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ABSTRACT

Powellite ceramic represents a waste form matrix material to immobilize minor

actinides and Mo from reprocessed UMo nuclear fuel. In this paper, the Ca1-x

Lix/2Gdx/2MoO4 (0 B x B 1) series is prepared by solid-state reaction using

Gd3? as trivalent minor actinide (Cm3?) surrogate, and the structure/mi-

crostructure is characterized by XRD, HRTEM, Raman spectroscopy and SEM.

Rietveld refinements show that the couple (Gd3? and Li?) enters into the

eightfold coordinated Ca site of the powellite structure. With the increase in the

contents of Gd and Li, Raman bands broaden due to the distortion of MoO4

tetrahedra and disordered arrangements of Gd3? and Li?. The chemical dura-

bility analyzed by the PCT-B indicates that the leaching behaviors of Gd and Mo

are related to the interfacial dissolution–reprecipitation mechanism. For the

Ca0.5Li0.25Gd0.25MoO4 ceramic, 7-day NLGd and NLMo are shown in the order

of * 10-4 and * 10-4 g m-2, respectively. Thus, our initial results of the

structure and chemical durability will provide insights to design new single- or

multiphase waste forms for the Mo-rich HLW conditioning.

Introduction

The high-level wastes (HLWs) stored in large

underground steel tanks have been accumulating

from reprocessed nuclear fuel [1]. Due to the long-

term radiotoxic of radioisotopes existing in the

HLWs, such storage is acceptable for few years and

exerts an ever-increasing threat to the biosphere.

Thus, these wastes must be immobilized in non-dis-

persible and leach-resistant matrix, stored and dis-

posed off within suitable geological repositories

[1–3]. For UMo HLWs containing a high concentra-

tion of molybdenum, borosilicate glassy matrices

have been developed to immobilize molybdenum,

other fission products and actinides. Researches on

the solubility of Mo within borosilicate glass melts
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indicate that is relatively low (* 1 wt% MoO3),

which limits the amount of waste loading (15–20

wt%) [4, 5]. Moreover, borosilicate glass waste form

accompanies the shortcoming of phase separation on

melting and can crystallize simultaneously with

poorly durable Na2MoO4 and more durable CaMoO4

(powellite) phases [6–8]. In this regard, significant

efforts are being made to incorporate Mo, other fis-

sion products and actinides in a highly stable and

durable ceramic matrix. The main ceramic phases

considered for immobilization of theses nuclides are

sodium zirconium phosphate (NZP) [9–11], monazite

[12, 13], powellite [14, 15], etc.

Molybdenum is a multivalent element and can

exist as ? 4 or ? 6 oxidation state in the compounds

[16]. Tetravalent and hexavalent Mo can enter either

octahedral (Oh) position L or tetrahedral (Td) posi-

tion T of the NZP framework, likely NaMo2(PO4)3,

AMo2P3O12 (A = K, Rb, Ti) and AMo2(PO4)3 (A = Ba,

Sr, Ca) compounds [17–19]. However, the NZP

structure for the immobilization of Mo (IV) is not

stable under air atmosphere because tetravalent Mo

can be easily oxidized [10]. An attempt has been

made to introduce Mo as ?6 oxidation state in

monazite waste forms with La1-xCaxP1-yMoO4

(x = y = 0.1–0.9) compositions, which can crystallize

in either monazite or scheelite structure depending

on the level of Mo (VI) substitution [12]. The chemical

durability of monazite waste form La0.4Nd0.1Y0.1-

Gd0.1Sm0.1Ce0.1Ca0.1P0.9Mo0.1O4 has been tested

through dynamic MCC-5 method, and the leach rate

of molybdenum is found to be in the order of 10-3–

10-4 g m-2 d-1 [13].

Powellite (nominally, CaMoO4), which crystallizes

in the scheelite-type tetragonal structure (space

group I41/a, Z = 4), consists of CaO8 polyhedron and

MoO4 tetrahedron sharing common vertices and can

be visualized as the assembly of columns made up by

–CaO8–MoO4–CaO8–MoO4– along c-axis [20, 21]. The

polyhedral view of the powellite structure is shown

in Fig. 1. Based on the structural flexibility, the

powellite structure can accommodate considerable

trivalent actinides. Until now to our knowledge,

previous researches, which mainly employ the for-

mation of powellite phase during glass composite

materials processing, are investigated as a component

in the multiphase waste forms [7, 15, 22–26]. How-

ever, limited work focuses on the relation between

structure and property of single-phase powellite

materials [15, 21, 27]. For instance, the chemical

durability of powellite CaMoO4 has been investigated

using the PCT-B. The present work shows low nor-

malized release rates for Ba, Ca and Mo, suggesting

high chemical durability [15]; however, little infor-

mation is known regarding the leaching behavior of

actinides incorporated in the powellite structure. A

systematic investigation of structure and aqueous

durability of powellite materials can provide useful

information for understanding current and future

single- or multiphase waste forms.

To close this gap, the immobilization of actinides in

single-phase powellite ceramics and chemical durabil-

ity of the correspondingwaste forms are investigated in

this paper. According to the isomorphism theory, Gd3?

is used tomimic trivalent curium (Cm). Thus, a series of

ceramics Ca1-xLix/2Gdx/2MoO4 (0 B x B 1) are pre-

pared by a solid-state reaction process. The effect of the

nature ofminor actinide surrogate (Gd) on the structure

in the Ca1-xLix/2Gdx/2MoO4 system is undertaken,

with leaching behaviors of Gd and Mo analyzed by

PCT-B as well.

Experimental

Preparation of samples

Ceramics with the general formula Ca1-xLix/2Gdx/2

MoO4 (0 B x B 1) are synthesized by conventional

solid-state reaction of the starting reactants, CaCO3

(Macklin and purity [ 99%), Gd2O3 (Aladdin and

purity [ 99%), Li2CO3 (Aladdin and purity [ 99%)

and Mo2O3 (Aladdin and purity [ 99%). The

Figure 1 Polyhedral view (left) and ab projection of the

powellite-type structure (right). Magenta spheres are oxygen

anions.
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corresponding stoichiometric compositions of pow-

ders are milled on the planetary milling machine

(Nanjing Machine Factory, China) at 300 rpm for 4 h

using anhydrous ethanol as the milling media and

calcined at 500 �C for 3 h. The obtained slurries are

dried at 90 �C for 24 h, calcined in air at 500 �C for

3 h and milled for 4 h afterward. Subsequently, the

homogeneous powders are dried, granulated with

5 wt% PVA and pressed into cylinders (15 mm in

diameter and 4–5 mm in height) under a uniaxial

pressure of 200 MPa. Finally, these cylinders are

sintered from 525 to 950 �C for 3 h in the ambient

atmosphere.

X-ray diffraction (XRD)

The crystalline structures of the sintered products are

investigated by X-ray diffraction analysis with Cu Ka

radiation (PANalytical X0pert PRO diffractometer).

The XRD data are collected over the 2h ranging from

10� to 120� with steps of 0.02�. The structural param-

eters are analyzed with the Rietveld refinement

method using the FullProf package [28].

HRTEM, SEM and Raman spectroscopy

The high-resolution transmission electron micro-

scopy (HRTEM) is performed using a Tecnai G2 F20

S-TWIN FEI transmission electron microscope oper-

ating at 200 kV. Microstructures of platinum coated

samples are observed using a Hitachi S-3700 N

scanning electron microscopy (SEM). Raman spectra

at room temperature are collected with a microspec-

trometer DXR SmartRaman (Thermo Fisher) excited

by an argon laser at 514.5 nm.

Dissolution study

The chemical durability of ceramics is examined by

the ASTM C1285-14 product consistency test method

B (PCT-B) [29]. In the test method, samples are cru-

shed and sieved to isolate the size fraction of the USA

(Standard ASTM (100–200 mesh)). Three grams of

cleaned particles is placed in a 60-ml polytetrafluo-

roethylene (PTFE) vessel. An amount of deionized

water equal to 30 ml is added, and the PTFE vessel is

sealed. The PTFE vessel is placed in a constant tem-

perature device at 90 �C. After different leaching

times, the concentrations of the released Gd and Mo

are measured with inductively coupled plasma mass

spectrometry (ICP-MS) using XSENIES apparatus.

From ICP-MS results, normalized elemental mass

losses of gadolinium and molybdenum are deter-

mined by the equation derived from PCT-B [29]. To

analyze the differences between microstructures at

longer leaching durations, the deionized water in the

testing vessel is renewed at every 28-day test.

Results and discussion

XRD and HRTEM analyses

To investigate the optimal condition for the prepa-

ration of powellite ceramics with Ca1-xLix/2Gdx/2

MoO4 (0 B x B 1) compositions, the typical compo-

sition Ca0.5Li0.25Gd0.25MoO4 is heated at several

temperatures ranging from 525 to 950 �C. Analytic

results of the corresponding XRD patterns are shown

in Fig. 2. At 525 �C, the crystalline phases of the

sample are CaMoO4 (JCPDS file no. 85-0546), Gd2O3

(JCPDS file no. 88-2165) and Li2Mo4O13 (JCPDS file

no. 25-0494). Between 525 and 550 �C, the intensities

of the peaks of Gd2O3 and Li2Mo4O13 phases

decrease, while those of CaMoO4 phase increase. This

indicates that the isomorphism of powellite forms

during the increase in the sintering temperature. At

600 �C, the XRD patterns are indexed to the single-

phase powellite with Ca0.5Li0.25Gd0.25MoO4 compo-

sition, due to the disappearance of the XRD lines

from CaMoO4, Gd2O3 and Li2Mo4O13 phases. Above

600 �C, the crystallinity of the powellite ceramic

Ca0.5Li0.25Gd0.25MoO4 is widely improved, which is

determined by the average full width at the half

maximum (FWHM) of the main XRD lines, corre-

sponding to the 011, 112, 004, 020, 211, 114, 024, 020

and 116 peaks. The average FWHM of these peaks,

which are obtained at 600, 650, 700, 750, 800, 850 and

900 �C, are found to be 0.251, 0.212, 0.203, 0.193, 0143,

0.145 and 0.140 �, respectively (Fig. 3). From the

FWHM, it can be deduced that the optimized tem-

perature for the synthesis of the powellite-type

Ca1-xLix/2Gdx/2MoO4 (0 B x B 1) solid solution is

over 800 �C.
To examine the effect of the minor actinide surro-

gate (Gd) content on the structure in the Ca1-xLix/2
Gdx/2MoO4 system, the Ca1-xLix/2Gdx/2MoO4

(0 B x B 1) compositions are sintered at 850 �C and

corresponding powder XRD patterns are shown in

Fig. 4. The XRD investigation shows that

J Mater Sci (2020) 55:2741–2749 2743



Ca1-xLix/2Gdx/2MoO4 (0 B x B 1) compositions

crystallize in the scheelite-type structure, and intense

reflections of powellite phases observed in the range

from 10� to 65� are indexed to (011), (112), (004), (020),

(211), (114), (024), (200), (116), (312) and (224),

respectively. Meanwhile, Rietveld refinement is per-

formed on all of these compounds. Since Li element

has a very low atomic number relative to the other

elements in the powellite phases and a conventional

Cu anode is used to collect the diffraction patterns,

structural model including or without Li is used to

evaluate the confidence of the refinement result. The

agreement factors for the refined model including Li

with representative composition Ca0.6Li0.2Gd0.2MoO4

are: Rp = 14.4%, Rwp = 9.52%, RB = 2.38% and RF

= 2.49, S = 1.77; those for the initial model without Li

are Rp = 14.9%, Rwp = 10.02%, RB = 2.67%, RF-

= 2.74% and S = 1.89. Compared with these values,

it is found that the refinement of the structural model

with Li atoms is credible due to its smaller agreement

factors. As a result, final refinement plots of Ca0.6
Li0.2Gd0.2MoO4 composition are presented in Fig. 5,

and the corresponding atomic parameters are shown

in Table 1. It is clear that the couple (Gd3?, Li?)

enters the eightfold coordinated Ca site of the

scheelite-type structure (Table 1). The analysis of the

Figure 2 XRD analysis of Gd2O3–CaCO3–Mo2O3–Li2CO3

mixture calcined at several temperatures.

Figure 3 Average FWHM obtained from main XRD lines of

Ca0.5Li0.25Gd0.25MoO4 composition versus the sintering

temperature.

Figure 4 Representative XRD patterns of Ca1-xLix/2Gdx/2MoO4

(0 B x B 1) powellite solid solutions.
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unit cell parameters given in Table 2 indicates that a

noticeable decrease occurs in the compositions 0 B

x B 1. The result can be attributed to the increase in x

with the decrease in average cationic radii in the

eightfold coordination of Ca site. According to the

Shannon’s data [30], the equivalent radii of Ca site for

the Ca1-xLix/2Gdx/2MoO4 ceramics are r ¼
1:12� 0:1335x (Ion radius of Gd3?, Li? and Ca2? is

1.053 Å, 0.92 Å and 1.12 Å, respectively). In addition,

the value of a/c increases with the increase in the x

value.

To further understand the resulting phases of the

Ca1-xLix/2Gdx/2MoO4 compositions, the samples are

characterized by HRTEM. For the sake of briefness,

only HRTEM result of powellite ceramic with Ca0.6
Li0.2Gd0.2MoO4 composition is presented, as shown

in Fig. 6. The observed zone of Ca0.6Li0.2Gd0.2MoO4

particles displays clear lattice fringes. Analyses of

interplanar spacing of (022) and (020) planes along

[400] axis are found to be 0.237 and 0.261 nm,

respectively, which are in good agreement with

Rietveld refinement results.

Raman spectra study

Previous group theory calculations have suggested

that powellite (CaMoO4) crystal has 26 vibrations of

species (C ¼ 3Ag þ 5Au þ 5Bg þ 3Bu þ 5Eg þ 5Eu),

where 3Ag, 5Bg and 5Eg are 13 Raman active vibra-

tions, 4Au and 4Eu are eight infrared active vibrations

and 3Bu are three silent vibrations [31–33]. Raman

active modes in the structure also can be divided into

internal and external vibrational modes. The internal

modes are associated with the oscillations inside the

[MoO4]
2- molecular group with a stationary mass

center. The external modes, which are composed of

rotation and translation modes, are related to the

motion of A2? cation and the rigid molecular units

[32].

The spectroscopic characterizations of some rep-

resentative Ca1-xLix/2Gdx/2MoO4 (0 B x B 0.9) com-

positions through Raman experiments in the

frequency range of 100–1200 cm-1 are shown in

Fig. 7. The internal mode frequencies range from 305

to 900 cm-1, whereas external mode frequencies are

below 305 cm-1. The high-frequency vibration

Raman line around 879 cm-1 corresponds to the

symmetric stretching vibration v1(Ag). Peaks

observed at 795 and 848 cm-1 are associate with the

stretching motions which can be assigned as v3(Eg)

and v3(Bg), respectively. Raman lines centered at 392

[v4(BgEg)] and 407 [v4(BgEg)] cm-1 belong to sym-

metric bending vibration. The Raman frequency

located at 325 cm-1 presents the asymmetric bending

mode v2(AgBg). Further, the Raman frequency located

at 114 and 206 cm-1 is associated with the rotational

and translational modes. For all the internal vibra-

tional modes, Raman bands broaden with the

increase in the level of Gd and Li substitution, while

the change in the intensity reverses. These phenom-

ena may result from the distortion of the MoO4

tetrahedra [33, 34]. When the proportion of Gd3? and

Li1? ions on the Ca site increases, the MoO4 may

appear more distorted on the local scale. As a result,

the regular change in the internal vibration modes

can be observed. Compared with the internal modes,

the evolution of the external modes versus x values

follows the same trend. This interesting result is

related to the distortion of MoO4 tetrahedra and

disordered arrangements of Gd3? and Li? [20, 33, 35].

Durability assessment

To assess the leaching behaviors of minor actinide

surrogate (Gd) and Mo in powellite ceramics, PCT-B

is performed on the selected composition Ca0.5Li0.25
Gd0.25MoO4. The normalized releases of Gd and Mo

for different leaching times are presented in Table 3,

and corresponding plots are shown in Fig. 8. As

shown in Fig. 8, the initial rapid releases of Gd and

Mo occur during the leaching test. For 3-h leaching,

Figure 5 Rietveld refinement plots of Ca0.6Li0.2Gd0.2MoO4

composition showing the observed (o), calculated (solid line),

difference pattern (lower) and the positions of allowed Bragg

reflections (vertical lines).
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the NLGd and NLMo reach the maximum values of

5.28 9 10-2 and 2.87 9 10-2 g m-2, respectively

(Table 3). With the increase in leaching time, the

normalized releases decrease and attain a near-equi-

librium condition after 7 days (Fig. 8). For leaching

times ranging from 7 to 28 days, the NLGd and NLMo

are shown in the order of * 10-4 and * 10-4 g m-2,

respectively (Table 3). These results indicate that

powellite ceramics exhibit the great retention of Gd

and Mo.

Based on the above description, the leaching

behaviors can be explained by the interfacial disso-

lution–reprecipitation mechanism [36–39]. In this

situation, the whole leaching process can be divided

into three stages. The first stage is from 0 to 3 h, in

which Gd(III) and Mo (VI) from superficial surfaces

are quickly dissolved in water and form hydrolyzed

species on the reaction interfaces subsequently. The

Table 1 Structural parameters of the Ca0.6Li0.2Gd0.2MoO4 ceramic

Atoms Wyckoff site x y z Occupancies Isotropic thermal parameters

Ca1 4b 0.0000 0.2500 0.6250 0.6 0.57(4)

Li1 4b 0.0000 0.2500 0.6250 0.2 0.57(4)

Gd1 4b 0.0000 0.2500 0.6250 0.2 0.57(4)

Mo1 4a 0.0000 0.2500 0.1250 1.0 0.65(1)

O1 16f 0.2406(4) 0.0993(5) 0.0399(2) 1.0 0.73(1)

Table 2 Summary of phases identified in Ca1-xLix/2Gdx/2MoO4

(0 B x B 1) ceramics and their unit parameters

x Phases a (Å) c (Å) V (Å)3 a/c

0 Powellite 5.2282(1) 11.4446(2) 312.83(1) 0.4568(2)

0.1 Powellite 5.2267(1) 11.4306(7) 312.27(2) 0.4572(5)

0.2 Powellite 5.2218(1) 11.4104(4) 311.13(2) 0.4576(3)

0.3 Powellite 5.2189(1) 11.3977(4) 310.44(2) 0.4578(9)

0.4 Powellite 5.2168(1) 11.3848(4) 309.84(1) 0.4582(2)

0.5 Powellite 5.2161(2) 11.3778(5) 309.57(2) 0.4584(4)

0.6 Powellite 5.2043(1) 11.3468(3) 307.32(1) 0.4586(5)

0.7 Powellite 5.2030(1) 11.3398(4) 306.99(1) 0.4588(2)

0.8 Powellite 5.1980(2) 11.3248(4) 305.99(2) 0.4589(9)

0.9 Powellite 5.1916(1) 11.3084(3) 304.79(1) 0.4590(9)

1.0 Powellite 5.1925(2) 11.3064(6) 304.84(2) 0.4592(5)

Figure 6 HRTEM image of Ca0.6Li0.2Gd0.2MoO4 particles along

the [400] zone with (022) and (020) planes.

Figure 7 Representative Raman spectroscopy of Ca1-xLix/2Gdx/2
MoO4 (0 B x B 0.9) ceramics.
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second stage is from 3 h to 7 days. In this leaching

period, the hydrolyzed species consistently form

precipitation phases and cover on the surface of the

Ca0.5Li0.25Gd0.25MoO4 particles which reduce the

NLGd and NLMo. For the final stage with longer

leaching times ranging from 7 to 28 days, the inner

immobilized Gd and Mo elements hardly escape

from the matrix due to the long pathways. Mean-

while, the formation and reprecipitation of hydro-

lyzed species reach the dynamic equilibrium leading

to the invariant magnitude of NLGd and NLMo. These

results are further verified by the microstructure of

the Ca0.5Li0.25Gd0.25MoO4 ceramic after leaching

90 days, as shown in Fig. 9. The clear surface of the

sample without leaching test is observed, whereas

small particles observed on the surface after leaching

90 days suggest that the formation of precipitate

phases occurs during the dissolution test. The

observations of SEM are consistent with the leaching

behaviors of minor actinide surrogate (Gd) and Mo.

Unfortunately, such precipitates cannot be deter-

mined by EDS due to the contents below the instru-

mental detection limits. All the results indicate that

powellite ceramics can be used as a promising can-

didate waste form for the conditioning of minor

actinide and Mo.

Conclusions

The aim of this work was to investigate the structure

and leaching behavior in the Ca1-xLix/2Gdx/2MoO4

(0 B x B 1) system. The main conclusions drawn

from this paper are the following:

(i) The preparation of the powellite-type Ca1-x

Lix/2Gdx/2MoO4 (0 B x B 1) solid solution

requires sintering temperature over 800 �C.
For all the Ca1-xLix/2Gdx/2MoO4 ceramics, the

Table 3 Normalized releases

of Gd and Mo from

Ca0.5Li0.25Gd0.25MoO4

ceramic for different time

durations

Normalized releases 3 h 8 h 3 d 5 d 7 d 14 d 28 d

NLGd (10
-4 g m-2) 528.89 167.27 42.08 45.55 9.40 1.18 1.38

NLMo (10
-4 g m-2) 2868.78 397.84 25.78 15.80 4.08 5.11 2.21

Figure 8 Evolution of Gd- and Mo-normalized releases of the

Ca0.5Li0.25Gd0.25MoO4 ceramic versus leaching duration.

Figure 9 SEM images of Ca0.5Li0.25Gd0.25MoO4 ceramic

a before leaching and b after 90 days of leaching in initially

pure water at 90 �C.
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couple (Gd3?, Li?) is incorporated in the

eightfold coordinated Ca site of the scheelite-

type structure. The evolution of cell parame-

ters decreases with the increase in x. The

change in the peaks of Raman spectra is

relevant to the distortion of MoO4 tetrahedra

and the disordered arrangements of Gd3? and

Li?.

(ii) The ceramic with Ca0.5Li0.25Gd0.25MoO4 com-

position exhibits the great retention of Gd and

Mo; 7-day NLGd and NLMo are found to be in

the order of * 10-4 and * 10-4 g m-2,

respectively. The leaching behaviors of minor

actinide surrogate (Gd) and Mo in the pow-

ellite ceramics are attributed to the interfacial

dissolution–reprecipitation mechanism.
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[38] Zhang L, Lüttge A (2009) Theoretical approach to evaluat-

ing plagioclase dissolution mechanisms. Geochim Cos-

mochim Acta 73:2832–2849

[39] Li W, Ding X, Meng C et al (2018) Phase structure evolution

and chemical durability studies of Gd1-xYbxPO4 ceramics

for immobilization of minor actinides. J Mater Sci

53:6366–6377. https://doi.org/10.1007/s10853-018-2031-z

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

J Mater Sci (2020) 55:2741–2749 2749

https://doi.org/10.1007/s10853-018-2031-z

	Structure and chemical durability studies of powellite ceramics Ca1minusxLix/2Gdx/2MoO4 (0thinsplethinspxthinsplethinsp1) for radioactive waste storage
	Abstract
	Introduction
	Experimental
	Preparation of samples
	X-ray diffraction (XRD)
	HRTEM, SEM and Raman spectroscopy
	Dissolution study

	Results and discussion
	XRD and HRTEM analyses
	Raman spectra study
	Durability assessment

	Conclusions
	Acknowledgements
	References




