
COMPUTATION & THEORY

Vibration reduction design method of metamaterials

with negative Poisson’s ratio

Haoxing Qin1 and Deqing Yang1,*

1Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, State Key Laboratory of Ocean Engineering, School

of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 11 April 2019

Accepted: 1 August 2019

Published online:

16 August 2019

� Springer Science+Business

Media, LLC, part of Springer

Nature 2019

ABSTRACT

This work proposes a topology optimization design method of metamaterials

for improving the vibration reduction performance. Firstly, an optimization

mathematical model of the functional element is established with the objective

of maximizing the origin mechanical impedance level, and the functional ele-

ment with optimal vibration reduction effect is obtained by the calculation of the

mathematical model. Then, the optimized functional elements are periodically

arranged to generate the metamaterials, and thus a series of metamaterials with

negative Poisson’s ratio ranging from - 0.5 to - 2.0 are designed. Numerical

simulation shows that the amplitudes of the acceleration response are reduced

by 66.5% after the vibration is passed through the metamaterials. Comparison

shows that the novel designed metamaterials achieve at least 12% improvement

in vibration reduction performance over the traditional honeycomb.

Introduction

The material with positive Poisson’s ratio (PR) exhi-

bits a phenomenon of swelling in a direction per-

pendicular to the direction of compression.

Conversely, the material with negative PR exhibits

shrink in the transverse direction when compressed

[1, 2]. Compared with traditional positive PR mate-

rials [3, 4], negative PR metamaterials exhibit supe-

rior mechanical properties and application prospects

[5] in terms of indentation resistance [6], lightweight

[7], impact resistance [8, 9], energy absorption [10, 11]

and vibration reduction [12, 13].

In terms of dynamics, negative PR metamaterials

show superiority over traditional materials in

reducing vibration propagation [14, 15]. Duc et al.

[16, 17] investigated the nonlinear dynamic response

and vibration of composite double-curved shallow

shells with auxetic cellular, and the effects of material

properties, geometrical parameters, elastic founda-

tions, auxetic core layer and blast loads on nonlinear

dynamic response were analyzed to guide the design

of auxetic composite structure. Reviews in [18] pre-

sented the advantages of negative PR metamaterials

in damping and acoustics. Scarpa et al. [19] studied

the transmission of vibration waves in conventional

materials and negative PR metamaterials and con-

cluded that metamaterials with negative PR show

better vibration reduction performance for wave

propagation. In addition, the conclusions from
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numerical simulations and experiments are used to

guide the prediction and design of acoustic proper-

ties of negative PR metamaterials [20, 21]. Unlike

traditional periodic auxetic materials, when the

functionally graded materials are subjected to vibra-

tion or shock, the dynamic response and deformation

of the local structure change with the change of the

cell gradient, which can reduce the local stress con-

centration to ensure the integrity and reliability of the

structure [22, 23]. Ajdari et al. [24] studied the

mechanical properties of density gradient honey-

comb structures under uniaxial and biaxial plane

impact using finite element and theoretical methods.

Previous studies on dynamics and vibration response

have focused more on examining mechanics, prop-

erties and applications through simulations and

experimental tests [18]. As mentioned in the work by

[25], how to design a metamaterial structure with

specified properties is more practical.

The design of the mechanical properties has

received great attention in mitigating vibration. It is

revealed in [26] that the formation of the band gap

can be traced back to the resonant behavior of the

elementary building blocks of the honeycomb struc-

ture under different boundary conditions and con-

cluded that the damping band gap can be designed to

achieve the purpose of vibration reduction. After-

ward, optimization design is recognized as an effec-

tive way to improve mechanical properties, where

the size and shape optimizations are two common

optimization methods with features of being conve-

nient and effective. For the applications of size or

shape optimizations [27], metamaterials are designed

by optimizing the cell wall thickness, cell angle, cell

height and cell length [28–30]. The above improved

methods based on the conventional configuration are

insufficient for improving the mechanical properties

of metamaterials [31, 32]. Moreover, the unique per-

formance of metamaterials is strongly dependent on

the configurations of the underlying substructure;

that is to say, many interesting properties of meta-

materials can be obtained through innovative con-

figuration design of metamaterials’ substructure

[33, 34].

The reviews on metamaterials topology optimiza-

tion for dynamics are concluded in [35, 36]. Previous

work by [37] proposed a functional element topology

optimization (FETO) method, which optimizes the

configuration of substructures and then periodically

arranges the substructures to generate metamaterials.

Consequently, this work proposed a FETO-based

vibration reduction design method; then, a series of

novel configurations metamaterials with specified

negative PR are designed to improve the vibration

reduction performance.

This work is organized as follows. In ’’Metamate-

rials design for vibration reduction’’ section, the

FETO-based vibration reduction design method is

described in detail, and the concept of mechanical

impedance is introduced to evaluate the vibration

reduction effect. In ‘‘Formulation of the optimization

problem’’ section, a mathematical model is estab-

lished to perform the configuration design of meta-

materials. ’’Numerical simulation of the

metamaterials‘‘ section analyzes the dynamic prop-

erties of metamaterials and summarizes the effect of

PR to the vibration reduction performance. In

’’Evaluation of vibration reduction performance‘‘

section, comparison of the vibration reduction of

novel metamaterials and honeycomb is performed.

Metamaterials design for vibration
reduction

Based on the FETO method, a design method of

metamaterials with vibration reduction performance

is proposed in this section and the concept of

mechanical impedance is introduced to evaluate the

vibration reduction effect.

Definition of functional elements
and metamaterials

Figure 1 illustrates the main idea of the FETO

method. The initial materials structure to be designed

is subdivided into several design domains, and the

single design domain is discretized into finite ele-

ment meshes; that is, the functional element topology

optimization design of this work is carried out in the

design area.

Mechanical impedance to evaluate vibration
reduction

Generally, the vibration reduction effect can be

expressed as the ratio of the vibration response at the

excitation location to the response at the output

location; the greater the ratio, the better the vibration

reduction effect. Since the distribution path of
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materials is uncertain during the optimization cal-

culation iteration, it is not conducive to collecting the

input and output responses of all finite element

nodes. Once the mechanical impedance is used to

describe the vibration reduction effect, it is only

necessary to collect the response of the excitation

position without obtaining a response to the output

position. This is due to the fact that the mechanical

impedance of the excitation position is an inherent

feature of structural vibration and can reflect the

vibration reduction effect of the metamaterials and

structures.

Definition of mechanical impedance

Mechanical impedance is a key indicator of structural

dynamic characteristic, which directly reflects the

structural dynamic performance under external

excitation [38, 39], and the generalized mechanical

impedance is defined as the ratio of harmonic exci-

tation force to the response caused by it. It is well

known that the vibration response can be represented

in terms of displacement, velocity and acceleration.

Similarly, the mechanical impedance can also be

classified into displacement impedance, velocity

impedance and acceleration impedance.

In this work, the acceleration impedance is used to

describe the mechanical impedance of metamaterials:

Z ¼ Fi
Xj

ð1Þ

where Fi is the input excitation force acting on node i

and Xj is the output acceleration response of node j.

Conversion between the mechanical impedance

and vibration reduction

Figure 2 shows the definition of mechanical impe-

dance in functional element. For a forced vibration

system, the input acceleration response at the exci-

tation position is denoted as a0, and the output

acceleration response after the vibration transmission

is denoted as an. The transmission rate (Ta) and

vibration level difference (VLD) can be expressed as:

Ta ¼
an
a0

ð2Þ

VLD ¼ 20 log10

a0

an

� �
¼ 20 log10

a0=aref
an=aref

� �
¼ L1 � L2

ð3Þ

where L1 is the input acceleration level at the exci-

tation position, L2 is the output acceleration level at

the response position and aref is the reference value of

acceleration.

The relationship between VLD and Ta is

Figure 1 Schematic of design method of metamaterials based on functional element topology optimization.

Figure 2 Definition of the mechanical impedance in functional

element.
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VLD ¼ 20 log10

a0

an

� �
¼ 20 log10

1

Ta

; ð4Þ

and the relationship between impedance and Ta can

be expressed as

Ta ¼
an=F

a0=F
¼ Z0

Zn

ð5Þ

where Z0 represents the origin impedance at the

excitation position and Zn represents the impedance

at the response position.

Similar to the definition of the VLD in Eq. (3), this

work defines an impedance level Lz to characterize

the structural vibration transmission properties

Lz ¼ 20 log10

Z

Zref

ð6Þ

where Zref represents the reference value of impe-

dance, and this work takes Zref ¼ 1 Ns2=m.

Substituting Eq. (5) into Eq. (4) yields

VLD ¼ 20 log10

Zn

Z0
¼ 20 log10

Zn=Zref

Z0=Zref

� �
¼ Lzn � Lz0

ð7Þ

where Lz0 represents the origin impedance level of

the vibration excitation and Lzn represents the trans-

mission impedance level after the vibration

transmission.

In this work, the difference between impedance

levels is defined as the impedance level difference

(ILD):

ILD ¼ Lzn � Lz0: ð8Þ

Although the value of VLD in Eq. (7) is equal to the

value of ILD in Eq. (8), the physical meaning is quite

different. From Eq. (2), when the transmission ratio

Ta is constant, the output acceleration response an
decreases as the input acceleration response a0

decreases, thereby achieving the purpose of reducing

the output vibration response after the vibration

propagation of metamaterials. In addition, it can be

seen from Eqs. (1) and (6) that the decrease in a0 leads

to an increase in Lz0. Therefore, maximizing Lz0 as an

optimization objective can be used to improve the

vibration reduction performance of metamaterials.

In order to intuitively reflect the mechanical

impedance properties of the structure, a concept of

synthesized origin impedance level �Lz0 is defined to

synthesize the values of impedance level in the sweep

frequency range:

�Lz0 ¼ 10 log10

XS

i¼1
100:1Li

z0 ð9Þ

where Liz0 is the origin impedance level at a specified

frequency fi and S is the number of the sweep

frequency.

Macroscopic effect of Poisson’s ratio

The general methods for calculating PR values of a

metamaterials can be used for common cell configu-

rations [40–42], but it is not suitable for the PR cal-

culation of cells with irregular shapes in topology

optimization process. The following scholars have

studied the macro-PR evaluation method to solve the

above problems. Previous work by [43, 44] presented

a method to study the macroscopic mechanical

properties of materials by applying simple loads to

characterize the macroscopic mechanical properties

of materials under complex stress conditions. Car-

neiro et al. [45] introduced a PR evaluation method in

material mechanics test to analyze the macroscopic

PR effect of cellular material.

In this work, the method in [45] is also used to

describe the macroscopic PR effect during the opti-

mization iteration of functional element. The cell

configuration in Fig. 3 is an example to calculate the

macroscopic PR of metamaterial in detail. The strain

of the cell configuration is

eX ¼ 2
Dx2

x2
; eZ ¼ 2

Dz1

z1
ð10Þ

where eX and eZ are the strain in X- and Z-directions,

Dx2 and x2 are the displacement and coordinate

position of point n2 in X-direction and Dz1 and z1 are

the displacement and coordinate position of point n1

in Z-direction.

Figure 3 Evaluation method of the macroscopic PR effect.
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Then, the PR evaluation of the cell configuration in

Fig. 3 can be expressed as:

mZX ¼ � eX
eZ

: ð11Þ

Formulation of the optimization problem

This section describes the details of a metamaterials

design, and Fig. 4 illustrates the optimization design

of functional element and the construction of meta-

materials. In this work, a series of metamaterials with

various PRs are designed to analyze the effect of PR

on vibration reduction performance [46, 47] and to

verify the reliability of the proposed method of

metamaterials vibration reduction design.

Topology optimization calculation in this work is

carried out by the commercial software of Hyper-

works/OptiStruct. The scheme materials model of

the optimization adopts the SIMP method (solid

isotropic materials with penalization), and the gen-

eral idea is to introduce a fictitious density variables

field to penalize, for each element, some relevant

physical quantities like element stiffness tensor,

materials density, etc. The relationships between the

relative density and the elastic modulus of materials

are as follows:

E xeð Þ ¼ Emin þ xpe E0 � Eminð Þ ð12Þ

K ¼
XN
e¼1

Emin þ xpeDE
� �

k0 ð13Þ

where xeðe ¼ 1; 2; � � �NÞ is the relative density of ele-

ment e; N is the number of elements; E0 and Emin are

the initial elastic modulus of the elements and the

elastic modulus of the hole elements; DE ¼ E0 � Emin,

Emin ¼ E0=1000; p is the penalty factor; E xeð Þ is the

elastic modulus after interpolation; K is the global

stiffness matrix which can be obtained as the sum of

elemental stiffness over all N elements; and k0 is the

initial stiffness matrix of each mesh element.

Due to the existence of semi-dense elements, the

analysis results may change dramatically when the

design process enters a new phase using a different

penalization factor. In OptiStruct, the discrete

parameter corresponds to penalty factor, and it usu-

ally takes a value between 2.0 and 4.0. The default

discrete value is 1.0 for shell dominant structures and

2.0 for solids dominant structures. (The dominance is

defined by the proportion of number of elements.)

When minimum member size control is used, the

penalty starts at 2 and is increased to 3 for the second

and third iterative phases. For other manufacturing

constraints such as draw direction, extrusion, pattern

repetition and pattern grouping, the penalty starts at

2 and increases to 3 and 4 for the second and third

iterative phases, respectively.

Modeling of optimization problem

As shown in Fig. 5, the design domain is discretized

into 84 � 84 finite element meshes, and the type of the

elements is plate. Within the frequency range

between 10 and 300 Hz, a sinusoidal excitation force

Figure 4 Flowchart of the vibration reduction design method of

metamaterials.

Figure 5 Design domain and loading of the functional element

topology optimization (B ¼ H ¼ 42 mm).

14042 J Mater Sci (2019) 54:14038–14054



with an amplitude of F ¼ 10 N is applied to the

center of the upper faceplate while the lower face-

plate is fixed. The measuring points 1 and 2 (in Fig. 5)

are used to evaluate the macroscopic Poisson’s ratio

effects. The metamaterials are made of PLA (poly-

lactic acid) with Young’s modulus EP ¼ 2636 MPa,

density qP ¼ 1180 kg
�

m3 and materials Poisson’s

ratio mP ¼ 0:38.

From the Poisson’s ratio in Eq. (11), we can express

the macroscopic Poisson’s ratio in Fig. 5 as follows:

m¼� e2

e1
¼� Du2

Dw1
� B
H

ð14Þ

where Dw1 and Du2 represent the displacement of

points 1 in Z-direction and the displacement of points

2 in X-direction.

This paragraph describes the mathematical model

of vibration reduction optimization design for meta-

materials. Regarding the setting of the objective

function, the purpose of maximizing the synthetic

origin impedance level �Lz0 as the objective of vibra-

tion reduction is explained in ‘‘Mechanical impe-

dance to evaluate vibration reduction’’ section. In this

work, the optimization problem is described as:

within a certain specified amount of materials, the PR

is set as the constraint, and the maximization of the

origin impedance level is taken as the objective. Then,

the mathematical model of optimization is

find X ¼ x1; x2; � � � ; xN½ �T

max �Lz0

s.t. M €UþKU = F

m� m0j j � e

f 0vol �VðXÞ=V0 � f 00vol
0\xmin � xe � xmax � 1

e ¼ 1; . . .;N

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

where X ¼ x1; x2; � � � ; xN½ �T is the vector of design

variables. xmax and xmin are the upper and lower limits

of design variables, respectively (nonzero to avoid

singularity). �Lz0 denotes the synthesized origin

impedance level. The global stiffness matrix can be

obtained as the sum of elemental stiffness over all N

elements, i.e., K ¼
PN

e¼1 x
p
ek0. M ¼

PN
e¼1 x

p
em0 is the

total mass of the functional element, where m0 is the

initial mass of each mesh element. U and F are the

global vector of displacements and forces. ue is the

displacement vector of mesh element. VðXÞ is the

total structural volume in the optimization progress;

V0 is the initial total volume when the relative density

of the design domain area is 1. f 0vol and f 00vol are the

lower limit and upper limit volume fraction of the

materials in design domain. m� m0j j � e is the con-

straint of PR, where m and m0 represent the PR in the

optimization iteration and the PR of the specified

design requirements, respectively.

Optimized configurations of functional
element

Considering that the amount of material used in the

structural topology optimization design has a great

influence on the configuration of the optimized func-

tional element, the setting of the volume fraction (f 0vol
and f 00vol) in the optimization model of this work con-

siders the following two aspects: The lower limit f 0vol is

set to 20% to ensure the stability of the optimized

structure, and the upper limit f 00vol is set to 30% to avoid

the metamaterials being too heavy after optimization.

As shown in Fig. 6, the four functional elements

corresponding to PR with m ¼ � 0:5, � 1:0, � 1:5 and

� 2:0 are generated by calculating Eq. (15), and the

synthesized origin impedance levels �Lz0 [in Eq. (9)]

after optimization iteration are 24.6 dB, 29.7 dB,

32.1 dB and 32.8 dB, respectively.

Although the wall thickness of the configuration in

Fig. 6 is not uniform, Gibson [41] verified that the

wall thickness has a negligible effect on the

mechanical properties when the wall thickness is

much smaller than the cell size. Therefore, under the

premise of ignoring the influence of wall thickness on

mechanical properties, the wall thickness of the

extracted configurations is designed to be t ¼ 1 mm,

and the uniformly spaced grid is employed herein to

represent the irregular configurations of the func-

tional elements (as shown in Fig. 7).

Verification of the PR values
of metamaterials

Since the extraction of the optimization results may

cause errors, this paragraph reanalyzes the extracted

configurations by finite element analysis. The

extracted configurations in Fig. 7 are established as

the finite element model for static analysis, and the

actual PR of extracted configuration in Fig. 7 can be

calculated according to Eq. 11; therefore, the error

ratio between the actual PR after extraction and the

PR of design requirement can be calculated. As

shown in Fig. 8 and Fig. 9, the PR error rate analysis

J Mater Sci (2019) 54:14038–14054 14043



of functional element with m ¼ � 1:5 is taken as an

example to describe the calculation method of the PR

error rate in detail. The reanalysis of the extracted

configuration is summarized in Table 1, and the

comparison shows that the Poisson’s ratio before and

after the extraction is roughly consistent.

Metamaterials based on periodic
arrangement of functional element

As shown in Fig. 6 and Fig. 7, the configurations of the

functional elements with maximization vibration

reduction performance are designed after optimization.

Afterward, the extracted and verified functional ele-

ments are periodically arranged into the metamaterials.

Figure 10 shows the corresponding functional elements,

metamaterials and specimen with m¼� 0:5, wherein

the specimen is fabricated by additive manufacturing.

Numerical simulation of the metamaterials

The metamaterials are generated by ordering the

functional elements. Each optimal configuration in

Fig. 7 is periodically arranged in a cycle of 8 � 8 to

Figure 6 Optimal configurations of the functional element corresponding to various PRs: a m¼� 0:5; b m¼� 1:0; c m¼� 1:5; d

m¼� 2:0.

Figure 7 Extraction of the optimal configurations corresponding to various PRs: a m ¼ �0:5; b m ¼ �1:0; c m ¼ �1:5; and d m ¼ �2:0.

Figure 8 Finite element model of the extracted functional

element with m ¼ �1:5, which is established according to the

dimensions of Fig. 7c.
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form the metamaterials in Fig. 11. Within the fre-

quency range between 10 and 300 Hz, a sinusoidal

excitation force with an amplitude of F ¼ 10 N is

applied to the center of the upper faceplate while the

lower faceplate is fixed, where the thicknesses of both

faceplates are 10 mm. The outline dimension of each

metamaterial is 336 mm � 356 mm, and the depth

perpendicular to the page is 20 mm. The metamate-

rials are made of PLA (polylactic acid) with Young’s

modulus EP ¼ 2636 MPa, density qP ¼ 1180 kg
�

m3

and materials Poisson’s ratio mP ¼ 0:38.

Next, the dynamic characteristics of each meta-

material in Fig. 11 will be analyzed by the software of

Hyperworks. Within the frequency range between 10

and 300 Hz, a sinusoidal excitation force with an

amplitude of F ¼ 10 N is applied to the center of the

upper faceplate while the lower faceplate is fixed,

and the critical damping values of the structural

vibration analysis in this work are uniformly set asFigure 9 Displacement analysis of the extracted functional

element with m ¼ �1:5.

Table 1 Relative errors of PR

between the extracted

configurations and design

requirements

Design requirements m ¼ � 0:5 m ¼ � 1:0 m ¼ � 1:5 m ¼ � 2:0

After extraction m0 ¼ � 0:53 m0 ¼ � 1:085 m0 ¼ � 1:54 m0 ¼ � 2:16

Relative error ratio (%) 6.0 8.5 2.7 8.0

Figure 10 Optimal functional element, metamaterials and 3D-printed specimen, with corresponding PR m ¼ �0:5.
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1%. The modal analysis of the vertical first-order

natural frequency is summarized in Table 2, and the

frequency response analysis calculates the frequency

response curves of the measuring points (A, B, C, D

and E) in each metamaterial (as shown in Fig. 12).

Vibration reduction performance

The vibration reduction performance of the four

metamaterials is described by analyzing the fre-

quency response characteristics of several functional

elements at the center of metamaterials, where the

frequency response characteristics of each functional

element can be represented by the frequency

response of the measuring points (a–e in Fig. 11)

adjacent to the corresponding functional element.

Figure 13 shows the acceleration vibration level dif-

ference (VLD) of the measuring points in each

metamaterial, and the VLDs of these measuring

points reflect the vibration reduction performance of

the corresponding adjacent functional element.

Briefly, according to the definition of Eq. (3), the

acceleration VLD of the points i and j can be

expressed as

VLDi�j ¼ 20 log10

ai
aj

� �
ð16Þ

where ai and aj represent the acceleration response of

the measuring points i and j.

The data in Fig. 13 show that the vibration ampli-

tude is effectively suppressed after the vibration

propagated through the metamaterials, which indi-

cates that the series of metamaterials have the char-

acteristics of vibration reduction. In addition, for a

metamaterials specimen with a certain PR, the VLD

value between measuring points of the functional

element is larger as the functional element is located

closer to the fixed lower faceplate. This phenomenon

is affected by the boundary effect theory, and the

VLD value between the two points closer to the fixed

constraint position is larger; thus, the values of

VLDA�B, VLDB�C, VLDC�D and VLDD�E are gradu-

ally increasing.

In addition, the sum of the VLD values of VLDA�B,

VLDB�C, VLDC�D and VLDD�E is equal to that of

VLDA�E, which indicates that the vibration reduction

effect of metamaterials can be converted by the

accumulation of several functional elements. This

phenomenon also means that for a metamaterials

with periodic functional element arrangement, the

VLD of the metamaterials can be calculated by

cumulatively calculating the VLD of each functional

element.

Effect of Poisson’s ratio on vibration
reduction performance

In order to intuitively express the influence of PR on

the vibration reduction performance of the four

metamaterials, the performances comparison is based

on the premise of choosing the measuring points with

similar positions. Figure 14 shows the vibration

reduction of metamaterials at measurement points

A–B, B–C, C–D and D–E, respectively. In the range of

10–155 Hz, the vibration reduction effects increase as

the absolute values of the PR increase. When the

frequency is greater than 215 Hz, the vibration

reduction effects of other metamaterials decrease

Figure 11 Metamaterials corresponding to various PRs : a m ¼ � 0:5; b m ¼ � 1:0; c m ¼ � 1:5; and d m ¼ � 2:0.

Table 2 Vertical first-order natural frequency of metamaterials

corresponding to various PRs

m ¼ �0:5 m ¼ �1:0 m ¼ �1:5 m ¼ �2:0

183.6 Hz 269.3 Hz 271.1 Hz 285.8 Hz
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with the increase in the absolute value of PR except

for the metamaterials with m ¼ � 0:5.

However, more attention should be paid to the

vibration reduction performance of the metamaterials

structure in engineering applications, rather than the

vibration reduction of the substructure (functional

element) that makes up the metamaterials structures.

Therefore, in this work, the vibration reduction per-

formance of metamaterials is described by calculating

the acceleration VLD between measuring points A–E,

which is denoted by VLD. Thus, the vibration

reduction performance of the various novel designed

metamaterials is summarized in Fig. 15.

Figure 15 shows the VLD curves of various meta-

materials, and it can be seen that the VLD of the four

metamaterials is greater than 7 dB in the frequency

range of 10–300 Hz, which is equivalent to a 55.3%

reduction after the vibration propagation through the

metamaterials. In particular, the metamaterials with

m ¼ � 1:0, m ¼ � 1:5 and m ¼ � 2:0 exhibit superior

vibration reduction performance, and the VLD values

range from 8.5 dB to 10 dB; thus, the amplitudes of

the vibration are reduced by 62.4–68.4%. Conse-

quently, the metamaterials designed with the goal of

maximizing original impedance show excellent

vibration reduction performance.

Evaluation of vibration reduction
performance

The honeycomb materials in [46] is introduced as a

comparison to illustrate the vibration reduction per-

formance of the novel designed metamaterials. As

shown in Fig. 16, the wall thickness and material’s

parameters of the honeycomb in [46] are consistent

Figure 12 Frequency response of measuring points A, B, C, D and E corresponding to metamaterials structures with various PRs: a

m ¼ � 0:5; b m ¼ � 1:0; c m ¼ � 1:5; and d m ¼ � 2:0.
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with this work, and the loading and boundary con-

ditions of the honeycomb are the same as in this work.

In this work, the two methods of vibration level

difference (VLD) and frequency response are used to

evaluate the vibration effect of metamaterials. The

VLD measures the attenuation amplitude of the

vibration wave between the two responses, so the

VLD can easily reflect the relative change of the

vibration amplitude between various responses in the

same metamaterials. And the larger the value of VLD

is, the greater the attenuation of the vibration wave

between the two responses of measuring points, that

is, the better the vibration reduction performance.

The frequency response analysis is able to effec-

tively compare the response amplitude of the output

of each metamaterial under the same excitation force.

That is, the difference in vibration reduction perfor-

mance between each of the metamaterials can be

judged by comparing the amplitude of the responses

at the respective output position, and the smaller the

amplitude of the output response, the better the

vibration reduction performance of the metamaterials.

Evaluation of vibration reduction
performance with VLD

The data in Fig. 15 are further analyzed, and the

curves of VLD in the range of 10–300 Hz are con-

verted as a synthesized value VLD
all

.

VLD
all¼ 1

Q

XQ

i¼1
VLDfi ð17Þ

Figure 13 VLD between measuring points A–B, B–C, C–D, D–E and A–E corresponding to metamaterials with various PRs: a

m ¼ � 0:5; b m ¼ � 1:0; c m ¼ � 1:5; and d m ¼ � 2:0.
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where fi ¼ 10 þ 5i Hz, i ¼ 1; 2; . . .;Q, and Q ¼ 58

when the sweep range is within 10–300 Hz. VLDfi

represents the amplitude of VLD at the specified

frequency fi.

Figure 17 shows the acceleration VLD curves

between the measuring points A and E of the hon-

eycomb. Although the vibration reduction effect of

Figure 14 Vibration reduction effect of each PR metamaterials at measuring points: a A–B; b B–C; c C–D; and d D–E.

Figure 15 Vibration reduction performance VLD of various PR

metamaterials.

Figure 16 Honeycomb specimen with m ¼ � 2:0.
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the honeycomb in the local frequency band is better,

the vibration amplification begins to appear after the

frequency is higher than 150 Hz, which is contrary to

the intention of vibration reduction. Furthermore, the

synthesized vibration reduction effect of the honey-

comb is calculated by Eq. (17) as VLD
all

H ¼ 8:5 dB.

From Fig. 18, the performance of the novel metama-

terials is 1 dB higher than that of the honeycomb.

(The vibration reduction performance is improved by

12%.)

The synthesized vibration reduction effect VLD
all

of the four metamaterials is shown in Fig. 18, and

VLD
all

are all greater than 8.5 dB; thus, the amplitude

of the vibration is reduced by 62.4%. In particular, the

vibration reduction performance of the metamaterials

with m ¼ � 1:0, m ¼ � 1:5 and m ¼ � 2:0 is prominent.

(The value of VLD
all

is about 9.5 dB, and the vibration

amplitude is reduced by 66.5%.)

In summary, the novel designed metamaterials

exhibit better vibration reduction performance than

the honeycomb, and the vibration reduction charac-

teristics are stable and reliable.

Evaluation of vibration reduction
performance with frequency response

In addition to using VLD to indicate the vibration

propagation attenuation in materials or structures,

the acceleration frequency responses at the measur-

ing point E in novel metamaterials and honeycomb

are analyzed simultaneously (as shown in Fig. 19),

and the acceleration response of measuring point E is

denoted by a. An equivalent evaluation similar to the

one defined in Eq. (17) is used to describe the value of

the synthesized acceleration aall in the range of

10–300 Hz:

aall¼ 1

Q

XQ

i¼1
afi ð18Þ

where fi ¼ 10 þ 5iHz, i ¼ 1; 2; . . .;Q, and Q ¼ 58

when the sweep range is within 10–300 Hz. afi rep-

resents the amplitude of a at the specified frequency

fi.

According to Eq. (18), the synthesized acceleration

of the four metamaterials and honeycomb is repre-

sented by aall�0:5, aall�1:0, aall�1:5, aall�2:0 and aallH , respectively.

From Table 3, it is observed that the synthesized

acceleration of the four metamaterials is lower than

that of the honeycomb. In order to more intuitively

compare the difference between the vibration

Figure 17 Acceleration vibration level difference of the novel

designed metamaterials and honeycomb.

Figure 18 Vibration level difference of the novel designed

metamaterials and honeycomb.

Figure 19 Acceleration frequency response of the novel designed

metamaterials and honeycomb.
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reduction effects of the four metamaterials and hon-

eycomb, the vibration reduction effects of the four

metamaterials relative to the honeycomb can be cal-

culated by the following formula:

VLDm ¼ 20 logðaallH =aallm Þ ð19Þ

where aallm represents the synthesized acceleration of

the metamaterials with m ¼ �0:5; �1:0; �1:5; �2:0.

As shown in Table 3 and Fig. 20, the vibration

reduction of the four metamaterials relative to the

honeycomb is calculated by Eq. (19).

By comparing the vibration reduction of the four

metamaterials relative to the honeycomb, it shows

that the vibration reduction performance of the novel

designed metamaterials is obvious. In particular, the

acceleration response of the metamaterials with m ¼
�1:0 is reduced by 19 dB (in Fig. 20), which means

that the magnitude of the acceleration response is

reduced by 88.8%.

Conclusions

This work proposes a vibration reduction design

method of metamaterials for improving the vibration

reduction performance. The concrete conclusions are

as follows:

(1) A FETO-based vibration reduction design

method of metamaterials is proposed, and a

series of negative PR metamaterials with novel

configurations are designed. Numerical simu-

lation shows that the error rate of the optimized

PR and PR design requirements is less than

10%, which illustrated the feasibility of the

proposed design method.

(2) Frequency response shows that the vibration

amplitudes of the all designed metamaterials

are reduced by 62.4%, and it is demonstrated

that the metamaterials design with vibration

reduction performance can be obtained by

maximizing mechanical impedance as an opti-

mization goal.

(3) Comparison shows that the novel designed

metamaterials exhibit at least 12% improve-

ment in vibration reduction performance over

the honeycomb, and the vibration reduction

performance is stable and reliable.

In addition to being the objective of the optimiza-

tion, the specified vibration reduction performance

can also be used as a constraint for the optimization

problem. For example, the mathematical model of

optimization can be established as follows: With a

vibration reduction effect greater than 4 dB as a

constraint, the mathematical model can be con-

structed with the goal of minimum total weight to

design lightweight metamaterials.

Table 3 Vibration reduction effects of metamaterials relative to honeycomb

Poisson’s ratio Honeycomb m ¼ � 0:5 m ¼ � 1:0 m ¼ � 1:5 m ¼ � 2:0

Synthesized acceleration

response aall (mm=s2)

aallH ¼ 2:52 � 104 aall�0:5 ¼ 1:85 � 104 aall�1:0 ¼ 2:82 � 103 aall�1:5 ¼ 6:59 � 103 aall�2:0 ¼ 4:11 � 103

Vibration reduction

performance (compared to

honeycomb)/dB

2.7 dB 19.0 dB 11.7 dB 15.8 dB

Figure 20 Vibration reduction effects of the metamaterials

(relative to the honeycomb).
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