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ABSTRACT

The effect of grain size and phase compositions on piezoelectric coefficient of

BaTi0.98Hf0.02O3 ceramics prepared at a series of sintering temperatures (1320,

1350, 1370, and 1400 �C) was studied. The results showed that the grain size of

the ceramics is 0.9, 21.3, 21.6, and 37.2 lm, respectively, and the corresponding

phase compositions are the tetragonal–orthogonal, tetragonal–orthogonal–

rhombohedral, tetragonal–orthogonal, and tetragonal–orthogonal–rhombohe-

dral, while the piezoelectric coefficient is 475, 352, 258, and 327 pC/N, i.e., it

decreases first and then increases as the grain size goes up. The phase compo-

sitions and grain size of the ceramics are interrelated, and they co-affect the

piezoelectric coefficient.

Introduction

Developing the new materials with high piezoelectric

coefficient (d33) is one of the important fields of

materials science. At present, the high d33 at room

temperature mainly exists in PbTiO3-based per-

ovskite-type ferroelectrics, and they are widely used

in pressure sensors, actuators, and ultrasonic imag-

ing, etc. [1–3]. However, considering the Pb-based

materials are harmful to human and environment,

the exploration of lead-free piezoelectrics is one of the

research priorities in this field [4–7].

Nearly 20 years, the lead-free ceramics with high

d33 is developing rapidly. Based on compositions, it

can be divided into three systems, such as K1-xNax-
NbO3, Bi1/2Na1/2TiO3 and BaTiO3 (BT)-based

ceramics [8]. BT ceramic is the earliest discovered

piezoelectrics whose d33 is about 190 pC/N [1, 9]. At

present, the higher d33 of 700 ± 30 pC/N at room

temperature has been achieved in 0.82Ba(Ti0.89-
Sn0.11)O3–0.18(Ba0.7Ca0.3)TiO3 ceramic [10].

The mechanism of high d33 for BT-based ceramics

is mainly studied as follows: (1) Relationship

between high d33 and multiphase coexistence in a
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specific system such as Ren et al. [11] reported the d33
of BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 ceramic is

620 pC/N, which originates from the coexistence of

rhombohedral (R) and tetragonal (T) phases due to

the compositions being near the morphotropic phase

boundary (MPB). Das et al. [12] found that

0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3–0.8 wt%CeO2

ceramic has high d33 value (673 pC/N), while the R–T

phases also coexist [13–17]. In a word, the multiphase

coexistence in specific ceramic around MPB is

favorable to the improvement in d33, but the effect of

the phase ratios on d33 is not clear; and (2) relation-

ship between high d33 and grain size (g) in a specific

system. For example, with decreasing g, d33 increases

in BT ceramics found by Hoshina et al. [18], but

reduces in the Ba0.90Ca0.10Ti0.90Sn0.10O3–xY2O3 one,

and it increases first and then decreases in Ba1-x-

CaxTi0.90Sn0.10O3–0.08Dy2O3 obtained by Chen et al.

[19–21].

In addition, the domain structures also have some

influence on the d33. For instance, Li et al. [22] have

reported ‘‘blurred’’ grain boundaries may reduce the

internal stress and lead to the formation of continuity

of domains across the boundaries, resulting in the d33
of BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 ceramic up to

650 pC/N. Besides, Das et al. [23] studied the domain

widths of some BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3

ceramics with larger d33 and found that the largest d33
corresponds to the widest 90� domains. Li et al. [24]

found 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3–xZnO can

achieve the highest domain wall density at x = 0.08,

at the same time, d33 (603 pC/N) is the maximum.

BaTi1-xHfxO3 and BaTi1-xZrxO3 ceramics have

similar phase diagrams [25–27] and piezoelectric

properties [9, 28, 29]. However, there is still no

BaTi1-xHfxO3-based ceramic whose d33 exceeds

600 pC/N [28–38]. Therefore, it is necessary to ana-

lyze and study the influence factors to d33 in

BaTi1-xHfxO3 ceramics. Up to now, as far as the

authors know, there is no study on the co-effect of

multiphase coexistence and g on the high d33 in a

specific system. Moreover, it has been found that

BaTi1-xHfxO3 ceramics may be MPB near x = 0.04

[25, 31], and could have larger d33. In this paper,

BaTi0.98Hf0.02O3 (BTH) ceramics were selected as a

candidate system and prepared by solid-state reac-

tion at a series of sintering temperatures (Ts). The

influence of phase compositions and g on d33 was

studied by measuring and analyzing the room

temperature d33, hysteresis loop, phase compositions,

g, and temperature-dependent complex dielectric

constant of the ceramics.

Experimental procedure

BTH ceramics were prepared by the conventional

solid-state reaction technique with various Ts. High

purity (99.99%) powders of BaCO3, TiO2, and HfO2

were used as starting materials. The ingredients were

weighed in stoichiometric proportions and wet-

mixed with deionized water. After 16 h mixing and

then drying, the powder was calcined at 1100 �C for

2 h in air, and BaCO3, TiO2, and HfO2 reacted to form

BTH powders. The powders with 2.5 wt% binders

were compacted into disk-shaped pellets with a

diameter of 13.0 mm and thickness of 1.0–2.0 mm at

10 MPa pressure, followed by burning the binder.

BTH pallets were sintered at Ts ¼ 1320, 1350, 1370,

and 1400 �C for 4 h in air.

The room temperature phase compositions and g of

BTH ceramics were tested by DX-2600 X-ray diffrac-

tometer and KYKY2800B scanning electron micro-

scope (SEM).

The sintered specimens were coated with silver

paint on the upper and bottom surfaces and fired at

850 �C for 15 min for electrical measurements. The

room temperature hysteresis loops of specimens were

performed using the TF Analyzer 2000E at 1 Hz, and

the coercive field (Ec) and remnant polarization (Pr)

were obtained. The poling process was performed

under a static electric field of 2.5Ec at room temper-

ature for 20 min in a silicone oil bath, and after 24 h,

d33 was measured by Piezotest PM300 at room tem-

perature, 300 Hz, and 0.5 N. The complex dielectric

constant (e� ¼ e0 � ie00) of the specimens was carried

out in the temperature range of 100–430 K with

heating rate 2 K/min and frequency range of

100 Hz–10 kHz.

Results and discussion

Figure 1a shows d33 of BTH ceramics at room tem-

perature sintered at various Ts. It can be seen that the

overall trend of d33 reduces with increasing Ts, and

specifically, d33 are 475, 327, 352, and 258 pC/N

corresponding to Ts ¼ 1320, 1350, 1370, and 1400 �C.
The hysteresis loops at room temperature of BTH
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ceramics are given in Fig. 1b. All ceramics exhibit the

ferroelectric behaviors, which suggest that they are in

the ferroelectric phase at room temperature, and the

results agree precisely with the characteristic of

BaTi1-xHfxO3 phase diagram [25]. 2Ec and 2Pr are

read from Fig. 1b and plotted in Fig. 1c, d. The

variation trend of 2Ec is the same as that of d33, but

2Pr decreases at first and then increases.

Figure 2 illustrates SEM images (Fig. 2a–d) and the

corresponding statistical distribution of grain size

(Fig. 2e–h) of BTH ceramics for various Ts, we can

find that g are 0.9, 37.2, 21.3, and 21.6 lm for

Ts ¼ 1320, 1350, 1370, and 1400 �C as shown in

Fig. 1e. Compared with 1320 �C, the samples sintered

at other Ts have wide distribution of g. Obviously, the

variation trend of g is opposite to that of d33, but it is

not inverse linear by comparing Fig. 1a, e, and it is

different from that of pure BT ceramics [18, 39]. d33 is

maximum when g = 0.9 lm, which is larger than the

reported values of BaTi1-xHfxO3 [28, 38], BaTi1-x-

ZrxO3 [40, 41], BaTi1-xSnxO3 [42] ceramics at room

temperature, but similar to that value obtained by

two-step sintering methods [18, 43]. Because the fine-

grained ceramics have a high density of 90� domain

walls that is easily moved by an external ac field, high

d33 can be obtained [18, 43–45].

The room temperature X-ray diffraction patterns of

BTH ceramics sintered at series Ts are shown in

Fig. 3, and the results indicate that all samples have a

pure perovskite phase without visible impurity phase

(Fig. 3a). The detailed structural characterization of

peaks around 39�, 45�, and 65� is also carried out in

Fig. 3b–d.

The standard XRD spectra of BT show that: (1)

Cubic (C) phase: Single diffraction peaks appear near

39�, 45�, and 65�, corresponding to (111), (200), and

(220) planes, respectively; (2) T phase: Single peak

appear near 39�, double peaks of left low and right

high near 45�, and double peaks of left high and right

low near 65�; (3) O phase: Single peak appear near

39�, double peaks of right low and left high near 45�,
and triple peaks near 65�; and (4) R phase: Double

peaks appear near 39�, single peak near 45�, and

double peaks of right high and left low near 65�. By
the standard spectrum of BT and the method in Refs.

[13, 16], the fitting results of diffraction peaks near

39�, 45� and 65� of BTH ceramics (Fig. 3b–d) show

that the T–O phases coexist in ceramics for

Ts ¼ 1400 �C and 1320 �C, while T–O–R phases for

Ts ¼ 1370 �C and 1320 �C. We would like to point out

that, compared with Ts ¼ 1320 �C, the overall high-

angle peak shift of the sample for Ts ¼ 1400 �C means

the cell volume being smaller (Fig. 3a). One possible

origination is the different surface effects of grains

with different g, and another is the different pro-

portions of T and O phases in the ceramics at dif-

ferent Ts.

Combining with the corresponding values of d33
and g, it is found that the smaller g correspond to

higher d33 when ceramics have the same phase

Figure 1 d33 (a), hysteresis

loops (b), 2Ec (c), 2Pr (d), and

g (e) of BTH ceramics at room

temperature for various Ts.
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compositions. Therefore, it is necessary to consider

the effect of phase compositions when discussing the

relationship between d33 and g.

Figure 4 illustrates e0 and e00 of e� for BTH ceramics

measures at various frequencies and temperatures

(T). The results indicate that, similar to pure [46, 47]

and low Hf-doped BaTiO3 ceramics [25, 28, 48, 49],

there are three phase transitions, i.e., C–T, T–O, and

O–R, in 100–430 K, and the corresponding transition

temperatures (TC, TTO, and TOR) vary with Ts.

According to the variation of e0 and e00 versus T, it

could be seen that the T–O phase transition is diffuse

and broad, which may be caused by the uneven

distribution of Hf, g distribution, and influence of

grain boundaries. It leads to T–O phase coexistence

near room temperature. Accordingly, the character-

istic peaks of T and O phase were found in XRD

spectra of BTH ceramics (Fig. 3c, d).

Figure 2 SEM images of BTH ceramics: a Ts ¼ 1320 �C, b Ts ¼ 1350 �C, c Ts ¼ 1370 �C, d Ts ¼ 1400 �C. e–h The corresponding

grain size distributions.

Figure 3 Room temperature XRD patterns of BTH ceramics sintered at various Ts. 2h values are a 20�–80�; b 37�–40�; c 43.1�–46.1�;
d 64.3�–66.7�. In b–d experimental results, accumulation peaks, fitted peaks of T phase, fitted peaks of O phase, fitted peaks of R phase.
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Based on the peak heights of e
0
and e00, the amount

of transition between R and O phases and the room

temperature content of O phase in the BTH ceramic

for Ts ¼ 1320 �C are larger than the other, and it is

one reason for the larger d33 of the ceramic because O

phase can bring about exceptionally low elastic

modulus [50]. When Ts ¼ 1350 �C and 1370 �C, the
relative variation of e00 from TTO to TOR is small, and it

can be inferred that O–R phase transition diffuses to

higher temperatures due to possible random internal

stress, which causes a few amount of R phase to exist

when the temperature is much higher than TOR.

Therefore, the characteristic peaks of R phase can be

found in the XRD spectra (Fig. 3b). While Ts ¼ 1400

�C, there is no characteristic peaks of R phase in the

XRD spectra (Fig. 3b) due to the smaller dispersion of

O–R phase transition.

As shown in Fig. 5a, with increasing Ts, (1) TC goes

up first and then down; (2) TTO always increases; and

(3) TOR decreases first, then goes up and finally down,

while, with increasing g, (4) both TC and TTO first go

up and then down; and (5) TOR always decreases

(Fig. 5b). In which, the increase in TC with g for

g� 21:3 lm could be explained by the grain size

effect [51]; however, the decrease in TC for

g� 21:3 lm must contain other influencing factors,

such as oxygen vacancies [52] and internal stress [51].

For the T–O and O–R phase transitions related to the

coupling between the spontaneous polarizations and

spontaneous strains, the influence of g, oxygen

vacancies and internal stress to the coupling is not

quite clear now.

The room temperature e0 at 100 Hz with g and

phase compositions for BTH ceramics of series Ts is

shown in Fig. 6a, and it could be seen that, (1) for the

ceramics of the same phase compositions, the smaller

the g is, the larger the e0 is; and (2) the e0 of the

ceramics of T–O phases is larger than that of the T–O–

R ones. One possible corresponding mechanism is

that, (1) the samples of T–O phases may contain more

T phase than those of T–O–R phases, and T phase has

higher density of 90� domain walls, which leads to

the increase in e0 [53, 54]; and (2) when the phase

compositions are the same, the smaller the g is, the

higher the domain wall density of 90� domains is

[54].

Figure 1d shows that, with Ts, the change trend of

Pr is contrary to that of cell volume (Fig. 3), and the

cell volume is related to phase compositions and g.

As indicated by Fig. 6b, although the values of g

(21.3 lm for Ts ¼ 1370 �C) and (21.6 lm for

Ts ¼ 1400 �C) are almost same, Pr of the ceramics

with T–O phases is larger than that of T–O–R ones,

i.e., Pr is different because of the different phase

compositions. Moreover, when the ceramics have

same phase compositions, Pr are also different with

different g. Figure 6c clearly indicates that Ec

decreases with the increase in g, which may be

caused by the decrease in internal stress with the

decrease in g [54, 55].

According to the above analyses, the variation of

d33 for BTH ceramics with g and phase compositions

are shown in Fig. 6d. It is found that, with increasing

g, d33 decreases first and then increases, and when the

Figure 4 Temperature dependence of e0 and e00 for BTH ceramics

with various Ts.
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ceramics have the same phase compositions, the lar-

ger the g is, the smaller the d33 is. Specifically, for

g ¼ 0:9, 21.3, 21.6, and 37.2 lm, the phase composi-

tions of the ceramics are T–O, T–O–R, T–O, and T–O–

R phases, respectively, and d33 decreases with

increasing g, which indicates d33 is mainly affected by

g when g� 21:6 lm [18, 39]. However, d33 goes up

when g� 21:6 lm, i.e., d33 of T–O–R phase coexis-

tence is higher than that of T–O, so it is mainly

affected by phase compositions, which is consistent

with the conclusion that the multiphase coexistence

of T–O–R leads to a low energy barrier for the

polarization rotations, resulting in the high d33
[16, 42, 56, 57].

The author considers that the reasons for the

increase in d33 with the decrease in g in ceramics of

same phase compositions are as follows: (1) With the

decrease in g, the ratio of surface layer to volume of

the grains increases; and (2) the interaction energy

between a permanent dipole and its neighbors in the

surface layer is higher than that of the permanent

dipole in grain interior, i.e., its stability is lower. In

other words, under the same external stress, the

dipoles in the surface layer are more likely to be

Figure 5 TC, TTO, and TOR for BTH ceramics with various a Ts and b g at 100 Hz.

Figure 6 Room temperature

e0 (a), Pr (b), Ec (c), and d33
(d) versus g and phase

compositions for BTH

ceramics of series Ts.
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oriented and polarized, resulting in higher piezo-

electric coefficients.

It is worthwhile pointing out that the Ranjan et al.

[28] reported d33 of BTH ceramic of O–T phases

(sintered 1300 �C for 4 h and then 1450–1500 �C for

6 h) is 370 pC/N, much smaller than 475 pC/N in

this work. It can be expected that g of the ceramic of

Ranjan et al. is much larger than ours (sintered at

1320 �C for 4 h), which is consistent with the results

of Fig. 6d in this paper.

Conclusions

BTH ceramics near MPB were prepared by tradi-

tional solid-state reaction at series Ts. The room

temperature d33, 2Pr, 2Ec, g, and phase compositions,

as well as e0 and e00 with temperature at series fre-

quencies were tested and analyzed. The results

indicate that, when Ts ¼ 1320, 1350, 1370, and

1400 �C, d33 is 475, 327, 352, and 258 pC/N, g is 0.9,

37.2, 21.3, and 21.6 lm, and the corresponding phase

compositions are T–O, T–O–R, T–O–R, and T–O

phases, respectively. In other words, with increasing

g, d33 decreases first and then increases, and when the

ceramics have the same phase compositions, the lar-

ger the g is, the smaller the d33 is. Therefore, the phase

compositions and g of the ceramics are interrelated

and co-affect d33.
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