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ABSTRACT

Due to their unique structure and photoelectrical properties, two-dimensional

(2D) materials have attracted enormous attention on next-generation optoelec-

tronic devices. Recently, the newly discovered 2D layered Bi2O2Se has exhibited

outstanding sensitivity and optoelectronic properties. However, the perfor-

mance of these 2D layered Bi2O2Se photodetectors can be limited by the high

dark currents. The suitable band structure of 2D MoSe2 can form a type-II

heterojunction with Bi2O2Se, which can reduce the dark current, modulate the

interlayer transition energy and induce the charge spatial separation. Herein, we

demonstrated a photodetector based on the heterojunction fabricated by van der

Waals assembly between Bi2O2Se and few-layer MoSe2, showing visible to near-

infrared detection range. Moreover, our results showed that the dark current of

this photodetector was significantly reduced and the Ion/Ioff ratio was greatly

improved. Importantly, it exhibited a broad detection range from 405 to 808 nm

with a responsivity of 413.1 mA W-1, a high detectivity of 3.7 9 1011 Jones (at

780 nm) at room temperature. Compared with the 2D Bi2O2Se photodetector,

the photocurrent response and recovery time in the heterojunction photode-

tector was greatly reduced from 1.92/1.31 to 0.79/0.49 s at room temperature.

Our results showed that 2D Bi2O2Se/MoSe2 heterojunction has a great potential

for broadband and fast photodetection.

Introduction

During the past decades, two-dimensional (2D)

materials have attracted enormous attention for

photodetection applications due to their layered

structure, mechanical flexibility, layer-dependent

electronic band structures and easily constructed

heterostructures [1–5]. Generally, the ideal detectors

should have fast respond, high sensitivity and air

stability, which are rare to meet at the same time in

one material [6–12]. As the most extensively studied
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2D material, graphene shows a relatively low optical

absorption coefficient due to the lack of a band gap

[13–15]. Though MoS2 has shown good properties in

optoelectronic applications, the corresponding pho-

todetectors only respond to the visible region, leading

to limitation of their application in the infrared region

[16–18]. As an analog to graphene, black phosphorus

with a direct bandgap also shows promising appli-

cations in photodetectors, while it is not stable in the

air [19–21]. Due to the availability of 2D materials

with various bandgaps and work functions, bandgap

engineering of heterostructures can be realized

through heterogeneous stacks built by different 2D

materials, providing solutions for multifunctional

hybrid photodetectors [22–25].

As a new type of 2D semiconductor, Bi2O2Se has

been reported to possess high mobility and superior

air stability [26]. Bi2O2Se consists alternative com-

pensating cations ((Bi2O2)n
2n?) and anions (Sen

2n-). The

layers are held together by weak electrostatic forces

with an interlayer spacing of about 0.608 nm (Fig. 1a)

[27]. However, the high dark current and small on/

off ratio limit the performance of the photodetector

based on Bi2O2Se on f-mica substrate [28, 29]. It has

been reported that the Type-II heterojunction can

reduce the dark current, modulate the interlayer

transition energy and induce the charge spatial sep-

aration [30–34]. The Bi2O2Se typically exhibits an

indirect band gap of * 1.14 eV and the monolayer

MoSe2 exhibit a direct bandgap of * 1.51 eV [35–37].

Therefore, 2D MoSe2 can form a type-II van der

Waals heterostructure with Bi2O2Se, which is quite

promising for the performance improvement in Bi2-
O2Se-based photodetectors [38–40].

Here, we constructed a type-II Bi2O2Se/MoSe2 van

der Waals heterojunction and investigated the pho-

todetection performance. Compared with the 2D

Bi2O2Se photodetector, the dark current was signifi-

cantly reduced and the on/off ratio was greatly

improved in the Bi2O2Se–MoSe2 heterostructure.

Moreover, the Bi2O2Se–MoSe2 based photodetector

showed a broadband photoresponsivity from visible

(405 nm) to near-infrared (808 nm) light illumination.

Compared with the 2D Bi2O2Se photodetector, the

photocurrent response and recovery time were

greatly reduced in the heterojunction photodetector.

Under the illumination of 780 nm laser, the hetero-

junction showed a responsivity of 413.1 mA W-1 and

a detectivity of 3.7 9 1011 Jones at 2 V voltage.

Experimental section

Synthesis of 2D Bi2O2Se

The 2D Bi2O2Se crystals were synthesized through

chemical vapor deposition method (CVD) in a dual

zone split tube furnace (OTF-1200X, Hefei Kejing

Material Technology Company Ltd., China) equip-

ped with a 40-mm-diameter quartz tube. Typically,

the source materials of Bi2O3 powder (aladdin,

99.99%) and Bi2Se3 power (aladdin, 99.99%) were

placed in the center and upstream by 5 cm of high-

temperature zone, respectively. The freshly cleaved

fluorophlogopite mica ([KMg3(AlSi3O10)F2]) was

placed in the center of low-temperature zone as the

target growth substrate (Fig. 1b). High-purity Ar gas

was used as the carrier gas with a constant flow rate

of 300 sccm and the pressure was kept at 0.3 atm. The

whole reaction process was carried out under the

furnace temperature of 640 �C and 540 �C and the

growth was maintained for 30-60 min. Then, the

furnace was naturally cooled down to the room

temperature.

Characterization

The morphology of the as-grown Bi2O2Se was char-

acterized by optical microscopy (OM, Olympus

BX51 M microscope). The X-ray diffraction (XRD,

X’Pert Powder PANalytical B.V.) was used to confirm

the lattice structure of the 2D Bi2O2Se. The atomic

force microscopy (AFM, AIST-NT) was used to

investigate the thickness of 2D Bi2O2Se crystals. The

element valence state of 2D Bi2O2Se crystals was

characterized by X-ray photoelectron spectroscopy

(XPS, AXIS Supra). Raman spectra were collected

with a confocal Raman spectrometer (LabRAM HR

Evolution) using a He–Ne laser (633 nm). The as-

synthesized samples were transferred onto the cop-

per grid supported lacey carbon film by using a HF-

etched transfer method and the crystal structure was

characterized by transmission electron microscopy

(TEM, JEOL 2100) [26, 41].

Device preparation

The Bi2O2Se/MoSe2 heterojunctions were achieved

through a polymethyl methacrylate (PMMA)-medi-

ated transfer method. Firstly, the PMMA (450 K,

Suzhou Research Semiconductor Company Ltd.,
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China.) was spin-coated over 2D MoSe2 grown on

SiO2/Si substrates (Shenzhen 6Carbon Technology

Company Ltd.) and baked at 80–90 �C for 15 min to

facilitate intimate adhesion of the PMMA layer with

MoSe2. After that, the SiO2/Si substrate was etched in

2.5 mol L-1 NaOH solution to separate the PMMA/

MoSe2 with the Si substrate. After several washes in

the deionized (DI) water, the PMMA-MoSe2 film was

then transferred onto the mica substrate with grown

2D Bi2O2Se. After baking at 110 �C for 30 min, the

Figure 1 Characterization of Bi2O2Se nanoplates. a Schematic

illustration of the crystal structure of Bi2O2Se with tetragonal

structure. b Schematic illustration of the experimental setup for the

synthesis of Bi2O2Se nanoplates. c Typical OM image of the as-

synthesized 2D Bi2O2Se nanoplates on mica. d HRTEM image of

the Bi2O2Se nanoplate. The inset shows a SAED pattern of the

Bi2O2Se nanoplate. e XRD spectra of Bi2O2Se nanoplates grown

on mica (red) and a reference mica substrate (black). f The AFM

image of a Bi2O2Se nanoplate. The inset shows the thickness of

this Bi2O2Se nanoplate is 4.5 nm from the AFM cross-sectional

profile along the white line.

14744 J Mater Sci (2019) 54:14742–14751



PMMA was finally removed with acetone and the

mica substrate was cleaned with alcohol and DI

water. The metallic contacts for the Bi2O2Se/MoSe2
heterojunction were fabricated by standard electron

beam lithography, thermal deposition of Cr/Au

(10 nm/50 nm), and lift-off processes.

Optoelectronic measurements

The electrical measurements were performed using

Lake Shore CPX probe station and Keithley 4200

semiconductor characterization system. The excita-

tion laser wavelengths used in this paper were

405 nm, 515 nm, 660 nm, 780 nm and 808 nm.

Results and discussion

Single crystalline 2D Bi2O2Se samples were synthe-

sized through a low-pressure CVD method. Accord-

ing to the OM image (Fig. 1c), Bi2O2Se nanoplates up

to 40 lm with square morphology were obtained,

indicating the tetragonal structure of Bi2O2Se. The

corresponding high-resolution transmission electron

microscopy (HRTEM) image in Fig. 1d indicates the

single crystallinity and tetragonal structure of our

synthesized Bi2O2Se nanoplates, which is also con-

firmed by the selected area electron diffraction

(SAED) pattern (insert in Fig. 1d). As indicated in the

HRTEM, d-spacing of 0.27 nm and 0.19 nm corre-

spond, respectively, to the (200) and (110) planes with

angle of 45�. The XRD spectrum (Fig. 1e) peaks of

14.39�, 29.15�, 44.44� correspond to the (002), (004)

and (006) diffractions of tetragonal Bi2O2Se. Accord-

ing to the AFM image shown in Fig. 1f, the surface of

the as-grown sample is homogeneous and the thick-

ness is about 4.5 nm, which corresponds to a seven-

layer sample.

The CVD synthesized 2D MoSe2 (Shenzhen 6Car-

bon Technology Company Ltd.) generally showed a

thickness of 1.3 nm (Fig. S1(a)). The HRTEM image

and corresponding SAED pattern (Fig. S1(b)) showed

the single crystallinity of the synthesized MoSe2.

With PMMA-assisted transfer method, the Bi2O2Se/

MoSe2 heterojunctions were constructed by transfer-

ring MoSe2 directly onto the as-grown Bi2O2Se on

mica (Fig. 2a). Due to the inertness of f-mica and

strong electrostatic interaction between the Bi2O2Se

with the substrate, hydrofluoric acid (HF) becomes

the only f-mica etchant which can help the transfer of

Bi2O2Se/MoSe2 from the f-mica to the TEM grid.

However, as a component of typical buffered oxide

etchant, Bi2O2Se can be inevitably etched by HF

during the transfer process. Therefore, the Raman

spectroscopy was performed to further verify the

Bi2O2Se/MoSe2 heterojunction. Figure 2b shows the

corresponding Raman spectra for MoSe2 and Bi2O2Se

obtained from point 1 and point 2 in Fig. 2a, where

the A1g (240 cm-1), E1
2g (280 cm-1) mode of MoSe2

and A1g (160 cm-1) mode of Bi2O2Se can be observed.

The Raman intensity mappings of the white framed

area in Fig. 2a with the A1g mode of MoSe2 at

240 cm-1 (Fig. 2c) and A1g mode of Bi2O2Se at

160 cm-1 (Fig. 2d) show clearly the formation of the

Bi2O2Se/MoSe2 heterojunction (Fig. 2e).

In order to study the photoresponse performance

of the Bi2O2Se/MoSe2 heterojunction, two-terminal

devices were fabricated and the schematic illustration

of this device is presented in Fig. 3a. Figure 3b shows

the I - V curves of the photodetector in dark and

under light illuminations with various wavelengths.

According to our results, it can be seen that the

photodetector experienced a remarkable current

increase under light illuminations and the Ion/Ioff
ratios at 2 V bias voltage are 17.89, 746.45, 434.58,

218.01 and 60.25 when illuminated by lasers with

wavelength of 405 nm (0.2 mW cm-2), 515 nm

(40.9 mW cm-2), 660 nm (114.1 mW cm-2), 780 nm

(1197.1 mW cm-2) and 808 nm (32.47 mW cm-2).

When compared with the performance of our syn-

thesized pure Bi2O2Se (Fig. S2 in the supporting

information), the dark current was significantly

lowered (2.1 pA vs. 150 pA) and the Ion/Ioff ratio was

greatly improved (746.45 vs. 20.28 at 515 nm) through

the construction of Bi2O2Se/MoSe2 heterojunction.

To quantify the effect of light intensity on the

device performance, the I - V characteristics of the

Bi2O2Se/MoSe2 heterojunction photodetector were

measured under illumination of 780 nm laser with

power intensities ranging from dark to 1191.7 mW

cm-2. The responsivity (R) and specific detectivity

(D*) of this photodetector can be obtained based on

the following equations [42–46]:

RðA W�1Þ ¼ Iph
Popt � S

D�ðJonesÞ ¼
ffiffiffiffi

A
p

� R
ffiffiffiffiffiffiffiffiffi

2eID
p
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where Popt, S, A, e, and ID are light intensity, irradi-

ation area, device area, unit charge, and dark current,

respectively. The responsivity and detectivity as a

function of light intensities (780 nm) are presented in

Fig. 3d. Both the responsivity and the detectivity

decrease with the increasing light intensities, and

Figure 2 Raman

spectroscopy analysis of the

Bi2O2Se/MoSe2
heterojunction. a The OM

image of a Bi2O2Se/MoSe2
heterojunction. b The Raman

spectra taken from points 1

and 2 in a, showing pristine

MoSe2 and Bi2O2Se areas,

respectively. The Raman

intensity mappings at

c 240 cm-1 (A1g mode of

MoSe2) and d 160 cm-1 (A1g

mode of Bi2O2Se). e The

superposition of c and d.

Figure 3 a Schematic illustration of the Bi2O2Se/MoSe2
heterojunction photodetector. b I - V characteristics of the

photodetector in dark and under illumination of lasers with

wavelength of 405, 515, 660, 780, and 808 nm, respectively.

c I - V characteristics of the Bi2O2Se/MoSe2 heterojunction

photodetector under illumination of 780 nm laser with various

laser intensities. d Responsivity and detectivity of the Bi2O2Se/

MoSe2 heterojunction photodetector under illumination of 780 nm

laser with different power at 2 V bias.

14746 J Mater Sci (2019) 54:14742–14751



reach 413.1 mA W-1 and 3.7 9 1011 Jones (1 Jones =

1 cm Hz1/2 W-1) under the intensity of

0.09 mW cm-2.

The I - V curves under light illumination with

different wavelengths revealed that the Bi2O2Se/

MoSe2 heterojunction photodetector has a broad

photoresponse from 405 to 808 nm (Fig. 3b). There-

fore, the photoresponse properties of Bi2O2Se/MoSe2
heterojunction photodetector to incident light with

different wavelengths were further investigated. As

shown in Fig. 4a–e, the photodetector exhibited

stable and repeatable photoresponse to lasers with

wavelengths of 405 nm (0.2 mW cm-2), 515 nm

(40.9 mW cm-2), 660 nm (114.1 mW cm-2), 780 nm

(1197.1 mW cm-2) and 808 nm (32.47 mW cm-2)

under bias of 1.5 V, indicating that Bi2O2Se/MoSe2
heterojunction photodetector can response to light

signals with a wide spectrum range from visible to

NIR.

The response speed of the Bi2O2Se/MoSe2 hetero-

junction photodetector was evaluated by analyzing

the rising and falling edges of individual response

cycle (Fig. S4). The response time was calculated to be

0.79/0.49 s under illumination of 515 nm with power

intensity of 40.9 mW cm-2 at 1.5 V bias. Compared

with the 2D Bi2O2Se photodetector (Fig. S3), the

photocurrent response and recovery time was greatly

reduced in the heterojunction photodetector. The

device performances of the Bi2O2Se/MoSe2 hetero-

junction photodetector and some recently reported

2D material-based photodetectors are summarized in

Table 1. According to the summarized date, our

reported Bi2O2Se/MoSe2 heterojunction photodetec-

tor show higher detectivity and the measured rise/

decay time is closely comparable to the values

reported for many 2D materials-based photodetectors

[47–58]. Moreover, the Bi2O2Se/MoSe2 heterojunction

show higher responsivity than other 2D material-

based heterojunctions like CuO/MoS2, MoS2/MoTe2,

MoS2/graphene etc. [47–51] It has been reported that

the longer rise and decay time observed in similar

systems can be attributed to unavoidable intrinsic

and/or extrinsic charge traps, e.g., surface states and

atmospheric contamination [59, 60]. In our devices,

the heterojunction was fabricated by transferring

MoSe2 onto Bi2O2Se through a PMMA-assisted

method, which can inevitably introduce undesired

contamination at the interface between Bi2O2Se and

MoSe2 [36]. The chemical residues left on the surface

of active materials during the removal of PMMA will

form undesired charge impurities [22]. Moreover, the

etching process with NaOH to separate the PMMA/

MoSe2 with the Si substrate may also introduce some

chemical degradations on the MoSe2 layers, resulting

Figure 4 a–e Time-dependent photoresponse of Bi2O2Se/MoSe2 heterojunction photodetector at 1.5 V voltage under illumination of 405,

515, 660, 780, and 808 nm laser, respectively. f Schematic illustration of the energy band diagrams for the Bi2O2Se/MoSe2 heterojunction.

J Mater Sci (2019) 54:14742–14751 14747



in a relatively longer rise and decay time. Since the

direct growth of 2D heterojunction will help us get a

high-quality clean interface, growing Bi2O2Se/MoSe2
heterostructures without a transferring method can

help to further improve the corresponding photode-

tection performance of the Bi2O2Se/MoSe2 system

[61].

Figure 4f illustrates the alignment of electronic

bands of Bi2O2Se and MoSe2. It shows that the elec-

tron affinities of Bi2O2Se and MoSe2 are 4.54 eV and

3.96 eV, the bandgaps are 1.14 eV and 1.51 eV,

respectively. Consequently, the Bi2O2Se/MoSe2
heterostructure forms a type-II heterojunction, with

the conduction band minimum residing in Bi2O2Se

and the valence band maximum in MoSe2 [26, 35, 36].

In type-II heterojunctions, the conduction band min-

imum and valence band maximum reside in two

separate materials. Photoexcited electrons and holes

therefore prefer to stay at separate locations. As

demonstrated in Fig. 4f, electron-hole pairs exist

under the light illumination, and the electrons on the

conduction band transfer from MoSe2 to Bi2O2Se,

while the holes on the valence band transfer from

Bi2O2Se to MoSe2, resulting in the efficient charge

separation [62].

Conclusion

In conclusion, the 2D layered Bi2O2Se samples have

been synthesized with low-pressure CVD method

and the Bi2O2Se/MoSe2 heterojunction with type-II

band alignment was constructed for photodetection.

Our results indicate that this heterojunction pho-

todetector showed broadband detection ranging from

visible (405 nm) to near infrared (808 nm) with a

responsivity of 413.1 mA W-1, detectivity of

3.7 9 1011 Jones (at 780 nm). Compared with the 2D

Bi2O2Se photodetector, the dark current was signifi-

cantly reduced and the Ion/Ioff ratio was greatly

improved. Importantly, the rise/decay time of the

Bi2O2Se/MoSe2 heterojunction photodetector was

reduced from 1.92/1.31 to 0.79/0.49 s under the

illumination of 515 nm (40.9 mW cm-2 at 1.5 V). Our

results showed that 2D Bi2O2Se/MoSe2 heterojunc-

tion has promising applications in the field of

broadband and fast photodetection.
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Table 1 2D material-based

photodetectors and

performance comparison with

our results

Material k (nm) R (A W-1) D (Jones) Rise/decay time (s) References

Bi2O2Se/MoSe2 780 0.413 3.7 9 1011 0.79/0.49 (515 nm) This work

CuO/MoS2 532 0.011 3.27 9 108 – [47]

MoS2/MoTe2 473 0.047 1.6 9 1010 0.385/— [48]

MoS2/graphene 405 0.014 – – [49]

ReS2/ReSe2 550 0.021 – 0.4/0.4 [50]

ZnO/WS2 340 0.002 – 5.7/2.6 [51]

SnS2 375 1.42 1.38 9 1010 0.307/7.9 [52]

Bi2Te3 325 26.82 1.29 9 109 0.28/1.6 [53]

Bi2Te3 1550 286 6.6 9 109 0.25/0.195 [54]

Bi2Te3 650 23.43 1.54 9 1010 4.1/7.4 [55]

MoS2 532 14 1.11 9 1010 0.707/1.1 [56]

WS2 532 5.8 – 1.5/1.5 [57]

WSe2 635 0.92 – 0.9/2 [58]
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