, tissues or organs lost due

to disease or damage via replacing or regenerating

[1]. In fact, there are three solutions for patients with

organ impairment, based upon the condition and

severity of the destruction, they are: graft

implantation, substitution and restoration. Graft

implantation has comprehensively extensive lists of

anticipants all around the world, for example, organ

transplant waiting list updated every 15 in the USA

[2]. The ultimate prospect of tissue engineering is to

create autologous tissue grafts for future replacement

therapies through utilization of cells and biomaterials

[3, 4]. Besides, tissue engineering has been seen as an
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efficient method to assist in rescuing lives and

improving the quality of life. There are many meth-

ods to produce an appropriate scaffold that cells

could seed on, like foam casting, electrospinning,

phase separation, decellularizing, etc.

Recently human donor organs, such as kidney

[5–7], lung [8–10], heart [11–13] and liver [14–16],

have been experimented to obtain decellularized

extracellular matrix scaffolds (dECM) in order to

clarify their potential application in regenerative

medicine. However, despite the important basic sci-

ence achievements in the field, clinical applications of

decellularized tissues are not available yet [17]. Also,

the use of dECM scaffolds for bioengineering of

human scale patient-specific organs using human

pluripotent stem cells (hPSCs) has been considered as

a major platform for therapeutic applications [18].

Interestingly, the concept of organ printing has lately

taken the center stage due to recent 3D bio-printing

(3DBP) advancements [19–22].

3DBP is considered to have significant impact in

tissue engineering area. Bio-printing is a growing

field that is leading to a global revolution in medical

sciences and has gained significant attention world-

wide because of tremendous transformation it will

have in the treatment of diseases [23].

Bio-printing can be defined as the simultaneous

printing of living cells and biomaterials like hydro-

gels, bioglasses, bio-ceramics and collagen by a pre-

scribed layer-by-layer stacking organization, using a

computer-aided transfer process for fabrication of

bioengineered constructs. Initially the study of cells

was performed applying 2D structures; nonetheless,

with the initiation of 3D printing to the engineering of

tissues, it became feasible for researchers to use 3D

scaffolds. Even though vascularization, controlled

cell dispersion, innervation and cell deposition with

high resolution, in complicated 3D tissues are still

current technical challenges faced in 3DBP, however,

compared with other techniques it presents many

advantages such as scalability, simplicity and cost

efficiency. Due to these advantages, 3DBP develop-

ment and application has been increasing constantly

over the past few years [24]. Also, 3DBP techniques

have extensive applications in tissue engineering

[25–28], transplantation clinics [23–29], drug screen-

ing, high throughput assays [30] and cancer research

[31].

Since the human organs are different in terms of

the size, 3DBP is an appropriate and versatile method

for fabrication that asserts micrometric cell patterning

for extensive biomedical engineering applications

[21]. Generating the printing paths, selecting appro-

priate bio-inks, printing control and performing

quality control after printing are major steps that

assure passable print [22].

Generating the printing pathways and verifying its

feasibility by designers is the first step of the bio-

printing process. By selecting appropriate cells and

hydrogels, loading the bio-inks into the bio-printing

system is needed. The next step is sending the

designed paths to the controlling system and build-

ing structures by depositing bio-inks. The bio-printed

constructs are examined through a microscope. As

more researches are performed implementing the

techniques of 3DBP, this will ensure an enhancement

of the printing resolution and quality and also the

actualization of the current challenges, furnishing the

capacity to print more complex 3D constructs.

Due to the advances in the additive manufacturing,

some of the most well-known for bone tissue engi-

neering, including stereo-lithography, selective laser

sintering, fused deposition modeling and three-di-

mensional printing are reviewed [32, 33]. Moreover,

some basic physical principles along with primary

applications of aforementioned techniques have been

reviewed beside a list of bone tissue engineering-re-

lated biomaterials [33]. Various types of bio-inks used

for bone bio-printing are reviewed as well as their

major challenges and future strategies [34]. The

recent advancements, limitations, challenges and

future strategies in bone bio-printing are summarized

in recently published reports [32, 34, 35].

There are several studies about 3DBP which cover

diverse tissues [36–43]; meanwhile, to the best of our

there isn’t any review study about bone and skin

tissues bio-printing. In fact, this paper focuses on

tissues that successfully passed the commercializing

procedures not only by printing techniques, but also

by the prior scaffold fabricating methods. The

authors tried to include the skin and bone-related

literature that published till preparing the paper with

the ‘‘bio-printing, 3DBP, 3D printing’’ key words,

whereas the unrelated papers in tissue engineering

fields were excluded.

Our aim was to focus on studies with commonly

employed cells, materials and printing methods in

skin and bone bio-printing (Fig. 1).
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Bio-inks and their performances

Among all the bio-inks used for 3DBP, there are some

that are distinguished based on their merits. In some

studies that refer to this issue, specific applications,

new methods and spectacular properties have been

reported [44–50]. In certain biomedical appliances,

conductivity is of extreme importance while in scaf-

folds, cell support is vital [24]. In a recent study, a

formidable bio-ink was designed for reconstructing

cardiac tissue [51], it was produced to supply the

correct conductivity and evade postponed electrical

confluence in cardiac cells. This new gold nano-rod-

integrated gelatin methacryloyl-based bio-ink was

shown to be precisely printable, cytocompatible and

boosted the performance of cardiac cells.

Nerve [52], kidney [53] and cartilage [54] rejuve-

nation and restoration including bionic ear [55] are

other precise utilizations investigated for bio-ink

improvement. Impressionable electronics for bio-

electronic boundaries are also presently under com-

prehensive investigation [56, 57]. Also, 3DBP of

commercialized tissue engineering products is a

novel idea that can result in more effectiveness and

lowering of costs.

Skin tissue 3D bio-printing

Many tissue fabrication techniques have been

employed in the creation of skin tissues which cul-

minate in the introduction of tissue substitutes, such

as autologous split-thickness skin graft [58], allografts

[59], acellular dermal substitutes and cellularized

graft-like commercial products [59] such as Derma-

graft and Apligraf [60]. New, bio-printing technology

was utilized for skin tissue fabrication, Pourchet et al.

[61] produced a two-layered (dermis and epidermis)

3D cell-printed full-thickness skin. The bio-ink was a

mixture of gelatin and fibrinogen; moreover, they

embedded human dermal fibroblasts in the men-

tioned mixture and printed to produce a dermis

construct. Next stage was to generate the skin sub-

stitutes with 5 mm thickness which seeded the

human epidermal keratinocytes over the dermis

construct. Within 26 days of culture, natural human

Figure 1 Various cells,

materials and printing methods

used in bone and skin tissue

bio-printing.
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skin histological-like characteristics of the 3D cell-

printed skin exhibited. Interestingly, immunofluo-

rescence results using different differentiation mark-

ers exhibited high expression of Loricrin, showing

the barrier function of the skin, which is related to the

stratum corneum formation. Table 1 lists the studies

on skin tissue 3DBP.

Cubo et al. [62] produced a full-thickness human

skin similar to one-step manufacturing one, which

used 3DBP technique. A combined structure was

comprised of four different elements—human

fibroblasts, human plasma supplemented with

fibrinogen, calcium chloride (CaCl2) and human

keratinocytes. Based on in vitro and in vivo evalua-

tions, it was shown that the 3D cell-printed human

skin substitute was very similar to natural human

skin tissue, and extremely differentiated dermis and

epidermis layers clearly were noticed. They con-

structed an intelligible and efficacious 3DBP tech-

nique and bio-inks that permitted the creation of a

double-layer human skin, adopting human plasma

and primary human fibroblasts (hFBs) and human

keratinocytes (hKCs). The printed tissue was very

similar to natural human skin and indistinguishable

Table 1 Summary of skin tissue 3DBP studies representing the cell types and source, growth factors, animals and the print technique used

in some skin tissue engineering studies

Biomaterials/bio-ink Cell type Cell source Growth factor/

biomolecules

In vivo

animal model

Bio-printing

technique

References

Gelatin–fibrinogen–

alginate

Fibroblast,

keratinocyte

Human skin – – Extrusion [61]

Human plasma/fibrin Fibroblast,

keratinocyte

Human skin – Nude mice Extrusion [62]

Gelatin

methacrylamide

(GelMA)

Keratinocyte – – – [63]

Collagen hydrogel Fibroblast,

keratinocyte

Human skin Human keratinocyte

growth supplement

– Solid

freeform

fabrication

[64]

Gelatin–silk fibroin

(SF)

Child foreskin

fibroblasts (CFFs)

Human FGF-2 Rat Pneumatic

bio-printing

[65]

Chitosan–

polyelectrolyte

gelatin hydrogel

Fibroblast skin cells Human – – – [67]

Collagen hydrogel

precursor

Melanocytes,

fibroblast,

keratinocyte

– – – Extrusion [68]

Gelatin–alginate Bone marrow

mesenchymal stem

cells

Rat – Mouse Extrusion [69]

Gelatin and sodium

alginate

Epidermal

progenitor cells

Mice Mouse plantar dermis and

epidermal growth factor

– Extrusion [70]

Collagen and

fibrinogen

AFS or MSC Amniotic fluid Thrombin Mice Inkjet [73]

Collagen hydrogel/

gelatin/PCL

Fibroblast and

keratinocyte

Human skin – – Extrusion and

inkjet

[74]

Matriderm Fibroblast and

keratinocyte

Mouse

embryo

human skin

Hydrocortison Male BALB/

c-nude

mice

Laser-

assisted

[75]

Hydrogel fibrinogen

and collagen type 1

Fibroblast and

keratinocyte

Human skin Thrombin Porcine

wound

model

Inkjet

(in situ)

[76]
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from dermo-epidermal analogs, precedent hand-

crafted in their laboratory and employed successfully

in the clinic. This method set up a novel technology

that permitted the production of skin substitutes in

reasonable amounts at shorter times. It showed

decreased production cost and an improved pro-

duction line by utilizing an automotive and stan-

dardized system of producing skin counterparts,

thereby overcoming some of the challenges encoun-

tered by the present physical production process.

Zhao et al. [63] synthesized varying concentrations

of gelatin methacryloyl (GelMA) hydrogels for a

monolayer skin modernization process. GelMA

hydrogels have good physical properties, and sub-

sequently they systematically change the concentra-

tion of GelMA in order to control the adhesion,

proliferation and differentiation of keratinocytes. A

hydrogel scaffold was used to reach a keratinocyte

suspension, which was used to develop the recon-

struction of the classified and functional epitromes.

The result of this study indicated that the physical

and biological properties of the resultant hydrogels

could be adequately controlled to meet the require-

ments for epidermis formation, by altering the con-

centration of GelMA pre-polymer solution. GelMA

hydrogels supported the formation of a stratified

epidermis with a certain barrier function, e.g., elec-

trical resistance and prevention of water loss. Higher

concentrations of hydrogels indicate the hardness of

materials for cell adhesion and the formation of sin-

gle-layer keratinocytes and cell adhesion, coupled

with prolonged resistance to collagenase

degradation.

Lee et al. [64] constructed a two-layer skin via a

3DBP procedure using skin dermal matrix formed by

collagen. In fact, replacing the natural human skin by

3D-printed one is not impossible morphologically

and biologically, while the 3D-printed one was rein-

forced via histological and immunofluorescence

properties. In order to cover the full thickness of the

transdermal and localized wound forms, this tech-

nique has a wide range of applications in skin design

of toxicity investigations and wound healing. Their

study illustrated that cell viability and function were

affected little by proteins and printing cells in nano-

droplets form. Both keratinocytes and fibroblasts

enjoyed sufficiently high rate of viability in this study

[66].

Xiong et al. [65] study revealed that the rate of full-

thickness wound healing accelerated by utilizing

from 3D-printed gelatin–silk fibroin base scaffolds.

Also, incorporation of fibroblast growth factor

2 (FGF-2) could further enhance the treatment effi-

cacy. Skin scaffolds shown to contain sulfonated

moieties in order to raise scaffold hydrophilicity. The

immobilized growth factor FGF-2 facilitated a sus-

tained release kinetics, as well as being able to initiate

cell proliferation and migration in vitro. Printed

scaffolds exhibited favorable results in vivo. Prolif-

eration rate in this study showed a significant raise

from 40 to 75% by using FGF-2. Tissue morphology,

collagen fibril assembly, blood vessel formation and

the expression of various corresponding markers

grew impressively. These data demonstrated that

recombinant FGF-2 delivered by the scaffold could be

a viable and innovative therapeutic strategy for sev-

ere skin wound.

Rutz et al. [66] introduced a versatile and cell-

compatible bio-ink from a variety of amine-contain-

ing polymers and their mixtures, synthetically and

naturally. It was shown that 35 formulations of bio-

inks can be customized with regard to composition

(additives and composites), the degree of crosslink-

ing and polymer concentration in order to optimize

structural and biological performance, while main-

taining printability.

Also, Ng et al. [67] optimized a scaffold based on

polyelectrolyte–gelatin–chitosan (PGC) hydrogel by

3DBP. In order to form polyelectrolytic compounds,

the chitosan was modified with the different gelatin

functional groups at pH of 6.5. In this work, to

achieve an excellent biocompatibility with fibroblast

skin cells, the PGC hydrogels were modified at room

temperature for the 3DBP procedure. In fact, PGC

hydrogels have a high viscosity that is suitable for the

printing procedure at room temperature. The PGC

hydrogels were optimized for the bio-printing of skin

designs. Their scaffolds in 400 lm for three layers

were representative of the outer epidermal layer and

part of the dermal area. Their findings suggested the

potential use of polyelectrolyte–gelatin–chitosan

hydrogels for skin bio-printing applications.

Min et al. [68] developed a 3DBP procedure that

there was capability of producing a thick skin with

pigmentations. Multiple layers of collagen hydrogel

precursors with fibroblasts were printed using

sodium bicarbonate as the cross-linker. For the skin

pigmentation induction on the subsequent air–liquid

interface, melanocytes and keratinocytes were

sequentially printed on top of the dermal layer. To
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clarify the formation of distinct skin layers also to

recognize the pigmentation presence, histological

analysis was done. The printed skin product illus-

trated that final differentiation of the keratinocytes

caused the formation of the stratum corneum in the

dermal and epidermal layers. Moreover, the epider-

mal layer included melanocytes that showed the

dermal–epidermal junction with freckle-like pig-

mentations, without the use of chemical stimuli or

external ultraviolet light. For therapeutic and

research purposes, explanation of 3DBP technique as

a productive on-demand option is available and

presented the ability of engineering ephelides pro-

duction in the biomimetic skin. Additionally, Li et al.

[69] designed and manufactured the gelatin/alginate

scaffolds via 3D bio-printer and investigated its bio-

compatibility and the histocompatibility over the skin

wound healing duration using bone marrow-derived

mesenchymal stem cells (BMSCs).

Huang et al. [70] produced a 3D ECM mimic con-

struct for the sweat glands regeneration. Sweat

glands perform a vital thermoregulatory function in

mammals; like other skin attachments, they are made

up of epidermal progenitors. Also, adult epidermal

progenitors could be specified to differentiate to a

sweat gland cell lineage but this remains largely

unexplored and whether they have low regenerative

potential in response to injury is still questionable.

Additionally, in order to create a functional in vitro

cell-laden 3D extracellular matrix mimics (3D-ECM),

3D printing technology was used with composite

hydrogels based on gelatin and sodium alginate, due

to their chemical and structural similarities to ECM

components. Facilitating cell spreading and matrix

formation because of the biological 3D structure

could maintain cell viability. In this study, Ng et al.

[71] demonstrated a bio-printing technique that can

be utilized for the production of films for skin wound

healing. Application of these bio-printed films could

be in skin tissue engineering area.

For the first time, Rimann et al. [72] provided an

all-in-one solution for the production of a skin-like

soft tissue model with human primary fibroblasts

and keratinocytes. The defined printing method and

the advanced bio-ink were cell compatible and

allowed long-term culture models to be generated.

Further optimization of their model can possibly

promote the full standardization of the production of

3D tissue model. Also, future advances in this tech-

nology will depend on standardizing bio-printing

equipment and tailored bio-inks to support the cor-

rect functioning of cells. Reliable in vitro skin models

are urgently required, especially in the cosmetic

business, for testing cosmetic ingredients as required

by legislation in Europe.

In a novel study, Skardal et al. [73] applied bio-

printing technique for the full-thickness skin wounds

treatment in nu/nu mice. They used fibrin-collagen

gel filled with amniotic fluid-based stem cell (AFSs)

and mesenchymal stem cells (MSCs) to print them on

the wound site.

Although Kim et al. [74] invented a novel 3D cell-

printing single-step process approach for human skin

engineering with a functional transwell system. They

established a hybrid 3D cell-printing system that

facilitated the employment of extrusion and inkjet

modules simultaneously. The collagen-based con-

struct facilitated this procedure with polycaprolac-

tone (PCL) mesh that interrupted collagen

contraction during tissue maturation. Moreover, the

inkjet-based disbursing unit was used to evenly dis-

tribute keratinocytes. This skin model disclosed

promising biological properties that comprised of a

steady fibroblast-stretched dermis and stratified epi-

dermis layers 14 days thereon. This method also

possessed 50 times lower cost and 10 times less

consumption of medium than in a stereotyped cul-

ture. All in all, due to one-step procedure possibili-

ties, authors advised their cell-printing approach for

different human skin replicas engineering.

Michael et al. [75] produced a completely cellular-

ized auxiliary skin by employing a laser-assisted bio-

printing (LaBP) method. The unique aspect of LaBP is

the opportunity to situate diverse types of cell in a

precise three-dimensional pattern in space. They

fixed fibroblasts and keratinocytes atop a sustaining

matrix Matriderm in order to construct skin surro-

gates. These skin surrogates were later verified

in vivo, using the dorsal skinfold chamber in nude

mice. Full-thickness skin wounds were then implan-

ted with the grafts, and these were completely bound

to the neighboring tissue when explanted after

11 days. The printed keratinocytes established a

multiple-folded epidermis with a commencement of

differentiation and stratum corneum. The prolifera-

tion of the keratinocytes was principally identified in

the percussive fundamental layers. Test tube controls,

which were cultured at the air–liquid interface, also

revealed proliferative cells, but these were somewhat

situated in the entire epidermis. The presence of
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E-cadherin as an indication for adherens junctions

and consequently the formation of tissue could be

seen in the epidermis both in vivo and in vitro. In

both conditions, the printed fibroblasts partially

remained above the substratal Matriderm where they

formed collagen, while a part of them wandered into

the Matriderm. The blood vessels were seen to

develop from the base of the wound and its edges

toward the printed cells. In summary, Michael et al.

[75] successfully exhibited the 3D printing of a cell

composite through LaBP and the successive forma-

tion of tissue in vivo. These discoveries denote the

precondition for the generation of a composite tissue-

like skin, comprising of various types of cells in a

sophisticated 3D pattern.

In vivo skin 3DBP procedure is shown in Fig. 2.

In a different study, Binder [76] aimed at devel-

oping a prototype skin bio-printer that could act as a

test bed for the core components of an in situ printing

system. A movement system was constructed capable

of 1.57 lm precision. The printer enjoyed a cartridge-

based delivery system capable of delivering up to

eight different types of cells. This study promoted the

idea of utilizing bio-printing in the clinics.

In fact, skin bio-printing is a novel technique which

must be brought to the clinic (Fig. 3).

After a bio-ink pre-cellularization using a novel

passive blending unit method, Thayer et al. [77]

produced skin analogs. This method was designed to

simplify the blending steps of a cell suspension into

an extremely viscous bio-ink. In this study, a bio-ink

based on nano-cellulose/alginate was used. The

analogs of skin tissue could be grown for up to

4 weeks. Histological results showed both tissue-

specific extracellular matrix (ECM) markers deposi-

tion and cell viability.

Albanna et al. [78] described a novel model of a

mobile skin bio-printing process that quickly man-

ages comprehensive injuries on site. The biomaterials

used consisted of fibrinogen from bovine plasma and

thrombin from bovine plasma lyophilized powder.

Immunohistochemistry for human cells showed that

3–6 weeks after printing, as well as endogenous cells,

human fibroblasts and keratinocytes were present in

Figure 2 In vivo study procedure of printed skin scaffolds. The first step is skin biopsy. Then cell isolation and expansion is the second

one. After cell delivery, cell and scaffold transplantation are necessary. Finally, data collection and analysis of procedure is expected.
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the dermis and epidermis of the wound, respectively.

This research discussed the proof-of-concept valida-

tion of mobile in situ skin bio-printing process with

embedded imaging technology to quickly manage

full-thickness wounds on site. It was observed that

the treatment with autologous fibroblasts and ker-

atinocytes, supplied immediately to targeted wound

places depending on wound size and topology, con-

sisting of improved wound healing and standard

in situ skin formation.

Admane et al. [79] demonstrated that the special

undulated pattern of the dermal–epidermal junction

in the 3D human skin is physiologically relevant to

human skin and the bio-printed skin structure was

dimensionally stable compared to the serious con-

traction associated with the collagen-based skin

structure. At the other side, extensive keratinocyte

migration is observed by day 21 with the observed

self-assembly of keratinocytes by full coverage of the

3D bio-printed construct’s pore. Proteomics data

analysis demonstrating striking resemblance of the

developed 3D human skin model with a number of

skin-specific pathways and required expression of

proliferation and cornification markers depicting full

stratification of the advanced 3D human skin model

and extensive transcriptomics.

All the mentioned artificial materials are usually

non-biodegradable, and subsequent removal of such

Figure 3 3DBP skin procedure. Reproduced with permission

from Universidad Carlos III de Madrid (UC3M) and Lawrence

[139]. Based on skin wound area, the wound repair strategy is

selectable. Whether printing on wound or printing on a feeder layer

and assembling it on wound area is available.
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temporary wound dressings from the wound site is

mandatory. Progression of biodegradable films is

necessary in the skin tissue engineering field [80].

Albeit solvent casting is a simple construction tech-

nique to produce such films, requirement qualities

such as mechanical strength and water transmission

rate cannot easily guarded through a solvent casting

technique. Hence, the bio-printing technique could be

used to manipulate the ultimate tensile strength,

moisture permeability and the water uptake ability of

the film.

3D bio-printing of bone tissue

Bone tissue engineering has been widely studied

using 3DBP. Leukers et al. [81] studied scaffolds

based on hydroxyapatite by using 3D printing for

engineering of bone tissue. They brought forth a

special test-part in which mouse calvaria 3T3-E1

(MC3T3-E1) cells were cultured on the scaffolds and

maintained under static and dynamic setups, fol-

lowed by a histological examination which was per-

formed to determine the growth of these cells. In

brief, the dynamic culture process resulted in a

potent population versus the static culture process.

The cells were developed into the structure forming a

nearly indirect communication with the hydroxyap-

atite (HA) granules, by creating a scaffold layout with

inclined layers of 45�. This design facilitated the

seeding procedure and increased cell attachment

because the cells made the structure more integrated

and prevented them from sliding down the structure.

In a static culture, cells are deposited on the interface

of the HA granules in layers, whereas in a dynamic

seeding process, the cells grow within the cavities of

the HA granules.

The dynamic cultured cells are significantly dif-

ferent from the static cultured cells. The powder-

based 3D printing process developed micro-porosity

of the scaffold and as a result, it enhanced the scaf-

fold surface available for the medium flow and dis-

solution. Cox et al. [82] also presented the property of

bone tissue scaffolds manufactured by 3D printing

from a composite of HA and polyvinyl alcohol

(PVOH). However, mechanical stability, microstruc-

ture and porosity of scaffolds produced by 3D

printing were affected by the presence of HA: PVOH

ratio precursor materials. By testing their compre-

hensive strengths, these constructs showed

anisotropic behavior and partly failed at the interface

of their interlayer bonds. This study used 3D print-

ing, in other words, a print-based additive layer

manufacturing (ALM) technique for fabricating an

applicable porous scaffold adequate for the applica-

tions of the engineering of bone tissue. In brief, the

characterization of precursor flow ability, using two

common funnel tests, qualitatively comparable with

observed printability can be assumed as an exclusive

vital prerequisite since it required recoating of the

build bed which finally distinguished several critical

physical criteria such as mechanical strength,

microstructure and porosity.

A glance at Table 2 provided reveals that there are

several studies in bone tissue engineering field. Bru-

nello et al. [83] experimented with 3D printing of

powder for the purpose of the bone tissue engineer-

ing. Powder-based 3D printing is propounded as a

special encouraging bone remodeling technique, as

the exterior frame, interior structure, permeability

and 3D-printed physical properties of bone replace-

ments can be modified and hence used for particular

purposes. 3DBP of stem cells and polymer/bioactive

glass compound scaffolds for the engineering of bone

tissue was accomplished by Murphy et al. [84]. They

used 3DBP techniques for manufacturing of PCL/

bioactive borate glass composite, as well as human

adipose stem cells (ASCs) in their work, by applying

a two-syringe system for fabrication of a scaffold with

a bio-polymer/bio-glass composite. As a scaffold,

material of this composite dissolved in an organic

solvent, whereas concurrently printed cells remained

suspended in the Matrigel�. They noted that the

borate glass content could have an impact on the

printability of composite paste, the scaffold temporal

bioactivity, degradability and cell survival in the

scaffold. The extrusion bio-printing technique has

important features, which can produce a scaffolding

structure that supports cells and provides shape and

mechanical integrity. Extrusion bio-printers normally

have more than one syringe, one of them dedicated to

print scaffolding structures. Molten deposition of

polymer and fused deposition modeling (FDM) with

a polymer wire feed were the options applied for this

matter, also the pore size factor is considerable

because it has a potential to affect the bone growth

after implantation.

Byambaa et al. [85] produced bone-like

microstructure tissue constructs which contained

perfusable vascular lumen by 3DBP. The bio-printed
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constructs were used as biomimetic in vitro matrices

to co-culture human umbilical vein endothelial cells

(hUVECs) together with human mesenchymal stem

cells (hMSCs) in a naturally derived hydrogel. A

central cylinder with %5 GelMA hydrogel and low

methacryloyl substitution was printed. For the pur-

pose of osteogenesis induction and synthesizing

hydrogel formulations with a chemically conjugated

vascular endothelial growth factor (VEGF) to pro-

mote vascular spreading, cell-laden GelMA cylindri-

cal parts loaded with silicate nano-platelets were

applied, the engineered construct could support cell

survival and proliferation during in vitro maturation.

Table 2 Summary of bone tissue 3DBP studies representing the cell types and source, growth factors, animals and the print technique

used in some bone tissue engineering studies

Biomaterials/bio-ink Cell type Cell

source

Growth

factor/

biomolecules

In vivo

animal

model

Bio-printing

technique

References

HA MC3T3-E1, post-

printing

Mouse – – Fused deposition

modeling 3D

printer

[81]

Composite of hydroxyapatite (HA) and

poly(vinyl) alcohol

– – – – Additive Layer

Manufacturing

(ALM)

[82]

Polycaprolactone (PCL)/bioactive borate glass

composite

Human adipose

stem cells (ASCs)

Human – – Extrusion-based

3D bio-printing

[84]

Gelatin methacryloyl (GelMA) hydrogel Human umbilical

vein endothelial

cells and

hMCSCs

Human VEGF bFGF – Extrusion-based

direct-writing

bio-printing

[85]

PLA-based scaffold conjugated with nHA hMSCs, post-

printing

Human VEGF – Fused deposition

modeling 3D

printer

[87]

Poly(ethylene glycol) dimethacrylate

(PEGDMA) peptides with nanoparticles of

bioactive glass (BG) and hydroxyapatite

(HA)

MSCs Human – – Thermal inkjet

bio-printing

[88]

PCL polymer and a sacrificial Pluronic F127

hydrogel composite hydrogel

gelatin/fibrinogen/HA/Glycerol

Cells encapsulated

human AFSCs,

Human – Rat Integrated tissue-

organ printer

(ITOP)

[89]

Biphasic calcium phosphate (BCP) (with a

composition of hydroxyapatite (HA) and

b-tricalcium phosphate (b-TCP)

MSCs

encapsulated

Human VEGF Rat Direct-write

assembly

(robocasting)

technique

[90]

PCL/alginate MC3T3-E1 cells,

post-printing

Mouse – – Fused deposition

modeling 3D

printer

[92]

Alginate–PVA–HA hydrogel Cell encapsulation

MC3T3

Mouse – – Selective laser

sintering

process

[93]

Tricalcium phosphate (TCP), hydroxyapatite

(HA), bio-oss (BO), or decellularized bone

matrix (DCB).

Adipose-derived

stromal/stem

cells

Human bFGF – Fused deposition

modeling

(FDM) process

[94]

Poly(e-caprolactone) scaffolds modified with

hydroxyapatite and poly(propylene

fumarate)

Rabbit bone

marrow stem

cells BMSC

Rabbit – Rabbit

femur

defects

– [95]
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Kim and Kim [86] examined a combination of 3D

printing, electrospinning and physical punching

process techniques to provide a composite of PCL/

alginate construct along nano-fibrous content also

modified mechanical strength. This was achieved by

sandwiching layers of micro-sized PCL structures

between electrospun layers of PCL/alginate and

punching the final scaffold to produce micro-sized

pores moving through the stack of 3D-printed and

electrospun materials. Interestingly, PCL/alginate

composite scaffolds against pure PCL scaffolds

showed a considerable 7 days increased cell viability,

calcium deposition and alkaline phosphatase (ALP)

activity at 14 days and a high increase in water

absorption capacity due to the improved

hydrophilicity contributed by the content of alginate

scaffold.

PLA-based scaffold employing an integrated pre-

cipitation modeling 3D printer has been developed

by Holmes et al. [87]. To support reconstruction of

the ossified bone, like vascular cell growth, scaffolds

were designed with highly interconnected 3D

microvascular-mimicking channels. The constructed

scaffolds were also chemically conjugated with nano-

hydroxyapatite (nHA) to induce osteodifferentiation

of seeded hMSCs. SEM imaging illustrated printing

of vertical micro-channels having both a 500 and

250 mm radius, surrounded by a porous bone matrix.

Gao et al. [88] applied inkjet 3DBP to co-print an

acrylated polyethylene glycol (PEG) hydrogel with

acetylated peptides. Composite hydrogel filled with

hMSCs applied to initiate simultaneous photo-poly-

merization of the hydrogel during printing following

exposure to ultraviolet light. The constructed scaffold

demonstrated high biocompatibility with a cell via-

bility of 87.9 ± 5.3% 24 h after printing. Mentioned

constructs containing hMSCs were cultured for

21 days in both osteogenic and chondrogenic media.

Osteogenic and chondrogenic gene expressions were

noticed to be highly enhanced from day 7–21, as well

as a major collagen and extracellular matrix deposi-

tion was observed.

Kang et al. [89] developed an interwoven scaffold

which was containing cell-laden hydrogels, PCL

polymer and a sacrificial pluronic F127 hydrogel

used as a multi-head bio-printer. The Pluronic F127

has been included in several other composite con-

structs to facilitate the development of provisional

structural support or vascular channels.

Wang et al. [90] constructed a 3D-printed bio-ce-

ramic scaffold with phage nano-fibers to dominate

obstacle of bone tissue formation. The 3D-printed

scaffold contained biphasic calcium phosphate (BCP)

with a composition of HA and b-tri-calcium phos-

phate (b-TCP) at a mass ratio of 60/40. Uniform

structure along interconnected macroscale and

microscale pores on the columns of the scaffold are

features of the mentioned construct. To achieve

modification of scaffold osteogenesis and also its

vascularization, nano-fiber phages loaded with Arg-

Gly-Asp (RGD) were combined with chitosan and

adhered to the construct pores through electrostatic

interactions. After implantation of this construct in an

animal model, it was observed that the host cells

interfered with the scaffold and established a vascu-

lature, with MSCs undergoing osteogenesis. Even

though the host cells had their survival within the

cell-laden construct impaired; however, they slowly

formed the vasculature. Costantini et al. [91] con-

structed a 3D-printed biomimetic hydrogel scaffold

containing different combinations of GelMA, chon-

droitin sulfate amino ethyl methacrylate (CS-AEMA)

and hyaluronic acid methacrylate (HAMA). By

applying of two coaxial-needle bio-printing system,

they reached cell high density, increased cell viabil-

ity, high printing resolution and post-printing.

Kim et al. [92] manufactured a SF/HA composite

of hydrogel, made by hyaluronic acid-dopamine and

also with surface modification of HA nanoparticles,

managed to facilitate distribution of the HA content.

The hydrogel composite demonstrated excellent cell

proliferation, an in vivo analysis required to entirely

investigate its bone tissue engineering potential.

Bendtsen et al. [93] created a modern formulation

of a scaffold made of alginate/PVA/HA hydrogel.

This scaffold had the appropriate rheological prop-

erty for 3D printing of MC3T3 cells. Nyberg et al. [94]

printed a 3D porous PCL scaffold applying a FDM

process. To functionalize them, mineral additives

were mixed in that had been widely utilized com-

mercially and clinically: TCP, HA, Bio-oss (BO) and

decellularized bone matrix (DCB). In order to inves-

tigate properties of osteoconductivity, each scaffold

composites were seeded with an adipose-derived

stromal/stem cells in vitro and their differentiation

into osteoblasts was evaluated. The content of cal-

cium—normalized to DNA—was especially elevated

in PCL-TCP, PCL-BO and PCL-DCB groups relative

to PCL only.
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Buyuksungur et al. [95] printed 3D PCL scaffolds

adapted with HA and poly-propylene fumarate

(PPF). In order to produce a mechanically strong

implant with uniform pore size and porosity, gov-

ernable surface hydrophilicity and osteoconductivity,

cylindrical disks of PCL were printed by FDM and

modified with nHA and PPF. The cytotoxicity, irri-

tation and inflammation analyses showed that the

scaffolds were biocompatible. Also, PCL/nHA and

PCL/nHA/PPF scaffolds were implanted in the

rabbit’s femurs for in vivo testing, with and without

seeding of rabbit BMSCs and evaluated after 4 and

8 weeks by histological test, micro-CT and mechani-

cal test. As determined by bone mineral density and

micro-CT, scaffolds that were seeded by BMSC

demonstrated progress in bone tissue regeneration.

After eight weeks of implantation, the values

obtained from mechanical analysis were remarkably

better than those of the healthy rabbit femur and

demonstrated a high capacity for patient-specific

bone defect.

In addition to these researches, at present time

many researchers are attracted to the study of bone

3DBP [96–113]. The 3DBP bone transplantation pro-

cedure is shown in Fig. 4. Based on this figure, a

computer-aided design of bone graft is an initial

phase for fabricating of bone grafts procedure.

Instances of successful 3D printing for bone

application are that of the 3D printing of bone scaf-

folds with hybrid biomaterials. Oladapo et al. [114]

designed a new hybrid material bone implant, by

combination of polylactic acid (PLA) matrix-

reinforced with carbohydrate particles (cHA) using

the additive manufacturing (AM) technology. A

software application was used for digital surfacing in

the mass proportions of 100/0, 95/5, 90/10 and

80/20 for application in bone tissue engineering,

seeking higher proposition strength of PLA. As it is

evident, biomimetic application can produce high-

strength biomechanical implants with appropriate

mechanical features. The combination of polymers

leads to a rise in diversity of components and appli-

cations of biomaterials increased.

In another additive manufacturing technique for

scaffold fabricating, Zhao et al. [115] constructed

bionic porous titanium scaffolds by the selective laser

melting (SLM) procedure. In those studies, different

bionic bone scaffolds were manufactured by com-

puter-aided design (CAD). This structure with novel

porosity was plotted by using parameterization

modeling. At all stages of construction from the

design phase of the evaluation of the scaffold porous

structures, the parametric modeling of porous tita-

nium bone scaffold with competent mechanical and

biological virtues was obtained. Meanwhile, in

another study, Lai et al. [116] created a novel porous

poly(lactide-co-glycolide) (PLGA)/TCP/Mg (PTM)

scaffolds using low temperature, rapid prototyping

(LT-RP) technology with the formulation of Mg

powder, PLGA and b-TCP. The release of Mg ions

was studied, and physical characterization of PTM

scaffold in vitro assay was performed. The PTM

scaffolds were implanted in a rabbit model for eval-

uation of the osteogenic and angiogenic properties of

Figure 4 3DBP bone transplantation procedure. Patients suffering

from bone disorder, supposed to data gathering by computer-aided

instruments such as MRI. Provided bone graft design will be

transmitted to a bone scaffold by selecting appropriate cells and

growth factors in order to produce a well printable bio-ink. After

completion of printing procedure, transplantation surgery is the

final step.
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the implant. Their results proved that the PTM scaf-

fold had designed in the bio-mimic the structure and

modified mechanical properties. Ultimately it was

confirmed that the PTM scaffolds are desirable com-

posite biomaterials for solving challenging bone

defect that would have great excellent property for its

clinical usage.

Roopavath et al. [117] prepared a 3D-printed

hydrogels by using an extrusion-based 3D printing

technology. The material of this hydrogel is based on

HA that had been approved clinically. SEM and

Micro-CT results provided revealed that the scaffold

enjoys from a better rate of porosity. Mechanical tests

were employed to evaluate the porosity effects on the

compressive properties of 3D-printed structures.

Eventually printed HA hydrogel made of a patient-

specific bone graft was tested in a series of studies in

patients. The results confirmed the promising

potential of this 3D-printed material in manufactur-

ing a bio-mimic porous structure-based anatomical

bone models and preoperative 3D planning.

3D bio-printing challenges

The 3DBP has created a huge impact in the tissue

analysis field and is turning into a practical strong

tool to produce tissues of human body.

The main challenge of 3DBP is the need for in vivo

vascularization in order to provide the cells with

adequate nutrition, growth factors, oxygen and

remove carbon dioxide and wastes. Of course, the

future developments of bio-printing can also poten-

tially overcome these vascularization challenges

[118]. In vivo, capillaries are mostly located at a

100 mm distance from a majority of cells in order to

enable enough diffusion for the cells to survive [119].

For greater distances, like in thick tissues in printed

organs, supplementary modes for diffusion may be

required. To surpass this huddle, Hutmacher et al.

[120] suggested an artificial vascular system.

Also, the bio-printing process is not currently

automated and plenty of manual operations sepa-

rated in various steps may result in slow processing

speed, thereby increasing the prospect for mistakes

and errors [21]. In order to form a highly mimetic

tissue or organ on a macroscale, bio-printed cells

should proliferate. When selecting cells, two main

factors are considered: how the bio-printed cells can

imitate the physiological state of cells in vivo and

how much the bio-printed cells can perform their

in vivo functions under optimized microenviron-

ments [22]. Artificial tissues are seeded by either

printing functional primary cells with supporting

cells [75, 121–126] or printing progenitors or stem

cells for further differentiation [127–132]. Direct

printing of primary cells can rapidly increase the

complexness of bio-printing.

Prospective market

3DBP is presently increasing greatly toward a large

industry as a result of its variation and potential

implementations. 3DBP market size is hoped to

obtain a $10.8 billion worth in 2021 from a $2.2 billion

stance in 2012 [133]. Presently, many companies

engage in 3DBP production, for the purpose of tissue

engineering applications [134].

Furthermore, in 2014, a bio-printed human liver

tissue, named exVive3DTM Liver, which was manu-

factured for drug toxicity evaluation, was introduced

[135]. However, the product provided for in vitro

drug screening, the successful development of a

commercially available liver tissue, is still pending

[24]. Microfluidic systems [136] and layer-by-layer

assembly [137] will have an effect on the bio-fabri-

cation of microstructures in the future. It is

inevitable that advances in bio-fabrication will also

profit related fields such as imaging and diagnostic

applications too [24]. It is predicted that the pro-

gressive trend of 3DBP methods’ prevalence will lead

to in situ bio-printing developing, which could be

considered as an upward procedure from benchside

to the bedside [78, 138].

Conclusion

In this paper, the different procedures of 3DBP of

skin and bone tissues, results, advantages and dis-

advantages have been reviewed with details. This

review emphasizes on the 3D bio-printed skin as a

novel technology that provides the scaffold using

biomaterials such as gelatin, fibrinogen, GelMA,

chitosan and collagen. In this technology, applying

cells, such as fibroblast, keratinocyte, melanocyte and

HUVEC by growth factors like FGF-2, thrombin and

hydrocortisone into a 3D environment, provides a

similar setting close to the natural skin tissue. Skin
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constructs can be beneficial for patients, whom

interfere with extensive burns and full-thickness skin

wounds. Skin bio-printer can decrease healing time

and less pain, and this technology has the potential of

creating the fully functional skin constructs.

For bone tissue 3D printing, materials such as HA,

PVOH, PCL, GelMA, PLA and PLGA were used by

utilization of various cell types such as human adi-

pose stem cells (ASCs), HUVEC and hMSCs. This

fabricating process could involve powder-based 3D

printing and extrusion bio-printing.

The bio-printing technology is a growing field that

is leading to a global revolution in the medical sci-

ences and has gained significant attention world-

wide. However, bio-printing technology has been

adopted for skin and bone tissue fabrication and it is

hoped that other tissues could be produced by this

technique.
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