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ABSTRACT

In the present paper, the effect of phase-dependent elastic properties on

martensitic phase transformations (PTs) in a single crystal is investigated using

the phase field approach. The simplest phase dependence of elastic properties is

defined by different Young’s moduli for austenite (A) and martensite (M), and

its effect is investigated for thermal- and stress-induced propagation of an A–M

interface. The phase dependence of elastic properties is then included using the

quadratic elastic energy with two constants different for A and martensitic

variants. The coupled system of phase field and elasticity equations is solved

using the nonlinear finite element method, and various examples of PTs are

studied. A planar A–M interface propagation is studied under different thermal

and mechanical loadings. It is revealed that the effect of phase-dependent elastic

properties is more pronounced when thermal strain is included due to the

interplay of elastic, transformational and thermal strains. The thermal-induced

growth of a martensitic nucleus and the effect of periodic boundary conditions

on the nucleus growth are investigated for both phase-independent (PI) and

phase-dependent (PD) elastic properties with thermal strain and without it.

Martensitic PTs with two variants are studied under different loadings using a

one-fourth model and symmetric boundary conditions to reduce the effect of

stress concentrations. Martensitic PTs with two variants are also studied in the

presence of two circular holes for both the PI and PD elastic properties. This

pronounces the significant effect of heterogeneous stress concentration and the

size on the PTs. The effect of phase-dependent elastic properties is also studied

on twinning in a martensitic grain embedded inside an austenitic matrix under

overcooling. The obtained results reveal a significant effect of phase-dependent

elastic properties on different types of martensitic PTs and remarkably change

the interpretation of structural transformations at the nanoscale.
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Introduction

Martensitic phase transformation (PT) is a first-order

and displacive transformation which governs several

fundamental phenomena such as pseudoelasticity,

pseudoplasticity and shape memory effects. During

the PTs, austenite and any of the martensitic variants

can transform to each other due to mechanical and

thermal loadings and change in the surface energy.

The crystal symmetry confines the number of possi-

ble martensitic variants to three crystallographically

equivalent variants for the cubic-to-tetragonal trans-

formation in NiAl. The Ginzburg–Landau (GL) or

phase field method (PFM) is broadly used to simulate

martensitic PTs at the nanoscale [1–7]. The PFA is

also broadly used for the simulation of similar phe-

nomena such as reconstructive PTs [8], twinning

[9, 10], dislocations [11–15], melting [16] and fracture

[17–20]. It represents an interface between any two

neighboring phases with a finite width, which is

obtained as the solution of the GL equation. The A–

Mi transformation is defined based on an order

parameter gi, which evolution describes the evolution

of the ith martensitic variant. The order parameter gi
is an internal variable used to interpolate all material

properties between austenite and the ith martensitic

variants. Each gi varies between 0 for austenite to 1

for the ith martensitic variant. The GL equation,

which relates the rate of change of gi linearly to the

thermodynamic driving forces or the variational

derivatives of the free energy with respect to gi,
describes the PT kinetics. Including stresses requires

the coupling of the GL and mechanics. The thermo-

dynamic key advantage of the PFM is that it contains

information of all the intermediate states among

phases. The order parameters and all the thermo-

mechanical properties continuously vary inside the

interface between their values in contacting phases

[21]. Also, there is no need to assume the solution

geometry [22–33]. The PFM requires a physically

defined potential which minima correspond to

austenite and martensitic variants and is usually

dependent on the order parameters and their gradi-

ents, the elastic stress and temperature. Involving any

defect such as dislocations and interstitial atoms

requires adding some proper terms to the potential.

Thus, the GL equations should be coupled to the

mechanical equations. In recent decades, various PT

phenomena have been studied using the PFM. The

equilibrium and stability conditions for PTs were

introduced in the PFM in [25, 26], and the corre-

sponding simulations were presented in [29, 31–34].

Surface-induced martensitic PTs were studied based

on the FPM in [32, 35, 36]. The effect of interface

stresses and large strains on a wide range of stress-

and thermal-induced martensitic PTs is discussed in

[37–39]. Different types of order parameters such as

total strain [23] or transformation strain-related [26]

ones have been used in the PFM. Interface widths

and energies were investigated in [5]. The interface

stress was introduced in [32, 40, 41]. A large-strain-

based PFM was performed for martensitic PTs in

[34, 41]. Various elastoplastic PFMs were used for

martensitic transformation in polycrystalline alloys

[42, 43]. A large-strain-based PFM containing the

equilibrium and stability conditions was presented in

[34]. A review on the phase field modeling of MPTs

was presented in [22]. Stressed PTs and transforma-

tion-induced buckling were modeled using a large-

strain-based PFM [41]. Direct and reverse tetragonal-

to-monoclinic PTs in Zr were studied using the PFM

[44–46]. Thermodynamically consistent interface

stresses were introduced within a PFM [40, 47].

Anisotropy was included in the PFM for plastic-in-

duced PTs in steels [48, 49]. Heterogeneity was also

included in the PFM for FCC to BCC transformations

in a polycrystalline [50]. A PFM for stress-induced

multivariant PTs was developed in [51]. A PFM and

3D FEM were used to simulate beta-to-omega PT in

Zr–Nb alloys [52]. A PFM and 2D FEM were used to

resolve the nanostructure for Cu–Al–Ni alloy [53].

A PFM was used to resolve internal stresses associ-

ated with PTs in Mn–Cu [54]. Square-to-hexagonal

transformations were simulated using a PFM [55].

A PFM and the FEM were used for the modeling of

bainite–ferrite PTs in TRIP steels [56]. The effect of

surface tension and variable surface energy on PTs

was studied in NiAl using a PFM in 2D [35]. Different

types of martensitic transformations in the presence

of defects were studied using the PFM [57–61].

In the present work, the phase field method and

the nonlinear finite element method were used to

study the effect of phase-dependent elastic properties

on martensitic PTs. To do so, the thermal- and stress-

induced propagation of a planar A–M interface is

studied where the phase dependence of elastic

properties is defined by different Young’s moduli for

different phases. In the next step, the interface

propagation is studied under different thermal and

mechanical loadings considering the quadratic elastic
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energy where two elastic constants vary from

austenite to martensite. It is revealed that the effect of

phase-dependent elastic constants on PTs is more

pronounced when the thermal strain is included.

Thus, the interplay of elastic, transformational and

thermal strains is investigated. The thermal-induced

growth of a martensitic nucleus is studied with

thermal strain and without it for both phase-inde-

pendent (PI) and phase-dependent (PD) elastic con-

stants. The effect of periodic boundary conditions

(PBCs) on the nucleus growth is also investigated for

both the PI and PD elastic constants with thermal

strain and without it. Martensitic PTs with two

variants are studied under different loadings using a

one-fourth model and symmetric boundary condi-

tions to reduce the effect of stress concentrations.

Martensitic PTs with two variants are also studied in

the presence of two circular holes for both the PI and

PD elastic constants. This pronounces the significant

effect of heterogeneous stress concentration and the

size on the PTs. The effect of PI elastic constants is

also studied on twinning in a martensitic grain

embedded inside an austenitic matrix under over-

cooling, and the appearance of triple junctions and

twinned nanostructure was investigated under dif-

ferent overcoolings.

System of equations

The Ginzburg–Landau (GL) equation for the evolu-

tion of the martensitic variant i is expressed as

[31, 35]:

1

k
ogi
ot

¼ � ow
ogi

etotj þ r � ow
orgi

� �
ð1Þ

where k is the kinetic coefficient. w, the Helmholtz

free energy per unit volume, consists of the elastic

ðweÞ, thermal wh� �
, crystalline w

^
� �

) and gradient ðwrÞ
terms for multivariant martensitic PTs as follows

[31, 35]:

w ¼ we þ wh þ w
^

þ wr ð2Þ
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2
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rgi � rgj

0
@
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where A0 is the energy barrier coefficient for trans-

formation between A and M, h is temperature, he is

the equilibrium temperature, hc is the critical tem-

perature at which stress-free austenite loses its sta-

bility to martensite [5, 31, 35], B and C are the energy

coefficients for multivariant PTs which affect the

energy away from its minima [5, 31, 35], A is the

energy barrier coefficient between martensitic vari-

ants, b is the gradient coefficient which defines the A–

M interface and b is the gradient coefficient which

defines the M–M interface. The kinetic coefficient and

the gradient coefficients are assumed constant. The

first derivative in the right side of Eq. (1) is taken at

constant strain. The material parameters used in the

simulations are listed in Table 1.

The elastic energy is expressed as [31, 35]

we ¼
1

2
Ke20e þ lEe : Ee ð6Þ

where K and l are the bulk and shear moduli,

respectively, e0e is the elastic volumetric strain and ee
is the elastic deviatoric strain tensor. In this work, the

small strain theory is used. Then, the elastic stress

tensor, which is the derivative of the Helmholtz

energy per unit volume with respect to the elastic

strain tensor, can be written in terms of volumetric

and deviatoric strains as [31, 35]:

re ¼
owe

oEe
¼ Ke0eI þ 2lEe ð7Þ

For the case 1, the Young’s modulus varies from

austenite to martensite as a function of the phase-

order parameter and can be expressed as:

E gð Þ ¼ EA þ EM�EAð Þu gð Þ ¼ EA 1þ n� 1ð Þu gð Þ½ �;
/ gð Þ ¼ g2 3� 2gð Þ

EM ¼ nEA; n ¼ 1; 1:5; 2; 2:5; 3 ð8Þ

where n is the ratio of the Young’s modulus for
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martensite to austenite. Substituting Eq. (8) into

Eq. (6) gives the elastic energy as

we ¼ E gð Þ 1

2
Ke20e þ lEe : Ee

� 	
K ¼ 1

3 1� 2mð Þ
l ¼ 1

2 1þ mð Þ

we ¼
1

2
Ke20e þ lEe : Ee

¼ 1

2
K eex þ eey
� �2þl e2ex þ e2ey þ 2e2exy

� �
ð9Þ

Subscript ‘‘e’’ stands for the elastic terms. Taking

derivative of Eq. (9) with respect to g and then sub-

stituting it into Eq. (1) give the GL equation for a

single-order parameter as

1

k
og
ot

¼ EA 1þ n� 1ð Þg2 3� 2gð Þ
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oeex
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� 	�

þ 4l eexy:
oeexy
og

� 		
þ 6EA n� 1ð Þg 1� gð Þ½ � � 1

2
K eex þ eey
� �2�

þ l e2ex þ e2ey þ 2e2exy

� �i
� 2A0 h� heð Þg 1� gð Þ

� A0 he � hcð Þg 1� gð Þ 1� 2gð Þ þ br2g

ð10Þ

On the other hand, the quadratic elastic energy

consisting of two martensitic variants is expressed as

[41]:

we ¼ 0:5C 1ð Þ g1; g2ð Þ E1ð Þ2þC 2ð Þ g1; g2ð ÞE2 ð11Þ

where C 1ð Þ and C 2ð Þ are the functions defining the

variation of elastic coefficients among austenite and

the first and the second martensitic variants as

follows:

Table 1 Material parameters used in the simulations for NiAl

Parameter Value Definition

k 2600 Pa sð Þ�1 Kinetic coefficient

A0 4.4 MPa K�1 The energy barrier for transformation between A and M

A 5.32 GPa The energy barrier for transformation between martensitic variants

he 215 K The equilibrium temperature for A and M at stress-free state

hc - 183 K The critical temperature or A–M stability threshold at stress-free state

B 0 Parameter used for multivariant PTs

C 0.5 GPa Parameter used for multivariant PTs

b 5:18� 10�10 N Gradient coefficient

b 0.5 Gradient coefficient to define M–M interface

K 112.62 GPa Bulk modulus

l 71.5 GPa Shear modulus

cA 1 J/m2 Surface energy of austenite

cM 0.6 J/m2 Surface energy of martensite

C
1ð Þ
0

144 GPa Elastic constant of austenite

C
1ð Þ
1

379 GPa Elastic constant of the first martensitic variant

C
1ð Þ
2

379 GPa Elastic constant of the second martensitic variant

C
2ð Þ
0

74 GPa Elastic constant of austenite

C
2ð Þ
1

134 GPa Elastic constant of the first martensitic variant

C
2ð Þ
2

134 GPa Elastic constant of the second martensitic variant

etr1 0:215 0
0 �0:078

� 	
Transformational strain tensor for the first martensitic variant

etr2 �0:078 0
0 0:215

� 	
Transformational strain tensor for the second martensitic variant

a 10�5 K�1 Thermal expansion coefficient
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C 1ð Þ g1; g2ð Þ ¼ C
1ð Þ
0 þ C

1ð Þ
1 � C

1ð Þ
0

h i
g21 3� 2g1ð Þ

þ C
1ð Þ
2 � C

1ð Þ
0

h i
g22 3� 2g2ð Þ

C 2ð Þ g1; g2ð Þ ¼ C
2ð Þ
0 þ C

2ð Þ
1 � C

2ð Þ
0

h i
g21 3� 2g1ð Þ

þ C
2ð Þ
2 � C

2ð Þ
0

h i
g22 3� 2g2ð Þ ð12Þ

where C
1ð Þ
0 and C

2ð Þ
0 are the elastic constants of

austenite; C
1ð Þ
1 and C

2ð Þ
1 are the elastic constants of the

first martensitic variant; and C
1ð Þ
2 and C

2ð Þ
2 are the

elastic constants of the second martensitic variant, all

of which are obtained by means of the molecular

dynamics based on an embedded-atom method

[62, 63]. Thus, the elastic potential in Eq. (11) includes

the phase dependence of elastic properties for

austenite and different martensitic variants.

Also, E1 and E2 are the invariants of the elastic

strain tensor and can be defined for a plane strain

problem as [41]:

E1 ¼
exe exye
exye eye

� 	
� 1 0

0 1

� 	
¼ exe þ eye

E2 ¼
exe exye
exye eye

� 	
:

exe exye
exye eye

� 	
� 1 0

0 1

� 	

¼ e2xe þ e2ye þ 2e2xye ð13Þ

The corresponding thermodynamic driving force is

proportional to the derivative of the elastic potential

with respect to the order parameter. For example, for

g1 it can be expressed as:

owe

og1
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0

� � o/ g1ð Þ
og1
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h i
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2 � C

2ð Þ
0

h i
g22 3� 2g2ð Þ

� o

og1
e2xe þ e2ye þ 2e2xye

h i

ð14Þ

The total strain tensor etot in the small strain theory

is accepted as the additive decomposition of elastic

(ee), transformational (etr) and thermal (eh) terms:

etot ¼ ee þ etr þ eh ð15Þ

The transformational strain tensor with two

martensitic variants can be written as:

etr ¼ etr1 3g21 � 2g31 � 3g31g
2
2

� �
þ etr2 3g22 � 2g32 � 3g32g

2
1

� �
ð16Þ

The transformational strain tensors for the first and

the second martensitic variants are etr1 and etr2,

respectively. Assuming the same thermal expansion

coefficient for both austenite and martensitic variants

[64, 65] gives oeh
ogi

¼ 0. Taking the derivative of poten-

tial with respect to the order parameter at the con-

stant total strain (Eq. 1) gives [31]

oee

ogi

����
etot

¼ � oetr

ogi
ð17Þ

which for the first and the second variants can be

expressed as:

oetr

og1
¼ 3g1 2� 2g1 � 3g1g

2
2

� �
etr1 þ �6g32g1

� �
etr2;

oetr

og1
¼ 3g2 2� 2g2 � 3g2g

2
1

� �
etr2 þ �6g31g2

� �
etr1 ð18Þ

The GL equations for the first and the second

variants in a plane strain problem can be expressed

as:

og1
ot

¼ � 6 C
1ð Þ
1 � C

1ð Þ
0

� �
g1 1� g1ð Þ exe þ eye

� 
2n

þ C
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0
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�
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0

h i
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�
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og1
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0

� �
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1 � C
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0
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�
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2ð Þ
0

h i
g22 3� 2g2ð Þ
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og1
e2xe þ e2ye þ 2e2xye

h i�

� 1

3
A0 h� heð Þ 6g1 1� g1ð Þ þ 2g1g

2
2 1:5g1 þ g2ð Þ

� �


þ g2 1� g1 � g2ð Þ B 2 g1 � g2ð Þ � 1ð Þ þDg2f g
þ 2g1g

2
2 1:5g1 þ g2ð Þ A� A0 he � hcð Þ

� �
þ b r2g1 þ br2g2
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3
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2
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� �
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� ��
ð19Þ

For thermal- and stress-induced PTs, the surface

energy is independent of the phase state; thus, the

corresponding boundary condition, i.e., insulation

boundary condition, can be expressed as [31, 35]:

b rgi þ b
Xn

j¼1;i 6¼j

rgj

0
@

1
A � n ¼ 0 ð20Þ

To describe the transformation between austenite

and one martensitic variant, only one order parame-

ter is needed, i.e., n ¼ 1. For example, the insulation

boundary condition Eq. (20) reduces to

brg1 � n ¼ 0 ð21Þ

Since there exists only one order parameter, the

subscript is usually dropped, i.e., brg � n ¼ 0.

Numerical simulations

The coupled system of GL and elasticity equations is

solved using the nonlinear FEM and the COMSOL

Multiphysics code. The GL equations and elasticity

equations for martensitic PTs in NiAl are imple-

mented in COMSOL transient diffusion and station-

ary structural applications, respectively. Triangle

Lagrange elements with quadratic approximation for

the displacements and order parameters are used.

Coupled and segregated options have been used as

solvers for the system of equations. Adjustable time

steps are used for a better convergence, particularly

at the beginning of the solution. During the solving

process, automatic mesh refinement is used to avoid

mesh inversion-based divergence. The material

parameters are used in the simulations as follows

[26, 27, 41].

Stress, size and time are normalized by 1 GPa, 1 ps

and 1 nm, respectively. The PT thermal driving force

is defined by the dimensionless overcooling
~h ¼ he � hð Þ=he.
To verify the numerical procedure, the interface

velocity, energy and width of a planar A–M interface

were calculated for thermal-induced and stress-in-

duced PTs and were compared to those of previous

studies. To do so, a square sample is considered with

the size of 10� 10. Half of the sample is initially

austenite (g ¼ 0:001Þ. The other half is initially con-

sidered as martensite (g ¼ 0:999). The sample was

initially stress-free. The boundaries are free with the

left lower corner fixed in both the x and y directions

and the upper left corner fixed in the x direction to

avoid rigid body motion. Insulation boundary con-

ditions (Eq. 20) for the phase are applied at all the

boundaries which guarantee the constant surface

energy over the sample. In order to reduce the

internal stress along the y direction and to obtain a

vertical interface, the transformation strains for a

36.5� rotated martensite are used as etr ¼

0:137 0:1295
0:1295 0

� 	
[31]. It is found that for the mesh

size smaller than d=6 (d is the interface width), the

solutions are mesh independent. Here, the largest

mesh size is chosen as 0.25. At the equilibrium tem-

perature, the initial sharp A–M interface starts to

broaden, creating a diffuse interface. At time t = 0.5,

it reaches d ¼ 2:14 after which d remains constant

(Fig. 1). This value is in a very good agreement with

that of an analytical solution (d ¼ 2:04) for the inter-

face width [4]. The profile of the equilibrated energy

function per unit volume along the x direction is

plotted in Fig. 2. The interface energy, i.e., the area

under the energy profile, is Eint ¼ 0:2251 J/m2, which

was in a very good agreement with that of an ana-

lytical solution (Eint ¼ 0:2245 J/m2) for the interface

energy [29]. Reducing the temperature increases the

PT driving force which causes the interface to start

propagation vertically at a constant velocity until the

entire sample transforms to the rotated martensite.

For a better verification involving stresses, a thermal-

and stress-induced PT is considered in a rectangular

sample with the size of 20� 10. The transformation

J Mater Sci (2020) 55:2544–2563 2549



strains are considered as etr ¼
0:1 0
0 0

� 	
. A tensile

stress of 0.1 is applied on the right boundary, while

the other boundaries are free with the left lower

corner fixed in both the x and y directions and the

upper left corner fixed in the x direction to avoid

rigid body motion. The right boundary of the sample

is martensite (g ¼ 0:999Þ, and the insulation bound-

ary conditions for the phase are applied on the other

boundaries. The sample is initially considered as

austenite (g ¼ 0:001). For ~h ¼ 0:535 and the applied

stress of 0.1, the initial A–M sharp interface first

broadens to a diffuse interface and then propagates to

the left. For such a condition, the interface width was

obtained as d ¼ 2:10 , which was in a very good

agreement with the value of d ¼ 2:13 obtained from

an analytical solution [29]. Also, the velocity was

obtained as V ¼ 1072 m/s, which is in a good

agreement with the value of V ¼ 1104 m/s obtained

from an analytical solution [4]. The interface width

and velocity remain constant where the stress field is

homogeneous and will vary when getting close to the

fixed points due to the heterogeneity of stress field.

The nanostructure evolution in the deformed state

and the corresponding A–M interface profiles are

shown in Figs. 3 and 4, respectively.

Effect of phase-dependent (PI) Young’s
modulus on PTs: the thermal- and stress-
induced propagation of an A–M interface

In order to investigate the effect of PI Young’s mod-

ulus on PTs, the thermal- and stress-induced propa-

gation of an A–M interface is studied in the same

sample described in the verification section (Fig. 3).

Here, in order to reduce the stress concentration and

to avoid divergence due to the mesh inversion, the

left side is fixed in the x direction and the lower left

corner is fixed in both the x and y directions. The

phase dependence of elastic properties is defined by

different Young’s moduli for different phases. Thus,

the parameter n ¼ EM=EA is defined and the A–M

interface propagation is studied for different values

of n and the corresponding interface widths and

velocities are plotted in Fig. 5. As can be seen, the

interface width is almost independent of n. This

could be due to the planar form of the interface as

well as neglecting the interface stress effect. For a

curved interface, the interface stress creates a local

driving force which changes the interface width. The

interface velocity linearly increases as n increases.

The reason is that increasing n requires a larger stress

to move the stiffer interface. Since the velocity lin-

early depends on the stress [4] and the stress has a

linear relation with the Young’s modulus, it is rea-

sonable to obtain a linear dependence of the velocity

on the coefficient n.

For thermal-induced PTs, i.e., without any applied

stress, the elastic heterogeneity did not affect the

Figure 1 The stationary

diffuse A–M interface and its

profile along the x direction.

Figure 2 Energy distribution of the equilibrium state along the

x direction.
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interface width and velocity. The reason is that in the

absence of external forces the only stresses available

in the material are the internal stresses which are zero

here. More importantly, the inelastic interface stress

is not considered in this study.

Figure 3 The nanostructure evolution of a thermal- and stress-induced A–M interface propagation.

Figure 4 The evolution of a

thermal- and stress-induced

A–M interface profile.

Figure 5 Variation of the A–

M interface velocity (V) and

width (d) versus the parameter

n.
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Effect of the quadratic elastic energy with PI
constants on the thermal-induced growth
of a martensitic nucleus

The thermal-induced growth of a martensitic nucleus

is studied with thermal strain and without it with the

PI and PD elastic constants. To do so, a square sample

with the size of 20� 20 is considered in which a cir-

cular martensitic nucleus with the radius of 0.75 is

considered at its center. The plane strain problem is

considered, and the transformation strain of the first

martensitic variant is used. The thermal expansion

coefficient a ¼ 10� 10�61=K is considered for both

austenite and martensite [64, 65]. All the boundaries

are free with two points at the center of the upper and

lower sides fixed in the x direction and two points at

the center of the lateral sides fixed in the y direction.

The nucleus growth and nanostructure deformation

for the overcooling ~h ¼ 1:977 and the initial value of

g ¼ 0:01 with the PI and PD elastic constants are

presented in Fig. 6a, b, respectively. For simplicity,

the solution with the PI elastic constants is called case

1 and with the PD elastic constants is called case 2

through the paper. It is found that not only the

beginning stages of the growth are not the same but

also the transformation paths and the final solutions

are different. Moreover, the velocity of the marten-

sitic nanostructure growth is higher for the case 2

than that for the case 1. However, it contains a larger

amount of non-complete martensite. The effect of

stress concentration due to the fixed points on the PT

is remarkable, and it is more pronounced for the case

2. The transformation path is quite different for both

cases, the growth velocity is higher for the case 1, and

the final solution for the case 1 contains residual

austenite near the upper and lower fixed points,

while it contains residual austenite and non-complete

martensite near all the fixed points for the case 2. One

of the main differences between two cases is the

appearance of a significant amount of non-complete

martensite during transformation for the case 2. This

could be more pronounced when the interface stress

is included.

Phase concentration here is defined as the ratio of

the area of the transformed region to the area of the

entire sample. As can be seen in Fig. 7, the phase

concentration of the case 2 is larger than that of the

case 1 between t = 9.5–11 which belongs to the period

where pre-transformation is dominant in the sample

(Fig. 6). For the rest of the evolution time, the con-

centration is very close for two cases.

Figure 6 The nucleus growth and nanostructure deformation for the overcooling eh ¼ 1:977 and the initial value of g ¼ 0:01 for both the

case 1 (a) and the case 2 (b).
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Effect of periodic boundary conditions
on the thermal-induced growth
of a martensitic nucleus

In the same problem as in Sect. 3.2, the effect of

periodic boundary conditions (PBCs) on the nucleus

growth is investigated for both the cases 1 and 2. The

PBCs are applied on the boundaries of a square

sample with the size of 20� 20 at the center of which

a nucleus with the radius of 0.75 and the initial value

of 0.001 are considered. The rest of the sample is

initially austenite. The temperature is reduced to find

the lowest overcooling at which the nucleus grows.

Table 2 presents the overcoolings with thermal strain

and without it for both the cases 1 and 2. It is found

that the PBCs require a significantly larger

Figure 7 The variation of the

phase concentration of the first

martensitic variant during time

for the overcooling eh ¼ 1:977

and the initial value of g ¼
0:01 for both the cases 1 and 2.

Figure 8 The evolution of nucleus growth for the case 1 (a) and the case 2 (b) with PBCs.

Table 2 The corresponding overcoolings with the thermal strain and without it for both the cases 1 and 2 with PBCs

gini ¼ 0:001

r = 0.75

~h

Case 1 without PBCs Case 2 without PBCs Case 1 with PBCs Case 2 with PBCs

With thermal strain 1.614 1.456 2.535 4.953

Without thermal strain 2.028 2.033 2.628 5.419
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overcooling to grow the nucleus, and this is more

pronounced with the thermal strain. Also, the ther-

mal strain shows a larger effect for the case 2. The

evolution of nucleus growth is presented for the cases

1 and 2 in Fig. 8a, b, respectively. Comparing the

evolutions shows the nucleus growth path is also

completely different than that with the non-PBCs for

both the cases. For the case 1 (Fig. 8a), despite the

significant growth of the non-complete martensite at

the initial stages, a reverse PT occurs and most of the

non-complete martensite splits into pieces and

transforms back to austenite. The final solution con-

tains an inclined complete martensitic band with

some non-complete martensite at the upper and

lower boundaries. Therefore, the PBCs minimize the

energy of the system in a completely different way.

For the case 2 (Fig. 8b), after the non-complete

martensite grows and fills the entire sample, the

reverse PT occurs and austenite appears in different

places creating a periodic pattern of austenite inside a

matrix of the non-complete martensite. The final

solution contains parallel inclined bands of the non-

complete martensite separated by austenite.

The variation of the phase concentration of the first

martensitic variant during time is illustrated in Fig. 9.

As can be seen, the phase concentration of the case 2

is quite larger than that of the case 1 for any time

during evolution.

Thermal- and stress-induced PTs with two
martensitic variants under uniaxial stress
loading

Martensitic PTs with two variants are studied in a

square sample with the size of 27� 27. To reduce the

effect of stress concentration and also to reduce the

computational effort, a one-fourth model is used in

which the symmetric boundary conditions are

applied on the left and lower sides and the upper and

the right sides are subjected to the tensile stress of

br ¼ 10. The plane transformation strain components

for the first and the second martensitic variants are

considered. A preexisting circular nucleus with the

radius size of 2 and the initial values of g1 ¼ g2 ¼ 0:1

is considered in the left corner, and the rest of the

sample is initially austenite, i.e., g1 ¼ g2 ¼ 0. The

maximum mesh size is 0.2, which leads to a mesh-

independent solution for both triangular and

quadrilateral elements. The temperature is ~h ¼ 1. For

the above conditions, the nucleus for the second

variant disappears, while the first variant grows and

propagates through the sample until the entire sam-

ple is almost transformed to the first variant. This can

be explained based on the transformation work. Both

the applied stress in the x direction (crx = 10) and the

x component of the transformation strain for the first

variant (extr1 = 0.215) are positive. Thus, the corre-

sponding transformation work will be positive. Also,

there is no applied stress applied on the vertical

sides; thus, it does not contribute to the transforma-

tion work for any of the martensitic variants. There-

fore, the above transformation works combined

together result in a positive transformation work for

Figure 9 The variation of the

phase concentration of the first

martensitic variant during time

for both the cases 1 and 2 with

PBCs.
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the first variant which promotes the transformation

of austenite to the first martensitic variant. On the

other hand, since the x component of the transfor-

mation strain for the second variant (extr2 = - 0.078) is

negative, the corresponding transformation work

under tensile stress will be negative. Also, no trans-

formation work is provided for the second compo-

nent of the transformation work due to the lack of

applied stress in the y direction. Thus, the total

transformation work for the second variant will be

Figure 10 The evolution of

martensitic nanostructure for

the case 1 (a) and the case 2

(b) under uniaxial stress of

crx = 10: one-fourth model.

Figure 11 The variation of

the phase concentration of the

first martensitic variant during

time for both the cases 1 and 2

with PBCs.
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negative which suppresses the transformation of

austenite to the second martensitic variant. The evo-

lution of martensitic nanostructure is presented for

both the cases 1 and 2 in Fig. 10a, b, respectively. For

both the cases, only the first variant grows and the

second variant disappears. However, for the case 2

the nucleus grows faster and the martensite propa-

gates faster through the sample. Also, the A–M1

interface width and curvature are different for both

the cases. Also, as can be seen in Fig. 11, the phase

concentration for the case 2 is quite larger than that

for the case 1 for any time during evolution until the

stationary solution is reached.

Thermal- and stress-induced PTs with two
martensitic variants under biaxial stress
loading

The same problem as in Sect. 3.4 is considered, but

the upper side is subjected to the tensile stress of

br ¼ 7 and the left side is subjected to the compressive

stress of br ¼ 7. Here, the nucleus for the first variant

disappears, while the second variant grows and

propagates through the sample until the entire sam-

ple is almost transformed to the second variant. This

can be explained based on the transformation work.

The applied stress in the x direction is compressive

(crx = - 7), while the x component of the transfor-

mation strain for the first variant (extr1 = 0.215) is

positive. Thus, the corresponding transformation

work will be negative. Also, the applied stress in the

y direction is tensile (crx = 7), while the y component

of the transformation strain for the first variant

(eytr1 = - 0.078) is negative. This also gives a negative

transformation work for the first variant. The above

transformation works combined together result in a

negative transformation work for the first variant

which suppresses the transformation of austenite to

the first martensitic variant. On the other hand, both

the applied stress in the x direction (cry = - 7) and

the x component of the transformation strain for the

second variant (extr2 = - 0.078) are negative, which

result in a positive transformation work. Also, both

the applied stress in the y direction (cry = 7) and the y

component of the transformation strain for the sec-

ond variant (eytr2 = 0.215) are positive, which also

result in a positive transformation work. The above

transformation works combined together result in a

positive transformation work for the second variant

which promotes the transformation of austenite to

the second martensitic variant. The evolution of

martensitic nanostructure is presented in Fig. 12a, b

for both the cases 1 and 2, respectively. For both the

cases, only the second variant grows and the first

variant disappears. However, for the case 2, the

nucleus grows faster and the martensite propagates

faster through the sample. Also, the A–M2 interface

width and curvature are different for both the cases.

Again, as can be seen in Fig. 13, the phase concen-

tration for the case 2 is quite larger than that of the

case 1 for any time during evolution until the sta-

tionary solution is reached. From the computational

point of view, the one-fourth problem can be solved

4–5 times faster than the full geometry model. Also,

the convergence was obtained easier and there was

no need to use the automatic remeshing which is

essential for problems in which mesh inversion

occurs due to fixed point boundary conditions.

Thermal- and stress-induced PTs with two
martensitic variants in the presence of two
holes under biaxial stress loading

Martensitic PTs with two variants are studied in a

square sample with the size of 23:3� 23:3 with two

symmetric circular holes with the radius of 2.66 (lo-

cated along the horizontal axis) and a distance

between the holes of 8. The upper and the lower sides

are subjected to the tensile normal stress of br ¼ 12,

and the lateral sides are subjected to the tensile nor-

mal stress of br ¼ 9. To avoid rigid body motion, the

middle points of the upper and lower sides are fixed

in the x direction and the middle points of the lateral

sides are fixed in the y direction. The plane trans-

formation strain components for the first and the

second martensitic variants are considered. The ini-

tial conditions of g1 ¼ g2 ¼ 0:1 were prescribed in the

rings of radius 3:33 around each hole, and the rest of

the sample is initially austenite, i.e., g1 ¼ g2 ¼ 0. The

mesh map is quite heterogeneous, but it was chosen

fine enough with the maximum mesh size of 0.4 to

obtain mesh-independent solutions. The temperature

is ~h ¼ 1. Due to the presence of two holes and small

sizes, the stress concentration will play an important

role. The evolution of martensitic nanostructure is

presented in Figs. 14, 15 for the cases 1 and 2,

respectively. The first martensitic variant grows from

the space between the holes in the x direction and

then grows from the other sides of the hole surfaces

2556 J Mater Sci (2020) 55:2544–2563



in the x direction. This is expected due to the high

stress concentration in the distance between the two

holes. Due to the small distance, a pre-transformation

occurs in this region due to which the non-complete

phase fills the region and then it transforms to the

complete phase; thus, a complete interface does not

appear at the first stages. The first martensitic variant

grows until it reaches the lateral sides and the M1–M2

interface remains almost horizontally everywhere.

This is because both the applied stress and the

transformation strain component of the first variant

are positive in the x direction, which lead to a posi-

tive transformation work, and this promotes the PT

for the first variant. In the following, the M1–M2

interface gradually rotates to 45�, and the first variant

is surrounded by the M1–M2 interface. There also

exist small regions of the second variant near the

fixed points due to the stress concentration. A larger

distance between the holes would allow change in

the orientation of the M1–M2 interface. The second

martensitic variant grows vertically from the holes

surfaces, and the second variant does not appear in

Figure 12 The evolution of

martensitic nanostructure for

the case 1 (a) and the case 2

(b) under biaxial stresses of

crx ¼ �7 and cry ¼ 7: one-

fourth model.
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the distance between the holes. This is because the

applied stress in the x direction is positive, while the

transformation strain component of the second vari-

ant in the x direction is negative (extr2 = - 0.078), and

this leads to a negative transformation work which

suppresses the PT of the second variant. The second

variant nanostructure grows vertically until it reaches

the upper and lower sides. During the evolution, the

frontier part of the transformed region is an A–M2

interface with a variable width at different places,

which largest size belongs to the place where the two

frontiers of the transformed regions (of the second

variant) coalesce. On the other hand, a M1–M2

interface is created at the boundary of the trans-

formed region starting from the hole surface which

progresses along the 45� direction and is stopped

near the corner. This interface surrounds the lower

band of the transformed region of the second variant.

A region of residual austenite remains near the cor-

ner; thus, an A–M2 interface is created, separating

residual austenite from the second variant region.

Note that the A–M2 interface width is larger than that

of the M1–M2 interface. Compared to the case 1, for

the case 2 the transformed region propagates faster

until the stationary solution is reached, there exists a

remarkable amount of non-complete first and second

Figure 13 The variation of

the phase concentration of the

second martensitic variant

during time for both the cases

1 and 2 under biaxial stresses

of crx ¼ �7 and cry ¼ 7.

Figure 14 The evolution of the nanostructure for both martensitic variants g1 and g2 for the case 1 under biaxial stresses of crx ¼ 12 and

cry ¼ 9.
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martensitic variants during the propagation, and in

the stationary solution, there is no residual austenite

at the corners and the M1–M2 interface is thinner.

Also, the stress concentration due to the fixed points

shows a more significant effect on the PT, creating a

more complex morphology. Figure 16 shows the

distribution of stress components crx , cry and crxy and

the transformation work dWxy of the stationary solu-

tion for both the cases. As can be seen, there exists a

remarkable difference between the stresses and also

the transformation work of both the cases, which

leads to a big difference in the transformation event

of both the cases.

Thermal-induced twinning in a nanograin
embedded in an austenitic square matrix

Thermal-induced phase transformations with the PI

elastic constants (case 1) and the PD elastic constants

(case 2) are studied inside a nanograin with the size

of 12:5� 12:5 embedded at the center of an austenitic

square matrix with the size of 50� 50 (Fig. 17a). The

lower left corner is fixed in both the x and y direc-

tions, and the upper left corner is fixed in the x

direction. The insulation boundary condition is

applied on all the boundaries for the phase field

problem. The initial condition for the nanograin is

g1 ¼ g2 ¼ 0:99 for a fast convergence. The rest of the

Figure 15 The evolution of the nanostructure for both martensitic variants g1 and g2 for the case 2 under biaxial stresses of crx ¼ 12 and

cry ¼ 9.

Figure 16 The distribution of stress components and the transformation work dWxy of the stationary solution for the case 1 (the top row)

and the case 2 (the bottom row) under biaxial stresses of crx ¼ 12 and cry ¼ 9.
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sample is kept during the solution in the austenitic

condition, i.e., g1 ¼ 0. The problem is solved for

t = 100 to reach the stationary solution. Under such a

condition and with no mechanical loadings and no

stress concentration, the problem is almost thermal

induced. Our interest is to obtain twinned structures

for both the cases which can be obtained under large

overcoolings when no stress exists. Thus, the tem-

perature was reduced to find the twinned structure.

The martensitic nanostructure is presented in Fig. 17

for two different overcoolings of 2.39 and 4.72. For

the lower overcooling of 2.39, no twinned structure is

resolved for either case 1 or 2. For the case 1

(Fig. 17b), several complete and non-complete bands

of the first and the second variants (particularly near

the boundaries due to the space limitation and the

insulation boundary conditions) appear which are

separated by austenite, creating triple junctions of

three phases, while for the case 2 (Fig. 17c), no

martensite appears for the same overcooling. Also,

the orientation of the possible martensitic nanos-

tructure looks different. For the larger overcooling of

4.72, for both the cases the twinned structure appears.

Due to the small size and insulation boundary con-

ditions, the martensitic ribbons have variable thick-

nesses and the A–M and the M–M interface widths

are variable. Also, small junctions of the three phases

exist at the boundary.

Conclusion

In this paper, the phase field and the nonlinear finite

element methods were used to study the effect of

phase-dependent elastic properties on martensitic

PTs. The phase dependence of elastic properties was

defined by different Young’s moduli for austenite

and martensite, and its effect was investigated on

thermal- and stress-induced propagation of an A–M

interface. It was found that as the difference between

the Young’s moduli of A and M increases, the A–M

interface velocity linearly increases. However, the

interface width decreases very little. The phase

dependence of elastic properties was then included

using the quadratic elastic energy in which two

constants are different for A and martensitic variants.

A planar A–M interface propagation was studied

under different thermal and mechanical loadings. It

was revealed that the effect of phase-dependent

elastic properties is more pronounced when thermal

strain is included, resulting in a larger interface

velocity. The promoting effect of the thermal strain

decreased as the applied stress was increased. The

thermal-induced growth of a martensitic nucleus and

the effect of PBCs on the nucleus growth were

investigated for both the PI (case 1) and PD (case 2)

elastic properties with thermal strain and without it.

The effect of the PD elastic properties was more

Figure 17 Schematics of a martensitic nanograin embedded in at the center of an austenitic square matrix (a), the martensitic

nanostructure for the case 1 (b) and the case 2 (c).
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pronounced in the presence of stress concentration.

The transformation path, the growth velocity and the

final solutions were different for the cases 1 and 2. It

was found that the PBCs require a significantly larger

overcooling for the nucleus growth, particularly with

thermal strain and for the case 2. The nucleus growth

path was also completely different than that with the

non-PBCs for both the cases 1 and 2. Martensitic PTs

with two variants were studied under different

loadings using a one-fourth model and symmetric

boundary conditions to reduce the effect of stress

concentrations. Martensitic PTs with two variants

were also studied in the presence of two circular

holes. Due to the stress concentration, the martensite

grows first near the holes. It also resulted in residual

austenite inside the other phases. Compared to the

case 1, the transformed region for the case 2 propa-

gated faster for the initial stages and there existed a

remarkable amount of non-complete martensite

during evolution. Also, pre-transformation occurred

in the small distance between the two holes and a

non-complete phase fills the region which later

transforms to the complete phase. The effect of phase-

dependent elastic properties was also studied on

twinning in a martensitic grain embedded inside

austenite. Under lower overcoolings, no twinned

structure was resolved for either case. Instead, for the

case 1, several bands of the first and the second

variants appeared separated by austenite, creating

triple junctions of three phases, while for the case 2

no martensite appeared. For larger overcoolings, for

both the cases the twinned structure appeared. The

obtained results show the significant effect of phase-

dependent elastic properties on martensitic PTs.

Similarly, the same effect would be predicted for

other similar phenomena such as reconstructive PTs,

diffusion and defect dynamics.
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