Review

Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review

Pramila Murugesan¹, J. A. Moses¹, and C. Anandharamakrishnan^{1,*} (D)

¹ Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India

Received: 9 February 2019 Accepted: 20 May 2019 Published online: 28 May 2019

© Springer Science+Business Media, LLC, part of Springer Nature 2019

ABSTRACT

Nanostructured carbon-based photocatalysts have gained attention in photocatalytic disinfection of microbial species. With distinctive features of possessing appropriate electronic band gap structure and high chemical and thermal stability, metal-free polymeric 2D stacked structure graphitic carbon nitride (g- C_3N_4) is an important photocatalytic material for environmental and energy applications. Besides, it has the potential for inactivation of harmful pathogens. Disinfection of microbial species is mainly ascribed to the formation of reactive oxidative species. Further, surface modification of $g-C_3N_4$ can remarkably improves photocatalytic disinfection efficiency. In this review, we have discussed the recent advances in photocatalytic disinfection using g-C₃N₄-based nanocomposites. An overview of metal-free nanostructure g-C₃N₄, metal (anions) and nonmetal (cations)-doped g-C₃N₄ and g-C₃N₄ hybridized with low band gap semiconductor is also presented. Moreover, we have emphasized on the photocatalytic disinfection mechanism associated with g-C₃N₄-modified composites. Nitrogen-rich g-C₃N₄ polymeric material can serve as an alternative to metal oxide (TiO_2 and ZnO) photocatalysts for photocatalytic disinfection technology. Other applications such as CO₂ photoreduction, H₂ generation, organic pollutant degradation, and sensing using g-C₃N₄-based nanocomposites are also summarized.

Introduction

Elimination of microbial load has been a significant concern owing to threat associated with several infections through food, water, and a range of other mode of infection. In particular, solid surfaces act as a reservoir for surviving gram negative (G^-) [Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia)], gram positive (G^+) [Enterococcus faecalis (E. faecalis), Staphylococcus aureus (S. aureus)] and fungal pathogen (Candida albicans) [1]. Hence, numerous efforts have been taken for remediating microbial contamination

Address correspondence to E-mail: anandharamakrishnan@iifpt.edu.in

including conventional chemical disinfectants (chlorine, chlorine dioxide, ozone, and alcohol, formaldehyde, or hydrogen peroxide) and ultraviolet irradiation (UV-C, UV-B and UV-A) [2-4]. However, such methods have drawbacks of time-limited antimicrobial activity, generation of toxic carcinogenic by-products such as trihalomethanes to the environment, and high operational costs [5]. Hence, it is vital to develop simple, low cost, and effective antimicrobial approaches for reducing harmful microbial load in the environment.

In recent years, nanocomposite-based photocatalytic disinfection processes have gained interest on a commercial scale as an approach to reduce microbial contamination [6, 7]. Photocatalytic disinfection relies on the principle of photoexcitation of a semiconductor material upon absorption of light, the wavelength of light being higher than the band gap energy level of semiconductor material (Fig. 1). In this process of exposure to light, electrons in the valence band (VB) get excited and move to the conduction band (CB) of the semiconductor material. This leaves a photogenerated hole in the VB. Finally, photogenerated holes and electrons pairs are involved in redox reactions. The production of reactive oxygen species (ROS) during photocatalysis can induce leakage of minerals, genetic material, and protein and thus result in cell death and reduction in microbial load.

In this aspect, metal oxides like titanium dioxide (TiO₂), zinc oxide (ZnO), magnesium oxide (MgO),

and tin oxide (WO₃), and nonmetal oxides such as graphitic carbon nitride $(g-C_3N_4)$, multiwall carbon nanotube (MWCNT), and graphene oxide (GO) semiconductor photocatalysts have been developed and employed for inactivation of microbial species [8-12]. However, intermediate or narrow bandgap semiconductors that have the capability to reduce molecular oxygen (O₂) to cytotoxic ROS show a promising scope for decreasing microbial load in the environment. Of late, Wang et al. [13] reported that metal-free treated rape pollen (TRP) displays remarkable inactivation efficiency toward the different waterborne bacterial species including E. Coli K-12, Pseudomonas aeruginosa (P. aeruginosa), S. aureus, and Bacillus pumilus (B. pumilus). Owing to higher specific surface area, more number of surface-active sites, improved chemical stability, and conductivity, 2D nanomaterial display outstanding antibacterial activity as compare with 1D nanomaterials.

Till date, 2D-structured metal-free polymeric g-C₃N₄ semiconductor materials have been extensively used for antimicrobial applications [14, 15]. At first, Wang and co-workers [16] synthesized $g-C_3N_4$ for a hydrogen (H_2) evaluation reaction. There has been a significant rise in scientific interest on the development of g-C₃N₄-based materials for energy and environmental applications. Benefiting from its distinctive properties (i.e., appropriate band gap (2.7 eV), high chemical, mechanical, and thermal stability), g-C₃N₄ is popularly used in waste water

illustration of semiconductorbased photocatalytic disinfection mechanism of microbial species.

treatment [17], water splitting [18], NO_x fixation [19], CO_2 conversion [20], and sensing applications [21]. Nevertheless, because of some known drawbacks (i.e., high recombination rate of photogenerated charge carriers and inadequate utilization of visible light) of g-C₃N₄, several surface-modified and improved techniques have been devoted for enhancing its photocatalytic efficiency. This review critically reviews the emerging trends in disinfection using g-C₃N₄-based photocatalysts. A summary of theoretical advances and basic principle for microbial inactivation using g-C₃N₄ are also discussed.

Basic principle of photocatalytic disinfection mechanism on g-C₃N₄

Photocatalytic disinfection mechanism of g-C₃N₄ is explained by the formation of photogenerated charge carriers (electron and hole pair) when exposed to light. Overall electron transfer and formation of ROS species on g-C₃N₄ surface is explained using Eqs. (1– 7) [22, 23]. Photogenerated electrons get excited from VB to CB; then, these charge carriers transfer to g-C₃N₄ surface and initiate a series of reactions and generate highly active ROS species. Generally, hydroxyl (·OH) radical, hydrogen peroxide (H₂O₂), and superoxide (O_2) are key species responsible for photocatalytic disinfection [24–26]. It is known that holes (h^+) in the VB can decompose (oxidize) water into OH radicals, thereby contributing to the inactivation of microbial species, especially bacteria. Moreover, other ROS species (H_2O_2 and O_2^-) are from mainly formed reduction of O_2 $(O_2 \rightarrow O_2^- \leftrightarrow HO_2 \rightarrow H_2O_2 \leftrightarrow OH)$, as they effectively react with cellular compounds, membrane leakage of microbial cell walls, and ultimately cause cell death [27, 28].

$$g-C_3N_4 + hv \rightarrow g-C_3N_4(e_{CB}^- + h_{VB}^+)$$
(1)

$$g-C_3N_4(h_{VB}^+) + H_2O \rightarrow g-C_3N_4 + OH + H^+$$
(2)

$$g-C_3N_4(h_{VB}^+) + OH^- \rightarrow g-C_3N_4 + OH$$
(3)

$$g-C_3N_4(e_{VB}^-) + O_2 \to g-C_3N_4 + O_2^-$$
 (4)

$$\cdot O_2^- + \cdot HO_2 \rightarrow \cdot OH + O_2 + H_2O_2 \tag{5}$$

$$\cdot 2HO_2^- \to O_2 + H_2O_2 \tag{6}$$

$$g-C_3N_4(e_{VB}^-) + H_2O_2 \rightarrow g-C_3N_4 + OH^- + OH$$
(7)

Structure of g-C₃N₄

g-C₃N₄ is a class of π -conjugative polymeric n-type semiconductor and consists primarily of carbon and nitrogen (Fig. 2) [18, 29]. Polymeric g-C₃N₄ was first synthesized by Berzelius and named by Liebig in 1834 [30]. Then, its structure was described by Franklin in 1922 [31]. Importantly, among all allotropes of carbon nitrides at ambient atmosphere, $g-C_3N_4$ is not only the most stable, but it also has distinctive surface properties (basic surface functionalities, electron-rich properties and H-bonding motifs) that are essential for many photocatalytic applications [32, 33]. Also, the C-N layers in the $g-C_3N_4$ have a laminar structure with weak van der Waals interactions, which is similar to the structure of graphite [34]. Mainly, it contains of a long pair of nitrogen-based triazine/tri-s-triazine tectonic units and can be easily prepared from low-cost nitrogenrich feedstocks such as melamine, melamine hydrochloride, urea, thiourea, and dicyandiamide [16, 20, 35–43].

Solvothermal [44], molecular self-assembly [45], microwave irradiation [46], and thermal polycondensation methods [47] are common synthesis approaches to prepare g-C₃N₄-based photocatalysts. Chemical synthesis of g-C₃N₄ has the benefits of formation of uniform and fine particle, limited energy utilization, while the process is economically feasible. Powder form of g-C₃N₄ was synthesized by heating the dicyandiamide with barbituric acid $(C_4H_4N_2O_3)$ BA) mixture at 550 °C in air [30]. Benzene thermal reaction between 1,3,5-trichloromelamine (C₃N₃Cl₃) and sodium amide (NaNH₂) at 180-220 °C for 8-12 h was adapted for preparation of well crystalline $g-C_3N_4$ nanocrysatllites [48]. Tubular luminescent polymeric networks of g-C₃N₄ has been synthesized using solvothermal route, involving the reaction of 1,3,5-trichlorotriazine (C₃N₃Cl₃) with ammonium chloride (NH₄Cl) in the presence of iron powder at 300 °C [49]. However, it requires several hours for formation of particle and crystallization. Microwave synthesis route has also been explored for synthesizing submicrosphere g-C₃N₄ using cyanuric chloride and sodium azide powder as a precursor for a 30-min time period [50]. Recently, microwave-assisted solvothermal process has been employed for the development of visible light-active tri-s-triazine (C_6N_7) unit-based g- C_3N_4 photocatalysts as shown in Fig. 3 [51]. Nitrogen-rich carbon nitride films were

Figure 2 a Triazine and b tri-s-triazine (heptazine) structures of g-C₃N₄ [157].

prepared by thermal vapor transport under Ar flow onto the Si and SiO₂ substrates at 250–350 °C [52]. Kang et al. [53] fabricated g-C₃N₄ nanosheets from bulk g-C₃N₄ using facile bacterial liquid exfoliation method (bioetching method) (Fig. 4). The optical and textural properties of g-C₃N₄ may be affected by different preparation conditions and types of precursors used [54, 55]. For instance, urea-derived g-C₃N₄ shows a slightly larger energy band gap as compared with g-C₃N₄ obtained from thiourea [56]. A summary of physicochemical properties and multifunctional application of g-C₃N₄-based composite is presented in Fig. 5.

Modification strategy of g-C₃N₄

Surface modification and band gap configuration of the pristine $g-C_3N_4$ can lead to improvement in its photocatalytic performance. Exfoliation of pristine $g-C_3N_4$ into $g-C_3N_4$ nanosheets showed larger surface area and effective charge transfer. Structure defect engineering is valuable route for improving the photocatalytic activity of $g-C_3N_4$. Modification of surface property is favorable for strengthening the adsorption of reactants on its surface and controlling recombination rate of charge carriers, and thus accelerating the surface catalytic reactions. Optimization of crystal structure can efficiently change the electronic property and oxidation and reduction ability of photogenerated charge carriers. Designing

Figure 3 A Formation mechanism of graphitic carbon nitride obtained from (a) thermal condensation (TC) of melamine and (b) traditional and microwave (MW)-assisted solvothermal

methods (ST) using cyanuric chloride and sodium azide as precursors and **B** SEM images of (a) ST, (b) TC, and (c) MW samples; (d) magnification of MW sample [51].

Figure 4 A Proposed bacterial-inspired synthesis process and mechanism of bacteria-treated (BT) $g-C_3N_4$ samples and (b) TEM images of (a) $g-C_3N_4$, (b) bacteria untreated $g-C_3N_4$ (c) BT- $g-C_3N_4-4$ h, (d, f) BT- $g-C_3N_4$ -2d and (e) BT- $g-C_3N_4$ -5d samples [53].

of nanostructures (g- C_3N_4 nanotube, g- C_3N_4 nanorods, and mesoporous g- C_3N_4) is an efficient approach for improving the photocatalytic efficiency. g- C_3N_4 nanostructured materials provides large pores, high surface area, improved reactant/product diffusion, and showed multiple light scattering effect. Hybrid structure construction is considered as the most viable method to improve the separation efficiency of

charge carriers, which greatly enhances the photocatalytic performance. With respect to the charge separation mechanism of $g-C_3N_4$ -based hybrid structure, it can be categorized into the following types as follows (Fig. 6).

- Type I heterojunction
- Type II heterojunction
- *p*–*n* heterojunction
- Schottky junction
- Z-scheme heterojunction

Type I heterojuction, semiconductor I (SC1) has higher VB and higher CB position. During photocatalysis, holes in the VB of SCI get shifted to the VB of semiconductor II (SCII). Meanwhile, photogenerated electrons in SC I migrate toward SCII; thereby, charge carriers are separated. For instance, type I heterojuction morphologies such as SnS_2 (nanoparticles, nanosheets and 3D flower-like) hybridized g-C₃N₄ composites exhibit better photocatalytic activity toward H₂ generation and also show excellent stability [57]. Notably, charge carriers are accumulated on SnS_2 surface, yielding no improvement in charge separation. Type II heterojuction consists of g-C₃N₄ and another low or large band gap semiconductor. After the excitation process, photogenerated electrons move from high CB position to low CB position and holes get transferred from the highest VB potential to the lowest VB potential. Finally, the internal field facilitates separation and movement of photogenerated charge carriers.

For example, Kong et al. [58] established that metal-free type II heterojunction of 0D black phosphorus quantum dots (BPQDs) with 2D g-C₃N₄ composites exhibited improved stability and vigorous photocatalytic efficiency. Type II heterojuction system is not adequate to conquer the high recombination rates in photogenerated systems. The *p*-*n* heterojuction photocatalyst obtained by blending *p*-type and *n*-type semiconductors materials can provide an additional electric filed to accelerate charge transfer for improving photocatalytic activity. Before light irradiation, holes in the *p*-type semiconductor material are transferred to the *n*-type semiconductor,

Figure 6 Different types of $g-C_3N_4$ -based heterojunctions: **a** Type I heterojunction, **b** Type II heterojunction, **c** p-n junction, **d** Schottky junction, **e** Z-scheme heterojunction (without an

electron mediator) and **f** indirect Z-scheme (with an electronmediator). *Note A*, *D* and $E_{\rm F}$ represent electron acceptor, electron donor and fermi level respectively) [14].

leaving photogenerated electrons. The transfer of electron-hole pairs will refrain when the fermi level system attains equilibrium.

 $g-C_3N_4$ is an *n*-type semiconductor material because it has NH/NH₂ groups in its structure. Therefore, designing of p-n heterojunction can normally boost the photocatalytic efficiency of g-C₃N₄. Ag₂O is a attractive *p*-type semiconductor material, which has narrow band gap (1.2 eV) with efficient absorbance of UV–Vis–NIR light. A *p–n* heteriojunction of Ag₂O/g-C₃N₄ prepared by simple chemical precipitation method and can posses enhanced photocatalytic activity toward organic pollutants degradation. Enhanced photocatalytic efficiency is attributed to strong high separation efficiency of photogenerated electron-hole pairs, UV-Vis-NIR light absorption, and surface plasmon effect of metal Ag [59].

Schottky effect is evident at metal-semiconductor interface due to difference in fermi levels, and this generates the built-in electric field and drives the charge flow until the system reaches a state of equilibrium. Therefore, fermi energy levels can be aligned and the recombination of charge carriers is controlled to enhance photocatalytic performance. Furthermore, selection of a suitable metallic co-catalyst with superior charge mobility, low overpotential, and large metal-semiconductor interface to enhance the Schottky effect may be advantageous in boosting the photocatalytic behavior of H₂ generation. Remarkable improvement in photocatalytic H₂ evolution activity over 2D-2D CoP/g-C₃N₄ composites can be attributed to effective carrier separation introduced by Schottky effect, low overpotential and good electron mobility of CoP, and shortened transportation distance of charge transfer in the 2D/2D composite photocatalysts [60]. In another study, Schottky catalyst of metallic MoN-coupled n-type g-C₃N₄ displayed boosted efficiency for H₂ generation and rhodamine blue (Rh B) degradation over bare g-C₃N₄ due to improved charge separation and transportation [61].

In a Z-scheme-based heterojunction system, electrons on the lower value CB of SC II directly combine with VB of SC I. Several studies have explored scheme systems with and without electron mediators. Commonly, nanoscale metals such as Ag and Au as electron mediators have been used for constructing Z-scheme systems, owing to good electrical conductivity. Z-scheme heterojunction of binary LaMnO₃/g C_3N_4 hybrid nanocomposite not only separates the charge carrier but also endows the LaMnO₃/g-C₃N₄ photocatalyst with strong redox ability, thus boosting the degradation efficiency of tetracycline compound. In another case, the formation of Z-scheme g-C₃N₄/Ag/Ag₃PO₄ (rhombic dodecahedrons morphology) heterojunction via simple in situ deposition method possesses advanced efficiency of charge separation and transfer, as well as stronger redox ability [62].

Theoretical advances on the g-C₃N₄-based nanocomposites

Generally, there exists seven different phases of C₃N₄ with different band gap energies (Table 1). The nitride pores' size and various electronic environments of the N atom connect to various energetic stabilities. On the basis of density functional theory (DFT), Kroke et al. [63] demonstrated that tri-s-triazine-based structure is energetically favored and is the most stable structure among all allotropes of $g-C_3N_4$. It is flexible for inducing reactions to alter its surface activity without altering its theoretical structure and composition. It exhibits advantages of strong physicochemical stability and distinctive electronic band structure, owing to high degree of condensation and the presence of heptazine ring structure. Due to the presence of the tri-s-triazine ring structure, g-C₃N₄ is stable up to 600 °C, in N₂, O₂, and air atmospheres [34, 64]. It possesses nitrogenrich, Lewis and Bronsted basic sites, and shows good potential in CO₂ fixation and activation. High thermal stability implies that g-C₃N₄ can suit for both under oxidative and higher temperatures atmospheres.

Table 1 Different phases of g-C₃N₄ [159, 160]

g-C ₃ N ₄	Band gap (eV)
Alpha	5.5
Beta	4.85
Cubic	4.3
Pseudocubic	4.13
g-h-triazine	2.97
g-o-triazine	0.93
g-h-heptazine	2.87

Note g-h-triazine-hexagonal unit cell of $g-C_3N_4$, g-o- triazineorthorhombic unit cell and g-h-heptazine-three fused s-triazine rings connected by nitrogen atoms. Besides, $g-C_3N_4$ offers good chemical stability in a varied range of solvents such as toluene, diethyl ether, dimethylformamide, water, and alcohols, making it an effective catalyst for both gas and liquid phase reactions [29, 65, 66].

The morphological structure of g-C₃N₄ plays a substantial role in photocatalysis. Fine control and unique oriented structure of g-C₃N₄ is useful for energy harvesting, conversion, and storage application [67]. Chen et al. [68] explained cleavage of inplane hydrogen bonds between polymeric melon units by the introduction of CO_3^{2-} which promote amorphization of g-C₃N₄ and increase visible light absorption ability [69]. Usually, CN has weak van der Waals (vdW) interlayer interactions. Li et al. [70] demonstrated that forming internal van der Waals heterostructures (IVDWHs) within g-C₃N₄ can augment interlayer Coulomb interaction and assist charge separation efficiency. Moreover, urea-derived g-C₃N₄ possess strong redox ability, effective absorption of contaminants, and efficient charge separation efficiency, due to its large band gap, large surface area, and moderated N-defects [71]. Besides, it has five substitutional sites and two interstitial sites are usually considered as doping sites (Fig. 7). Doping of g-C₃N₄ alters its geometric structure and electronic and optical properties. For instance, Cui et al. [72] demonstrated that introduction of O on the surface of g-C₃N₄ can extend the absorption of visible light absorption and promote delocalization of HOMO and LUMO. Fabrication of modified g-C₃N₄based heterojunction nanocomposites with enhanced physicochemical properties for better photocatalytic activity is an emerging concept for precise applications. The better photocatalytic mechanism for $g-C_3N_4/MoS_2$ hybrid nanocomposites by DFT calculations was reported by Wang et al. [73]. DFT calculations explain that these hybrid nanocomposites possess improved separation of photogenerated carriers.

Adsorption of reactants photocatalysts surface is significant in photocatalysis because it is directly related with several reactions. Adsorption energies of H_2O , CO_2 , H_2 , N_2 , CO, and CH_4 on g- C_3N_4 are reported to be -0.513, -0.226, -0.078, -0.117, -0.155 and -0.163 eV, respectively [74]. Interestingly, adsorption energies of products are more positive than those of reactants, implying strong adsorption of reactants onto g- C_3N_4 and easy desorption of products from g- C_3N_4 , which are

Figure 7 Eleven adsorption sites in tri-s-triazine-based $g-C_3N_4$ [158].

noticeably beneficial to start the reaction and reappear adsorption sites, respectively.

It is well established that there are two different half reactions involved in photocatalytic water splitting process: hydrogen generation via H⁺ reduction and O₂ generation via H₂O oxidation. As the standard redox potential for formation of both products $(O_2/H_2O = 1.23 \text{ V vs. NHE and } H_2/H^+ 0 \text{ V vs. NHE})$ lies within the CB and VB potential of g-C₃N₄, it is theoretically evident that g-C₃N₄ can catalyze overall water splitting reactions. Wirth et al. [75] studied water splitting reaction over g-C₃N₄ using DFT calculation. They reported that the overpotential for H_2O oxidation reaction is more than that of H^+ reduction process, thus implying that O₂ generation process demand oxidation co-catalyst, while H₂ production can be simply attained without a co-catalyst. Nevertheless, its usage for antimicrobial coating applications is not fully explored owing to challenges associated with limited absorption of visible region and higher recombination rate of photogenerated charge carriers [76, 77].

g-C₃N₄-based photocatalysts for disinfection applications

Different strategies have been adopted to resolve problems associated with pristine $g-C_3N_4$ (Table 1). These include: (1) texture and morphological modification of $g-C_3N_4$; (2) doping of $g-C_3N_4$ using of cations [noble metals: gold (Au), platinum (Pt), and silver (Ag) and transition metal: copper (Cu), nickel (Ni), iron (Fe) and strontium (Sn)] and anions [sulfur (S), carbon (C), fluorine (F), boron (B) and

phosphorous (P)]; and (3) incorporation of $g-C_3N_4$ with suitable semiconductor materials [e.g., TiO₂, CuO, AgX (X = Br, Cl and I), ZnO and GO]. These methods focus on reducing the energy band gap and extend visible light absorption, thus promoting photocatalytic disinfection. Table 2 lists notable recent works on $g-C_3N_4$ composites for disinfection of microbial species.

Texture and morphological modified g-C₃N₄-based composites

High surface area photocatalysts possess more surface reactive sites, improved charge transfer efficiency, and accelerated charge carrier separation efficiency; this enhances photocatalytic activity. For instance, Huang et al. [78] showed that E. coli K-12 can be efficiently destroyed with the existence of mesoporous g-C₃N₄, reaching 100% inactivation efficiency after 4-h visible light radiation. They also reported that the surface area of mesoporous g-C₃N₄ is 20 times greater than bulk g-C₃N₄ and photogenerated holes on g-C₃N₄ surface can facilitate bacterial inactivation [78]. Simultaneously, visible light active high surface area (190 m² g⁻¹) porous g-C₃N₄ nanosheets (PCNS) could completely kill E. coli within 4 h, while bulk g-C₃N₄ could kill 77.1% of E. coli cells [79]. Recently, Kang et al. [80] fabricated visible light active porous g-C₃N₄ NS by two different approaches: alternated heating and cooling, and bacterial-inspired liquid exfoliation method. Porous g-C₃N₄ NS gave better water disinfection behavior with respect to disinfection of E. coli as a result of its large surface area, low bandgap and, better electron transport ability [80]. Thurston et al. [27] evaluated the biocidal activity of urea and dicyandiamide and derived two different kinds of g-C₃N₄ films against both G^- (E. coli) and G^+ (S. aureus) bacteria [28]. Enhanced activity of u-g-C₃N₄ on pathogenic organisms was explained to occur due to the factors such as high surface area (72.2 m² g⁻¹), reduced band gap energy $(2.86 \pm 0.14 \text{ eV})$ and efficient separation of photogenerated electron-hole pairs. Notably, no antimicrobial activity was noticed for both g-C₃N₄ films under dark conditions.

Delamination of pristine $g-C_3N_4$ can improve photodisinfection activity. Bacteria-etched $g-C_3N_4$ photocatalysts demonstrated four times enhanced photocatalytic water disinfection activity as compared with pristine $g-C_3N_4$ and showed outstanding stability under visible light exposure [53]. Functionalization of carboxyl (–COOH) and carbonyl (C=O) groups at the edge of $g-C_3N_4$ can significantly promote *E. coli* inactivation efficiency of $\log_{10}(C/C_o) = 6$ (> 99.9999%) under visible light exposure over a period of 30 min with lower catalyst consumption. Also, edge-functionalized $g-C_3N_4$ nanosheets can effectively promote separation of charge carriers, stimulate upward surface band bending and assist production of H_2O_2 , thus improving disinfection efficiency [58].

Also, urea-derived g-C₃N₄ showed sporicidal activity against Bacillus anthracis (B. anthracis) endospores upon exposure to visible light. Nearly, 2×10^7 CFU mL⁻¹ of *E. coli* was destroyed totally using a visible active single-layered g-C₃N₄ in a period of 4 h. g-C₃N₄ nanosheet and g-C₃N₄ (g-C₃N₄ NS) reduced ~ 5 log and ~ 3 log of E. coli, respectively under similar experimental conditions [81]. Inactivation of MS2 phage using $g-C_3N_4$ was first studied by Li and et al. [82]. Almost all viral species (1×10^8) PFU mL^{-1}) could be completely killed in a period of around 6 h. Then, Zhang et al. [83] optimized the effect of different operating parameters such as light intensity, metal loading and, reaction temperature for inactivation of bacteriophage MS2 using response surface methodology (RSM) (Fig. 8). Up to 6.58 log PFU mL⁻¹ of viruses were inactivated under the optimized conditions of light intensity (199.8 mW cm^{-2}), metal loading (135.4 mg L^{-1}) and reaction temperature (24.05 °C), which is well matched with the experimental value (6.51 log PFU mL^{-1}) [83].

Anions (nonmetal) and cation (metal)-doped g-C₃N₄-based nanocomposites

Transition metal ions and noble metals are commonly employed as dopants to enhance photocatalytic disinfection efficiency. A transition metal can create an extra energy level within the semiconductor material, assisting the formation of electron-hole pairs and broadening spectral absorption toward the visible region. Electrons moving from one of these levels to CB require lesser photon energy than unmodified semiconductors. Numerous transition metal-doped g-C₃N₄ have been reported for photocatalytic applications. But, none of them report its potential for photocatalytic disinfection of microbes. Noble metals incorporated g-C₃N₄ photocatalysts can enhance the photocatalytic performance by creating charge

Table 2 Photocatalytic disinfection efficiency of $g-C_3N_4$ -based composites

Catalyst	Synthesis method	Target microorganism name/	Inactivation	Activity		ROS	References
		load (bacteria and algae) (CFU mL ⁻¹) and virus (PFU/ mL)	time (min)	In dark	In light		
Pristine and texture and morpl Mesoporous g-C ₃ N ₄	nological modification of $g-C_3N$ Template assisted	l ₄ E. coli K-12/2.5 × 10 ⁶	240	No	Yes (300 W Xe lamp with $2 - 400$ nm filter	$^+\eta$	[78]
Porous g-C ₃ N ₄ (PCNS)	Hydrothermal and thermal	E. coli/5 \times 10 ⁶	240	Limited	Yes (500 W Xe lamp with $1 = 420$ nm filter)	$\cdot O_2^-$ and h^+	[62]
g-C ₃ N ₄ nanosheets	(alternate heating and	<i>E. coli/2.5</i> × 10^7	120	-	Yes (300 W Xe lamp with $\lambda > 420$ nm filter)	$\cdot O_2^{-}$ and $\cdot OH$	[80]
Bacteria-treated g-C ₃ N ₄ (RT-CN)	cooming treatment) memor Bacterial-inspired liquid exfeliation method	E. coli/2 \times 10 ⁷	120	I	Yes (300 W Xe lamp with 420 nm filter)	$\cdot O_2^-$ and $\cdot OH$	[53]
Edge-functionalized g-C ₃ N ₄ nanosheets	Facile wet chemical method	E. coli Salmonella (1×10^6)	30	I	Yes (300 W Xe lamp with $\lambda > 400 \text{ nm filter}$)	H_2O_2	[58]
u-g-C ₃ N ₄ films	Calcination	S. aureus ATCC#6538 (methicillin sensitive) S. aureus (methicillin resistant) E. coli O157:H7 B. anthracis endospores (Sterne 34F2)/14–15 CFU/	7.8 6 35.4 35.4	No	Yes (270 W Xe lamp with $\lambda = 400 \text{ nm filter}$)	HO	[27]
Nanostructured g- C_3N_4 (ns-g- C_3N_4)	Exfoliation	cm E. coli O157:H7/ 11.4 CFU cm ⁻² and S. aureus/14 4 CFI1 cm ⁻²	54.6	No	Yes (270 W Xe lamp with $\lambda = 400 \text{ nm filter}$)	HO	[28]
Single-layer g-C ₃ N ₄	Thermal etching and ultrasonic exfoliation	E. $coli/2 \times 10^7$	240	No	Yes (500 W Xe lamp, with $\lambda > 400 \text{ nm filter}$)	$^+\eta$	[81]
Bulk g-C ₃ N ₄	Direct heating	Bacteriophage MS2/1 \times 10 ⁸	360	No	Yes (300 W Xe lamp, $\lambda > 400 \text{ nm filter}$)	$\cdot O_2^-$ and $\cdot OH$	[82]
Bulk g-C ₃ N ₄	Two-step heat treatment	Bacteriophage MS2/1 \times 10 ⁸	240	No	Yes (300 W Xe lamp, with 400 nm filter)	$\cdot O_2^-$ and $\cdot OH$	[83]
Influence of anions (metal) an $Ag/g-C_3N_4$	d cation (nonmetal) doping Sonication	E. coli, S. aureus/1 × 10 ⁶ S. aureus hio film	30 180	No	Yes (300 W halogen lamp)	Ι	[89]
Ag/g-C ₃ N ₄	Photoassisted reduction method	E. $coli/1 \times 10^9$	06	No	Yes (300 W Xe lamp with $\lambda < 420$ nm filter)	$\cdot \mathrm{O}_2^-$ and h^+	[06]

J Mater Sci (2019) 54:12206–12235

inue	
cont	
2	
е	
<u> </u>	
ĥ	

	•
the	
(2) Springer	

Table 2 continued							
Catalyst	Synthesis method	Target microorganism name/	Inactivation	Activity		ROS	References
		load (bacteria and algae) (CFU mL ⁻¹) and virus (PFU/ mL)	time (min)	In dark	In light		
g-C ₃ N ₄ /Ag	One-pot green synthesis method	E. coli, P. aeruginosa, S. aureus and B. subtilis	I	Yes	1	I	[92]
Ag/g-C ₃ N ₄	Hydrothermal and nhotoassisted reduction	S. aureus/1 \times 10 ⁷	180	No	Yes (500 W Xe lamp with 420 nm filter)	$\cdot O_2^-$ and h^+	[91]
Ag-g-C ₃ N4	Single-pot microemulsion breparation method	E. coli 1337-H/8.9 \times 10 ⁹	60	Low	Yes (UV light (385 nm) and visible light (515 nm)	HO	[93]
Au/g-C ₃ N ₄	Deposition-precipitation method	E. coli, S. aureus, B. subtilis and S. evidermidis/1 × 10 ⁶	30	Yes	0	HO	[94]
g-C ₃ N ₄ /red P hybrid nanosheets	Ultrasonic-assisted wet chemical method	E. $coli/1 \times 10^7$	120	No	Yes (300 W Xenon lamp)	$h^+, \cdot O_2^-$ and μO_2	[95]
Incorporation of g-C ₃ N ₄ with (a) Binary	other semiconductor materials					11202	
g-C ₃ N ₄ /TiO ₂	Hydrothermal calcination	E. coli K-12/(1 \times 10 ⁷)	180	No	Yes (300 W Xe lamp, $\lambda > 420$ nm filter)	$h^+, \cdot O_2^-$ and H $_2O_2$	[96]
g-C ₃ N ₄ /TiNT	Chemical vapor deposition	E. coli DH5 α /1 × 10 ⁵	180	No	Yes (300 W Xe lamp $\lambda < 420 \text{ nm filter})$	HO	[67]
g-C ₃ N ₄ QDs/TNA (titanium nanotube arrav)	Electrochemical anodization	E. coli	180	No	Yes (500 W Xe lamp)	$\cdot O_2^{-1}$	[86]
HT-CN/TiO ₂	Hydrothermal method	E. coli/1 \times 10 ³	30	Yes (low)	Yes (300 W Xeon lamp with 1.5 AM filter)	O_2^- and $\cdot OH$	[66]
Bi ₂ MoO ₆ /g-C ₃ N ₄ NSs	In situ solvothermal	E. coli DH5 α /2.5 × 10 ⁷	150	No	Yes (300 W Xenon lamp with $\lambda > 420$ nm filter)	$+\mu$	[100]
$g-C_3N_4/m-Bi_2O_4$	Hydrothermal method	E. coli K-12/1 \times 10 ⁶	90	I	Yes (300 W Xe lamp, cut of filter $\lambda < 400 \text{ nm}$	$h^+, \cdot O_2^-$ and H2O2	[101]
g-C ₃ N ₄ -AgBr	Adsorption-deposition method	E. coli ATCC15597 S. aureus ATCC6538/ 3 ~ 10 ⁶	60 150	No	Yes (300 W Xe lamp with 400 nm filter)	μ^+	[102]
$\mathrm{Ag_2WO_4/g\text{-}C_3N_4}$	Deposition-precipitation method	E. $coli/1 \times 10^7$	06	No	Yes (300 W Xe lamp with $\lambda < 420$ nm filter)	$h^+, \cdot O_2^-$ and $\cdot OH$	[103]
(AgVO ₃ , BiVO ₄) QDs/g- C ₃ N ₄	Ultrasonication method	Salmonella H9812/1 \times 10 ⁷	10.2	No	Yes (300 W Xe lamp with $\lambda > 400$ nm filter)	$\cdot 0_2^{-1}$	[104]

Catalyst Syr Ni, P/g-C ₃ N ₄ On							
Ni,P/g-C ₃ N ₄ On	nthesis method	Target microorganism name/	Inactivation	Activity		ROS	References
Ni ₂ P/g-C ₃ N ₄ On		load (bacteria and algae) (CFU mL ⁻¹) and virus (PFU/ mL)	time (min)	In dark	In light		
- - -	ie-pot hydrothermal nethod	E. coli K-12/1 \times 10 ⁷	240	Yes (low)	Yes (300 W Xe lamp $\lambda = 420$ nm filter	h^+ and H ₂ O ₂	[105]
g-C ₃ N ₄ /CdCO ₃ Mi	icrowave heating method	E. $coli/1 \times 10^5$	45	Yes (low)	Yes (200 W tungsten lamp)	·OH and·O. [–]	[106]
ZnO/g-C ₃ N ₄ The	termal condensation	E. coli ATCC 52922 and S. aureus ATCC 29231/1 × 10 ⁸	NA	Yes	I	-	[107]
Graphene oxide/g-C ₃ N ₄ Sor	nochemical method	E. coli/1 \times 10 ⁷	120	No	Yes (300 W Xe lamp with $\lambda < 420$ nm filter)	μ^+	[109]
CNRGOS8 RGOCNS8 NA	-	E. coli K-12/2 \times 10 ⁶	240	No	Yes (300 W Xe lamp with $\lambda < 400 \text{ nm flter}$)	·O ₂ ⁻ , ·OH and H,O,	[110]
$C60/C_3N_4$ and $C70/C_3N_4$ Hy	drothermal	<i>E. coli</i> 0157 :H7/0.5 mg L ⁻¹	240	No	Yes (300 W Xe lamp with $\lambda > 420 \text{ nm filter}$	$\cdot O_2^{-2}$ and $\cdot O_1$	[111]
g-C ₃ N ₄ /EP Fac	cile thermal method	E. coli and MS2 phage/1 × 10 ⁸	180 240	No	Yes (300 W Xe lamp with 400 nm filter)	$\cdot O_2^-$ and $\cdot OH$	[112]
(b) Tertiary)			·		
g-C ₃ N ₄ /Ag/TiO ₂ Tw	/o-nozzle electrospinning- alcination	<i>E. coli</i> ATCC 52922 and <i>S.</i> <i>aureus</i> ATCC $29231/1 \times 10^7$	480	Yes	Yes (natural light)	I	[113]
Ag-ZnO/g-C ₃ N ₄ Hy	/drothermal method	E. coli/1 \times 10 ⁶	120	Yes	Yes (mercury vapor lamp)	Ι	[114]
Ag-Fe ₃ O ₄ /g-C ₃ N ₄ Hy	/drothermal	E. $coli/1 \times 10^7$	120	Yes	1	I	[115]
Ag/AgO/g-C ₃ N ₄ The microsubara	lermal heating	E. coli ATCC 25933/1 \times 10 ⁵	30	Low	Yes (100 W tungsten lamp)	h^+ and H ₂ O ₂	[116]
Ag/g-C ₃ N ₄ /PES Pha	ase-inversion method	E. coli, P. aeruginosa	I	Yes	Ι	-	[117]
membranes		I					
g-C ₃ N ₄ -Bi ₂ MoO ₆ -Ag Hy	/drothermal method	E. coli and S. aureus	I	Yes	Yes	I	[26]
BiVO ₄ /Ag/g-C ₃ N ₄ Pho hi	otodeposition and lydrothermal reactions	E. $coli/3 \times 10^{\circ}$	60	No	Yes (compacted fluorescent lamps)	$\cdot 0_2^-$, $\cdot OH and$	[118]
B/Phenyl/g-C ₃ N ₄ The	lermal polycondensation	E. coli/5 \times 10 ⁵	180	No	Yes (300 W Xe lamp, with	O_2^{-} and	[119]
g-C ₃ N ₄ /BiOl/BiOBr De _l	position-precipitation	E. coli ATCC 15597/1 \times 10 ³	180	No	$\lambda > 420 \text{ nm filter})$ Yes (300 W Xe lamp with $\lambda < 400 \text{ nm filter})$	H_2O_2 $\cdot O_2^-, h^+$ and $\cdot OH$	[120]

🙆 Springer

Table 2 continued						
Catalyst	Synthesis method	Target microorganism name/	Inactivation	Activity		ROS
		load (bacteria and algae) (CFU mL ⁻¹) and virus (PFU/ mL)	time (min)	In dark	In light	
$P_3C/CaO/g-C_3N_4$	I	E. coli, P. aeruginosa, and C. albicans (1×10^5)	I	Yes	I	I
g-C ₃ N ₄ /NSs/RGO/CA	Vacuum filtration	E. $coli/3.5 \times 10^{6}$	300	I	Yes (300 W Xe lamp $\lambda = 400 \text{ nm filter}$	I
g-C ₃ N ₄ /Bi ₂ MoO ₆ /PEVE	Sonochemical	NA	240	I	Yes (500 W Xe lamp $\lambda > 420$ nm filter)	h^+ and O_2^-
g-C ₃ N ₄ -SnO ₂ /TiO ₂ NTs/Ti plates	Tipping and annealing	$E.\ coli/1.5 \times 10^8$	60	No	Yes (Xe lamp $\lambda > 350 \text{ nm}$ (UV source) and $\lambda > 420 \text{ nm}$ (visible source) filter)	a
g-C ₃ N ₄ /TiO ₂ /kaolinite	Sol-gel method associated with chemical stripping and self-assembly	S. aureus/1 \times 10 ⁷	300	No	Yes (8 W fluorescent lamp)	$\cdot 0_2^-$
g-C ₃ N ₄ /Al ₂ O ₃ /EP	Facile impregnation and	Microcystis aeruginosa/	360	I	Yes (500 W Xe lamp	$\cdot O_2^-$ and

12218

References

[121]

[122]

[123]

[124]

[125]

[126]

Yes (500 W Xe lamp $\lambda = 400 \text{ nm filter}$)

calcination

Sol-gel

 $g\text{-}C_3N_4/TiO_2/Al_2O_3/EP$

 2.7×10^{6}

[128]

and .OH $\cdot 0_2^-, h^+$

[127]

 h^+ and НΟ

Yes (500 W Xe lamp with

I

360

Microcystis aeruginosa/

 2.7×106

Yes (500 W Xe lamp with

I

60

Microcystis aeruginosa/

One-step sol-carbonization

g-C₃N₄/NP-TiO₂/EGC

method

 2.7×106

400 nm filter)

400 nm filter)

ΗŌ

Figure 8 a The 3D response surface plots of the photocatalytic viral inactivation efficiency by $g-C_3N_4$ for interaction between a light intensity X1 and photocatalyst loading X2, **b** light intensity

X1 and reaction temperature X3 and **c** photocatalyst loading X2 and reaction temperature X3 [83].

carriers and extending its spectral absorption into visible region. In addition, surface plasmon resonance (SPR) effect of metal species can induce generation of charge carriers in $g-C_3N_4$ [84–86]. Also, noble metals can behave as an electron sink for tapping free electrons, promoting the separation of photogenerated charge carriers and enhancing the photocatalytic efficiency of $g-C_3N_4$ [87, 88]. i.e., Photogenerated electrons move from the CB of $g-C_3N_4$ to the metal nanoparticle deposited on $g-C_3N_4$ surface, while the photogenerated hole remains on $g-C_3N_4$. This leads to effective separation of photogenerated charge carriers and associated improvement of photocatalytic disinfection performance by the generation of ROS species.

Ag is a well-known bactericidal agent under dark condition. Sorption of Ag on negatively charged cell wall deactivates cellular enzymes, disturbs bacterial cell wall (membrane), and eventually causes cell lysis and cell death. Enhanced generation of ROS species on Ag/g-C₃N₄ nanohybrids surface exhibited higher efficiency to inactivate bacterial species and better ability to destruct biofilms into proteins, nucleic acids, and polysaccharides, when matched with $g-C_3N_4$ nanosheets, in the presence of visible light [89]. Further, the hybrid effect of $Ag/g-C_3N_4$ composite could extend visible light utilization efficiency, reduce recombination of charge carriers, promote fast separation and shifting of photogenerated charge carriers, and provide longer lifetime to charge carriers. A hybrid Ag/g-C₃N₄ composite was fabricated by photoreduction approach, exhibiting acceptable disinfection efficiency toward E. coli. It was confirmed through experiments with different chemical scavengers that e^- , h^+ , and $\cdot O_2^-$ species play a key role in demolition of bacterial cell wall [90]. Xu et al. [91] reported efficient antimicrobial activity against S. aureus by Ag-doped g-C₃N₄, synthesized by a two different approach (hydrothermal treatment and photoassisted reduction) (Fig. 9). In 3 h exposure, nearly, 29.6% and 99.4% and of bacterial cells were inactivated by $g-C_3N_4$ and $Ag/g-C_3N_4$ composites, respectively [91]. Besides, h^+ and $O_2^$ species were observed to be significant species for bacterial inactivation with Ag/g-C₃N₄ (Ag/PCNO) in the photocatalysis process. Also, high efficiency of

Figure 9 a Synthesis of Ag/ g-C₃N₄ composite and **b** generation and transfer of photogenerated charge carriers at the interface of Ag/g-C₃N₄ under visible light irradiation [91].

Ag/PCNO was explained to occur because of SPR effect of AgNPs and the synergistic influence from PCNO molecules.

As compared to pure AgNP, one-pot green synthesis of $g-C_3N_4/AgNPs$ nanocomposite using grape seed extract as the stabilizing agent displayed better bactericidal activity against E. coli, P. aeruginosa, S. *aureus*, and *B. subtilis* in the absence of light. This can be ascribed to many combinational factors. First, the existence of AgNPs on g-C₃N₄ surface leads to bacterial species inactivation. Second, the incorporated g-C₃N₄ and ligand molecules from grape extract interact with the surface of silver to make AgNPs highly stable. Also, g-C₃N₄/AgNPs nanocomposite is more compatible with G^- bacteria than G^+ types [92]. Munoz-Batista et al. [93] demonstrated that Agdoped g-C₃N₄(Ag-g-C₃N₄) nanocomposite significantly enhances antimicrobial performance against E. Coli under both UV as well as in the visible region. Nanocomposites exhibit improved bactericidal activity than AgNPs without g-C₃N₄ because of better distribution and stability characteristics of AgNPs on g-C₃N₄ surface.

Apart from Ag, integration of Au NPs with $g-C_3N_4$ (CNA) can deliver outstanding peroxidase activity toward the breakdown of H_2O_2 to $\cdot OH$ radicals and can efficiently kill both G^+ and G^- bacteria. Also, it shows good efficacy in breaking down existing DR biofilms and in suppressing the creation of fresh biofilms in vitro. Additionally, CNA has high toxicity on cancer cells [94]. Importantly, the amount of metal loading can significantly enhance bactericidal activity. For instance, Bing et al. [89] observed enhanced antimicrobial activity at an optimum mass ratio of 1:10 Ag/g-C₃N₄ nanohybrid with low concentration and with short illumination duration. Limited work on photocatalytic disinfection activity over nonmetal (N, S, C, etc.) doped g-C₃N₄ is available. In one study, anchoring of red phosphorous (r-P) nanoparticle on g-C₃N₄ nanosheets was observed to extend visible light absorption up to 700 nm, exhibiting higher photodisinfection activity is mainly ascribed to type I band alignment between g-C₃N₄ and r-P, which facilitates effective charge separation [95].

Heterostructure-based g-C₃N₄ nanocomposites

Hybridization of $g-C_3N_4$ with other semiconductor materials is an attractive approach for enhancing its photocatalytic performance. The key advantages include: broadening absorption into visible region, effective separation of charge carriers by shifting electrons from higher CB to lower CB, and holes from higher VB to lower VB, preventing photocorrosion of semiconductor materials. Micron-sized TiO₂ spheres were enfolded with g-C₃N₄ hybrid structure [(g-C₃N₄)/TiO₂] by hydrothermal calcination approach and (g-C₃N₄)/TiO₂ hybrid material could completely inactivate E. coli within 180 min under visible light decrease Further, increase or exposure. in hydrothermal temperature can alter photocatalytic inactivation efficiencies [96]. Xu et al. [97] described visible light activity of thin g-C₃N₄ loaded on aligned surfaces of TiO₂ nanotube arrays (TiNT) for the removal of *E. coli*. Bacterial survival ratio of $g-C_3N_4/$ TiNT and g-C₃N₄ composites was ~ 16% and $\sim 86\%$, respectively. Bactericidal results showed that 15 mg of melamine is the optimal precursor load for fabricating highest efficiency g-C₃N₄/TiNT layers. Also, bactericidal activity decreases under anaerobic conditions and no inactivation was observed in catalysts without exposure to light. Zhang and coworkers [98] demonstrated that $g-C_3N_4$ quantum dots (QDs)-immobilized TiO2 nanotube array (g- C_3N_4 QDs/TNA) membrane showed an impressive performance for improved antifouling capacity during filtering water containing E. coli under visible light exposure. A vertical heterojunction with Z-scheme feature was achieved by conjoining g-C₃N₄ and anatase TiO_2 with {001} facets by a hydrothermal process. The coupled band structure trigger enhanced photocatalytic antibacterial activity in contrast with physically prepared composites and pure $g-C_3N_4$ and TiO_2 [99].

Of late, visible light active Bi-based semiconductor materials have gained extensive attention in photocatalytics owing to their unique crystalline structures and absorption characteristics in visible light. Photocatalytic disinfection activities of Bi₂MoO₆/g-C₃N₄ NS_s (BM/CNNs) composites are higher under visible light exposure. Further, photocatalytic disinfection activity of BM/CNNs composite was higher at optimum loading BM content of 20% (by weight) [100]. Z-scheme-type monoclinic dibismuth tetraoxide (mg-C₃N₄/Bi₂O₄) heterojuction was fabricated through a facile hydrothermal approach by Xia et al. (2017). The optimal ratio (1:0.5) of m-g-C₃N₄/Bi₂O₄ of composite could inactivated 6 log_{10} CFU mL⁻¹ of E. coli K-12 for a period of 1.5 h of visible light exposure was more efficient than $g-C_3N_4$ (1.5 log) and $m-Bi_2O_4$ (4 log) [101]. Particularly, disinfection efficiency did not increase noticeably with increasing m-Bi₂O₄ content, whereas excessive m-Bi₂O₄ can act as the recombination center of photogenerated charge carrier thereby diminishing the separation efficiency of electron-hole pairs.

By modifying $g-C_3N_4$ with plasmonic photocatalysts, the photocatalytic disinfection activity can be

improved to a significant extent. For instance, AgBr (photosensitive material)-coupled g-C₃N₄ nanocomposite could inactivate 3×10^6 CFU mL⁻¹ of *E. coli* and S. aureus species in 60 min and 150 min, respectively. Generated h^+ and surface founded. OH on g-C₃N₄-AgBr surface are dominant ROS species that are responsible for bacterial inactivation. Moreover, bacterial disinfection efficiency is higher in alkaline environment owing to the generation of more surface found ·OH [102]. Photocatalytic disinfection activity of Ag₂WO₄/g-C₃N₄ composite against E. coli was investigated by Li et al. [103]. Synthesized photocatalyst [Ag₂WO₄ (5%)/g-C₃N₄ composite] exhibited higher bactericidal efficiency than pure g-C₃N₄ and Ag₂WO₄ under visible light. Superior disinfection efficiency with reaction rate of 0.39 min⁻¹ was ascribed to the dispersion of Ag₂WO₄ particles on g-C₃N₄ surface. Enhanced charge separation rates in Ag₂-WO₄(5%)/g-C₃N₄ composite is also an important factor as indicated in Fig. 10 [103]. Due to unique benefits of small size, tunable optical property, and outstanding electron transfer rates, vanadate QDs have proven capabilities as photocatalysts for solar light harvesting. Incorporation of vanadate QDs $(AgVO_3 \text{ and } BiVO_4) \text{ on } g-C_3N_4 \text{ surface can effectively}$ promote its charge separation efficiency and thus result in improved photocatalytic disinfection. $AgVO_3/g-C_3N_4$ composite (0.75 mg mL⁻¹) showed the superior bactericidal efficiency of 96.4% in 10 min due to the abundant generation of ROS in water [104]. In contrast, g-C₃N₄ sample could inactivate only 54.13% of Salmonella spp. after 10 min treatment. Moreover, O_2^- was the major ROS of themicrobial

Figure 10 Mechanism of photocatalytic disinfection treated with $Ag_2WO_4/g-C_3N_4$ composite under visible light irradiation [103].

inactivation process. Also, the photocatalytic disinfection efficiency on *Salmonella spp*. was observed to be more effective as matched to *S. aureus* under same conditions. Particularly, photocatalysts made up of earth-abundant elements are preferred for microbial inactivation. Figure 11 shows the destruction *Salmonella* bacterial cell in AgVO₃ QDs/g-C₃N₄ at different exposure time under visible light.

Z-scheme type 10%Ni₂P/g-C₃N₄ lamellar nanohybrids have been fabricated by hydrothermal synthesis using low-cost red phosphorous precursor and displayed 10 times faster inactivation under visible light exposure as compared with g-C₃N₄. Ni₂P could successfully trap photogenerated electrons and also facilitated h^+ accumulation, leading to improved disinfection efficiency in case of E. coli K-12 [105]. Correspondingly, microwave in situ hybridization of organic g-C₃N₄ with inorganic CdCO₃ hybrid composite fully hindered the growth of E. Coli bacteria within 45 min of visible light exposure at an optimum concentration of 60 μ g mL⁻¹. Nonetheless, higher catalyst loading restricted penetration of light into the suspension, thereby decreasing inactivation efficiency [106]. Sundaram et al. [107] synthesized $ZnO/g-C_3N_4$ composite using single-step thermal condensation approach and tested its photocatalytic antimicrobial effect against E. coli and S. aureus. They demonstrated that ZnO/g-C₃N₄ catalysts have good antimicrobial efficiency against S. aureus as compared to E. coli.

Recently, carbon-based composites have also been used as co-catalyst to facilitate transfer of electrons on $g-C_3N_4$. Also, 2D/2D nanocomposites facilitate better mobility of charge carrier across the heterojunction boundary, which in turn rise the charge carrier transfer and separation efficiency [108]. For example, coupling of 2D-structured g-C₃N₄ with 2D-structured graphene oxide (GO) can improve photogenerated charge separation. Nearly 97.9% E. coli was killed by GO/g-C₃N₄ composite with the concentration of 100 μ g mL⁻¹ after 120 min of visible light exposure [109]. Moreover, Wang et al. (2013) fabricated g-C₃N₄ (CN) sheets and reduced graphene oxide (RGO) wrapped on cyclo octasulfur (α -S₈) crystal (CNRGOS₈ and RGOCNS₈) in two different orders and proved its antibacterial activity under both aerobic and anaerobic conditions. CNRGOS₈ displayed superior photocatalytic disinfection activity than RGOCNS₈ under aerobic condition; RGOCNS₈ showed better photocatalytic performance under aerobic conditions as compared to CNRGOS₈ composites [110]. Fullerene (C60 and C70) wrapped g-C₃N₄ nanocomposites have been examined for bactericidal activity against E. coli O157:H7 bacteria under visible light exposure. $C70/C_3N_4$ composite demonstrated higher photocatalytic inactivation activity than C60/C₃N₄ composite ($\sim 86\%$) within 4 h exposure to visible light [111]. On the contrary, bare $g-C_3N_4$ inhibited only 68% bacterial cells after 4 h of visible light exposure. Correspondingly, g-C₃N₄/EP (porous

Figure 11 SEM images of *Salmonella* (10^7 CFU/mL) treated with AgVO₃/g-C₃N₄ (0.75 mg/mL) under irradiation for **a** 0, **b** 5, **c** 10, **d** 20, **e** 30, **f** 30 min (magnified SEM image) [104].

expanded perlite) composites exhibited excellent antibacterial activity against *E. coli* (8-log reduction) and antiviral activity (MS2 phage) in the absence of mechanical stirring under visible light exposure of 180 and 240 min, respectively (Fig. 12). Also, water quality parameters such as salinity (NaCl), hardness (Ca²⁺), dissolved oxygen (DO), and proton concentration can enhance the efficiency of g-C₃N₄/EP-520 for MS2 inactivation [112].

Loading of noble metals on g-C₃N₄ hybrid composites can considerably improve its photocatalytic disinfection activity. For instance, Adhikari et al. (2016) recently developed ternary Ag-decorated TiO₂ NFs on g-C₃N₄ sheet (Ag-TCN-5) using a two-nozzle electrospinning-calcination approach and showed high disinfection activity against both G^- (*E. coli*) and G^+ (*S.* aureus) bacteria. The focus was on the released Ag ions that show enhanced antibacterial effects [113]. Similarly, distribution of Ag on ZnO/g-C₃N₄ hybrid composites by one-pot hydrothermal method gave superior photocatalytic activity toward the degradation of MB and the antibacterial activity against E. coli was reported by Joo et al. [114]. Recently, Pant et al. [115] developed a novel, magnetically separable Ag- $Fe_3O_4/g-C_3N_4$ composite by hydrothermal treatment. This showed superior photocatalytic activity toward E. coli bacteria. Then, facile thermal heating method fabrication of novel Ag/AgO-modified g-C₃N₄ microspheres (Ag/AgO/g-CNMS) was used. The improved photocatalytic performance of Ag/AgO/g-CNMS is attributed to the collective effects of broadened light absorption and enhanced charge carrier separation efficiency. Further, 5 mg of 10% of Ag/

AgO/g-CNMS resulted in complete inactivation of *E. coli* within 0.5 h under visible light exposure [116]. Also, Zhang et al. [117] introduced $Ag/g-C_3N_4$ nanosheets on polyethersulfone (PES) membrane by phase-inversion method. They observed that addition of $Ag/g-C_3N_4$ nanosheets improved photocatalytic activity (degradation of methyl orange), antibacterial activity (P. aeruginosa and E. coli), and antifouling property. Likewise, g-C₃N₄-Bi₂MoO₆-Ag nanocomposite showed a higher antibacterial effect against both G^+ and G^- bacterial species as shown in Fig. 13 [26]. Recently, Z-scheme BiVO₄/Ag/g-C₃N₄ ternary composites have been studied for improved photodisinfection activity against E. coli as compared with BiVO₄/g-C₃N₄ composite. Moreover, ternary composite showed lowered disinfection efficiency in case of sewage samples in contrast with that in synthetic saline solution due to the presence of natural organic matter (NOM) [118].

Graphitic carbon nitride-functionalized boron and phenyl (B/phenyl/g-C₃N₄) exhibited huge absorption range from ultraviolet light to near-infrared light. Nearly 99% *E. coli* were inhibited by B/phenyl/ g-C₃N₄ composites under visible light exposure for a duration of 180 min [119]. More interestingly, the photocatalytic antibacterial performance of g-C₃N₄/ BiOI/BiOBr composite is obviously enhanced as compared to g-C₃N₄ BiOI and BiOBr photocatalysts. Almost *E. coli* cells are completely killed under exposure of visible light for more than 3 h, whereas g-C₃N₄, BiOI, and BiOBr photocatalysts inactivated 83.7%, 34.2%, and 29.4% of *E. coli* cells within 5 h of treatment [120].

Younis et al. [121] examined the removal of different dyes [methyl orange (MO), methylene blue (MB), and crystal violet (CV)] and antimicrobial activity of different pathogens (E. coli, C. albicans and P. aeruginosa) using CaO incorporated g-C₃N₄-based nanocomposites with 4,5-diphenyl-2-thioxo-2,5-dihydro-1H-pyrrole-3-cabonitrile (P₃C@CaO-HCN) composite. They demonstrated that copolymer exhibited affinity toward more MB adsorption (1915.8 μ mol g⁻¹), and antibacterial activity toward E. coli (93.5%), C.albicans (85.8%) and P. aeruginosa (61.54%) species. Superior antimicrobial effect was ascribed to the presence pyrrole-3-cabonitrile functionalized with cyanide $(C \equiv N)$ and protonated $g-C_3N_4$ (HCN) sheet [121].

In addition, integration of a membrane with the photocatalyst can efficiently mitigate membrane fouling as a result of efficient inactivation of microbial pollutants by photocatalysis. Assembling of $g-C_3N_4NS/rGO$ photocatalyst on inexpensive cellulose acetate membrane via vacuum filtration method (namely $g-C_3N_4NS/rGO/CA$) could inactivate all bacteria (6.5 log reduction) under visible light in 2 h [122]. Also, incorporation of $g-C_3N_4/Bi_2MoO_6$ into fluorocarbon resin (PEVE) can enhance photocatalytic sterilization performance of PEVE. The sterilization performance of $g-C_3N_4$ in Bi_2MoO_6 was about 7%, under visible light irradiation for 4 h. Besides, $g-C_3N_4$ enhanced charge transfer efficiency

of Bi₂MoO₆ in the presence of visible light, and participated to the generation of more strong oxidizing species $(O_2^- \text{ and } h^+)$ [123]. Correspondingly, alteration of TiO₂ nanotubes/Ti plates with g-C₃N₄-SnO₂composites lead to improved photocatalytic activity in two different systems (chemical and microbial). Better photocatalytic and bactericidal activity of g-C₃N₄-SnO₂/TiO₂ nanotubes/Ti plate was ascribed to the efficient separation of electronhole between g-C₃N₄-SnO₂ and TiO₂ nanotubes/Ti in the ternary composite. Further, these researchers studied the generation of CO2 during bacterial species mineralization under visible light exposure (Fig. 14). Initially, the evolved CO_2 levels was unchanged and then gradually elevated with time, showing the restraint of bacteria breathing, followed by bacterial death [124].

The sandwich structure of $g-C_3N_4/TiO_2/kaolinite$ composite showed higher bactericidal efficiency against *S. aureus* in comparison with $g-C_3N_4$, TiO₂, and kaolinite [125]. Song et al. [126, 127] fabricated two different nanocomposites: $g-C_3N_4$ immobilized with Al₂O₃/EP ($g-C_3N_4/Al_2O_3/EP$) and both $g-C_3N_4$ and TiO₂ immobilized Al₂O₃/EP ($g-C_3N_4/TiO_2/Al_2O_3/EP$). Removal efficiency of *Microcystis aeruginosa* algal species (2.7×10^6 CFU mL⁻¹) were 74.4% and 88.1% for $g-C_3N_4/Al_2O_3/EP$ and $g-C_3N_4/TiO_2/Al_2O_3/EP$, respectively after 6 h reaction [126, 127]. $g-C_3N_4$ and nitrogen–phosphorus co-doped TiO₂ (named as AP-EGC-CT composite) hybridized with

Figure 14 SEM images of **a** bare TiO_2 nanotubes/Ti plate, **b** g-C₃N₄-SnO₂/TiO₂ nanotubes/Ti plate and **c** antibacterial activity of fabricated plates for *E. coli* degradation under visible light

functional expanded graphite covered carbon layer composites (AP-EGC) could remove 98.2% algal cells (*M. aeruginosa*) following 2 h treatment [128]. Algal cell inactivation was significantly facilitated by the photocatalytic oxidation process as shown in Fig. 15.

Other applications

CO₂ photoreduction

The energy band structure of $g-C_3N_4$ is suitable for CO_2 photoreduction to sufficient number of valueadded chemical fuels (CO, CH₄, CH₃OH, HCOOH and C₂H₅OH.

irradiation and $d \text{ CO}_2$ evolution caused by mineralization of *E. coli* cells under visible light illumination and in the dark for 32 h [124].

$$CO_2 + 2h^+ + 2e^- \rightarrow CO + H_2O \quad (-0.52 \text{ Vs NHE})$$
(8)

$$CO_2 + 2h^+ + 2e^- \rightarrow HCOOH \quad (-0.58 \text{ Vs NHE}) \quad (9)$$

$$\frac{\text{CO}_2 + 4h^+ + 4e^- \rightarrow \text{HCHO} + \text{H}_2\text{O}}{(-0.48 \text{ Vs NHE})}$$
(10)

$$\frac{\text{CO}_2 + 6h^+ + 6e^- \to \text{CH}_3\text{OH} + \text{H}_2\text{O}}{(-0.38 \text{ Vs NHE})}$$
(11)

$$CO_2 + 8h^+ + 8e^- \rightarrow CH_4 + H_2O$$
 (-0.24 Vs NHE)
(12)

$$\frac{2\text{CO}_2 + 12h^+ + 12e^- \rightarrow \text{C}_2\text{H}_5\text{OH} + 3\text{H}_2\text{O}}{(-0.39 \text{ Vs NHE})}$$
(13)

Difference in microstructure and crystallinity of $g-C_3N_4$ leads to different kinds of products. For instance, urea-derived $g-C_3N_4$ produces CH₃OH and

Figure 15 A (a) Changes in conductivity during photocatalytic process; Microscopic images after (b) 15 min and (c) 3 h reaction and (d) SEM image after 9 h reaction; B Schematic diagram of the algal inactivation process [128].

C₂H₅OH from CO₂; using melamine-derived g-C₃N₄ only leads to the selective formation of C₂H₅OH (Mao et al. [43]). So far, g-C₃N₄ with various nanostructures such as mesoporous structures, nanosheets, nanowires, and nanocomposites have been synthesized for enhanced CO₂ photoreduction (Niu et al. [129]). Besides, it is explained that the amino groups of g-C₃N₄ play a crucial role for the adsorption and activation of CO₂ on its surface [130, 131]. Modification of electronic band structure and textural property of g-C₃N₄ can improve its photocatalytic activity. Doping of metals (Cu, Pt, Mg and Mo) and nonmetal (S, P, r-P and O) on g-C₃N₄ composites have been studied for CO₂ photoreduction, as an approach to

provide a positive effect on reducing the charge carrier recombination and lower band gap energy, thus leading to superior photocatalytic activity toward the reduction of CO₂ [42, 132–136]. Moreover, different Ru complexes, trans(Cl)-[Ru(bpyX₂)(CO)₂Cl₂] $(bpyX_2 = 2,2'-bipyridine with substituents 'X' in the$ 4-positions, X = H, $CH_3PO_3H_2$ or $CH_2PO_3H_2$), achieved enhanced photocatalytic activities of CO₂ into HCOOH with high turnover number (> 1000) (Kuriki et al. [137]). Integration of zero-dimensional carbon dots on 2D g-C₃N₄ nanocomposites significantly influences the reduction of CO2 into valueadded chemicals (CH₄ and CO). Besides 3 wt% of CND loading showed highest evolutions of CH₄

(29.23 µmol·gcatalyst⁻¹) and CO (58.82 µmol·gcatalyst⁻¹) under visible light exposure after 10 h. The resultant apparent quantum efficiency (AQE) was 0.076% [138]. Increase in photoactivity using CND/ pCN-3 was explained to be because of synergistic interaction between pCN and CNDs, allowing effective migration of photoexcited electrons from pCN to CNDs via well-contacted heterojunction interfaces which retard charge recombination. Likewise, several type II and Z-scheme g-C₃N₄-based heterojunctions have been evaluated for CO2 photoreduction; examples include: TiO₂/g-C₃N₄, LaPO₄/g-C₃N₄, B₄C/g-C₃N₄, In₂O₃/g-C₃N₄, g-C₃N₄/NaNbO₃, g-C₃N₄/ZIF-8, CdIn₂S₄/mpg-C₃N₄, g-C₃N₄/NiAl-LDH, Ag₃PO₄/ $g-C_3N_4$, $SnO_2x/g-C_3N_4$, $ZnO/g-C_3N_4$, gC_3N_4/Bi_2 -WO₆, g-C₃N₄/Bi₄O, g-C₃N₄/Bi₄O₅I₂, carbon dots/g- C_3N_4 and $WO_3/g-C_3N_4$ [138–140].

Hydrogen generation

Semiconductor photocatalyst gC_3N_4 has the proper band edge potential for water splitting applications (Eqs. 14, 15)

 $H_2O + 2h^+ \rightarrow 2H^+ + 0.5O_2$ (1.23 V vs NHE) (14)

$$2H^+ + 2e^- \rightarrow H_2 + 0.5O_2 \quad (-0.82 \text{ V vs NHE})$$
 (15)

Also, g-C₃N₄ can be further modified in different routes for improving its H₂ generation ability. So far, g-C₃N₄ nanosheets, mesoporous g-C₃N₄ nanomesh, g-C₃N₄ nanorods, and g-C₃N₄ quantum dots have shown enhanced H₂ production activity than that of bulk g-C₃N₄. Coupling of g-C₃N₄ with metal/nonmetal nanoparticles and other semiconductor materials could extend their spectral range. Generally, F, C, S, I, and P-doped g-C₃N₄ are used for H₂ generation, showing enhanced production of H₂. Rh, Pt, Ag, Au, Zn, and Sn-doped g-C₃N₄ nanocomposites promote H_2 productivity. For instance, FeP/g-C₃N₄ nanocomposites prepared by Zeng et al. (2018) exhibited outstanding H₂ production activity under visible light exposure. When the loading content of FeP was 2.19%, the catalyst exhibited the maximum production yield of H₂ (177.9 μ mol g⁻¹ h⁻¹) with an apparent quantum yield (AQY) value of 1.57% at 420 nm. Excellent hydrogen evolution was attributed to active sites formation and heterojunctions [141]. In another research on photocatalytic generation of H₂, the composite structure comprising of $1D/2D Co_2P/$ g-C₃N₄ heterostructure by solution phase approach showed improved photocatalytic hydrogen generation without the support of noble metals as cocatalysts. Maximum H₂ production (53.3 μ mol h⁻¹ g⁻¹) was achieved at an optimum Co₂P nanorods loading of 3 wt% [142]. In addition, porous $g-C_3N_4$ nanosheets modified with flower-like and network-like MoSe₂ nanostructures generate H₂ amount of 114.5 μ mol h⁻¹ g⁻¹ and 136.8 μ mol h⁻¹ g⁻¹, respectively. The optimal loading of MoSe₂ nanostructures is 5 wt%, giving maximum H₂ evolution rates of 114.5 μ mol h⁻¹ g⁻¹ and 136.8 μ mol h⁻¹ g⁻¹, respectively. In addition, more amount of H₂ generation was achieved over network-like MoSe₂ nanostructures decorated than flower-like MoSe₂, ascribed to the effective charge migration and separation based on synergistic effects arising from the unique sheeton-sheet heterointerface in N-CN [143]. Similarly, TiO₂/g-C₃N₄, InO₃/g-C₃N₄, MoS₂/g-C₃N₄, CeO₂/g-C₃N₄, NiO/g-C₃N₄, CdS/g-C₃N₄, Al₂O₃/g-C₃N₄, and $Cu(OH)_2/g-C_3N_4$ heterojunctions have been widely studied as photocatalyst for H₂ generation reaction [144–149].

NO and N₂ fixation

Photocatalytic technology is a promising route in air purification technology, particularly because it does not associate with increased secondary pollution. Self-structure-modified graphene-like $g-C_3N_4$ nanosheets enlarge the band gap, inducing strong oxidation of NO to NO_2^- or NO_3 under visible light exposure [19].

$$e^- + \mathcal{O}_2 \to \mathcal{O}_2^- \tag{16}$$

$$\cdot O_2^- + NO \to NO_3^- \tag{17}$$

$$h^+ + OH^- \rightarrow OH$$
 (18)

$$NO + 2 \cdot OH \rightarrow NO_2 + H_2O$$
 (19)

$$NO_2 + OH \to NO_3^- + H^+$$
(20)

Co-functionalization O/La, O/Ba, and SrO on the surface of amorphous carbon nitride promotes the formation of localized electrons, thus boosting photocatalytic NO removal efficiency [68, 69, 150]. Cui et al. [69] proposed the conversion pathwayfor NO adsorption and photocatalytic NO oxidation processes on SrO-clusters@amorphous carbon nitride composites [68, 69, 150]. Nearly 100% improved NO purification efficiency was achieved over O, K-functionalized g- C_3N_4 with IVDWHs [70]. Li et al. [151]

demonstrated that photocatalytic efficiency and selectivity of Ca intercalated g-C₃N₄ for NO removal can be considerably enhanced because of the functionality of the localized excess electrons around Ca. In another case, incorporation of Sr caused uneven electron distribution on the surface of g-C₃N₄, accelerating light absorption ability, separation, and transfer of photogenerated charge carriers. As a result, NO_r is efficiently oxidized by active species and transformed into target products of NO₂⁻ and NO_3^- rather than other toxic by-products [152]. Coexisting of K and Cl ions in the interlayer of g-C₃N₄ not only suppresses charge transfer barrier but also acts as the dual channel for electrons and holes transfer to extend their lifetime, thereby improving NO_x removal efficiency under visible light exposure as compared with pristine g-C₃N₄ and K-g-C₃N₄. Moreover, CN-KCl (3%) showed best photocatalytic activity with NO_x removal ratio of 38.4%, even more than K doped $g-C_3N_4$ (31.4%) [71]. Moreover, Chen et al. [153] prepared MnOx/g-C₃N₄ catalyst that were relatively stable and had synergistic photothermal catalytic activity toward NO purification under UV-visible light irradiation. These researchers also proposed the corresponding conversion pathway and mechanism of NO oxidation at 60 °C [153].

NVs (nitrogen vacancy) endow $g-C_3N_4$ with photocatalytic N_2 fixation ability for three reasons. NVs exhibits the same size and shape of as the nitrogen atom, as a result it selectively adsorb and activate N_2 . Second, NVs effectively progress the charge separation efficiency of photogenerated carriers and generate more photoelectrons. Third, NVs promote photogenerated electron transfer from $g-C_3N_4$ to adsorbed N_2 . All three reasons make photocatalytic N_2 fixation on the surface of V-g-C_3N_4 easier. Chen et al. [154] systematically investigated single transition metal atoms decorated on the $g-C_3N_4$ with nitrogen vacancies (TM@NVs-g-C_3N_4), performing as electrocatalysts for conversion of N_2 into NH₃.

Organic pollutant degradation

Due to the band position, $g-C_3N_4$ is among the best known photocatalysts for the remediation of pollutants present in aqueous solutions. Generally, O_2^- , $\cdot OH$, and h^+ play a substantial role in degrading

different organic pollutants into CO_2 , H_2O , and fractions of organic acids as explained in Eqs. (21, 22).

Organic pollutants +
$$g$$
- $C_3N_4 - h^+$
 $\rightarrow g$ - $C_3N_4 + CO_2 + H_2O + intermediates$ (21)

$$\begin{array}{l} \text{Organic pollutants} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \\ + \text{intermediates} \end{array} \tag{22}$$

Initially, the organic pollutant is transferred into the interphase of $g-C_3N_4$ and aqueous solution. Then, the adsorbed particles get oxidized or decomposed by ROS species. After that, degradation products (intermediates) are desorbed from g-C₃N₄ surface to its interface. Lastly, reaction products get released to the bulk solution. The structure and preparation methodologies of g-C₃N₄ influence the degradation efficiency of organic pollutants. As compared with the bulk g-C₃N₄, exfoliated g-C₃N₄ nanosheets display improved methylene blue degradation efficiency. Several studies have been available for surface modification of g-C₃N₄ by depositing metal nanoparticles (e.g., Ag, Au, Pt, Pd, and Ni) on its surface to degrade organic contaminants from wastewater under visible light irradiation. Correspondingly, hybrid nanostructures built by depositing $g-C_3N_4$ with other semiconductor materials (TiO₂, ZnO, AgX (X = Br, Cl, and I), Ag₂O, Ag₂CO₃, Ag₃-VO₄, Fe₃O₄, and Bi₂MoO₆, CaIn₂S₄, C-dots, V₂O₅, CdS, BiOBr, etc.) also revealed better visible light photodegradation for pollutants than pure $g-C_3N_4$.

Sensing and bioimaging application

g-C₃N₄ nanosheet offers more surface area-to-volume ratio and have strong response for detection of various metal ions like Cu^{2+} , Fe^{3+} , Hg^{2+} , and Cr^{2+} [32]. Also, Fe/g-C₃N₄, g-C₃N₄ nanosheet/MnO₂ and proton functionalized ultrathin g-C₃N₄ nanosheets can detect glucose, glutathione (GSH), and heparin molecules, respectively [155]. Additionally, $g-C_3N_4$ can also be used for temperature sensing as reported by Debanjan et al. [21]. They found that the photoluminescence PL intensity is decreased as the temperature increased. Owing to its non-toxicity, metalfree nature, and high stability, g-C₃N₄ nanosheets and nanodots are promising candidates for cell imaging. For example, g-C₃N₄ QDs have been utilized as biomarkers for the labeling of the cell membranes [156].

Photocatalytic disinfection process offers good prospects for biomedical, water treatment, and food applications. In comparison with metal oxides, g-C₃N₄ can offer a safe and reliable disinfection technology. Visible light-driven g-C₃N₄-based materials are a promising and innovative approach for antimicrobial applications. It is clear from several findings that physical and chemical properties of g-C₃N₄-based composites can offer acceptable levels of microbial inactivation. The fundamental properties of g-C₃N₄ and their action against microbial species inactivation have been discussed. Inactivation of the wide range of microorganisms is attributed to the formation of ROS species on the surface of g-C₃N₄ during the photocatalysis process. Various kinds of g-C₃N₄ modification techniques (cationic and anionic doping, coupling with another semiconductor material, and surface sensitization) are effective approaches. Furthermore, the photocatalytic disinfection activity of protozoa is not yet well known. Currently, most of the g-C₃N₄-based photodisinfection application are developed and tested in under laboratory conditions. Issues on efficiency due to faster recombination of photogenerated electron-hole pairs need to be addressed. However, it is necessary to investigate the experimental and theoretical aspect of tri-striazine-based g-C₃N₄ for photocatalysis process so as to helps to predict reaction pathways as well as band structure changes of g-C₃N₄ after being hybridizing with certain materials. In addition to the charge separation mechanism, thermodynamics and kinetics study photocatalytic reaction thorough of investigation.

Acknowledgements

This work did not receive any specific grant from funding agencies in the public, commercial, or notfor-profit sectors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:1–8
- [2] Paul NC, Sullivan TS, Shah DH (2017) Differences in antimicrobial activity of chlorine against twelve most prevalent poultry-associated Salmonella serotypes. Food Microbiol 64:202–209
- [3] Feliziani E, Lichter A, Smilanick JL, Ippolito A (2016) Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol Technol 122:53–69
- [4] Memarzadeh F, Olmsted RN, Bartley JM (2010) Applications of ultraviolet germicidal irradiation disinfection in health care facilities: effective adjunct, but not stand-alone technology. Am J Infect Control 38:13–24
- [5] Guo M, Huang J, Hu H et al (2012) UV inactivation and characteristics after photoreactivation of *Escherichia coli* with plasmid: health safety concern about UV disinfection. Water Res 46:4031–4036
- [6] Visnapuu M, Rosenberg M, Truska E et al (2018) UVAinduced antimicrobial activity of ZnO/Ag nanocomposite covered surfaces. Colloids Surf B Biointerfaces 169:222–232
- [7] Wang Y, Wu Y, Yang H et al (2016) Doping TiO₂ with boron or/and cerium elements: effects on photocatalytic antimicrobial activity. Vacuum 131:58–64
- [8] Wu MJ, Bak T, Moffitt MC et al (2014) Photocatalysis of titanium dioxide for water disinfection: challenges and future perspectives. Int J Photochem 2014:1–9
- [9] Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MC (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28:47–56
- [10] Gondal MA, Khalil A (2008) Rapid disinfection of E-Coliform contaminated water using WO₃ semiconductor catalyst by laser-induced photo-catalytic process. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 43:488–494
- [11] Chen M, Zhang F, Oh W (2011) Fabrication and performances of MWCNT/TiO₂ composites derived from MWCNTs and titanium (IV) alkoxide precursors. Bull Mater Sci 34:835–841
- [12] Fernández-Ibáñez P, Polo-López MI, Malato S et al (2015) Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J 261:36–44
- [13] Wang B, Jiang Z, Yu JC (2019) Treated rape pollen: a metal-free visible-light-driven photocatalyst from nature for efficient water disinfection. J Mater Chem A 7:9335–9344
- [14] Ren Y, Zeng D, Ong W (2019) Interfacial engineering of graphitic carbon nitride (g-C₃N₄)-based metal sulfide

heterojunction photocatalysts for energy conversion: a review. Chin J Catal 40:289–319

- [15] Wu WS, Wu FG (2018) Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem Asian J 13:3378–3410
- [16] Wang X, Maeda K, Thomas A et al (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80
- [17] Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C Photochem Rev 20:33–50
- [18] Naseri A, Samadi M, Pourjavadi A et al (2017) Graphitic carbon nitride (g-C₃N₄)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J Mater Chem A 5:23406–23433
- [19] Li Y, Sun Y, Ho W et al (2018) Highly enhanced visiblelight photocatalytic NO_x purification and conversion pathway on self-structurally modified $g-C_3N_4$ nanosheets. Sci Bull 63:609–620
- [20] Yu K, Hu X, Yao K et al (2017) Preparation of an ultrathin 2D/2D rGO/g-C₃ N₄ nanocomposite with enhanced visiblelight-driven photocatalytic performance. RSC Adv 7:36793–36799
- [21] Das D, Shinde SL, Nanda KK (2015) Temperature-dependent photoluminescence of g-C₃N₄: implication for temperature sensing. ACS Appl Mater Interfaces 8:2181–2186
- [22] Zhang C, Li Y, Shuai D et al (2018) Graphitic carbon nitride (g-C N)-based photocatalysts for water disinfection and microbial control: a review. Chemosphere 214:462–479
- [23] Zimbone M, Buccheri MA, Cacciato G et al (2015) Photocatalytical and antibacterial activity of TiO₂ nanoparticles obtained by laser ablation in water. Appl Catal B Environ 165:487–494
- [24] Ehtisham Khan M, Hiep Han T, Mansoob Khan M et al (2018) Environmentally sustainable fabrication of Ag@g-C₃N₄ nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl Nano Mater 1(6):2912–2922
- [25] Tao Y, Ni Q, Wei M et al (2015) Metal-free activation of peroxymonosulfate by $g-C_3N_4$ under visible light irradiation for the degradation of organic dyes. RSC Adv 5:44128–44136
- [26] Shanmugam V, Lakshmi A, Jayavel S, Sundar K (2018) Construction of high efficient g-C₃N₄ nanosheets combined with Bi₂MoO₆–Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation of bacterias. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.05.009

- [27] Thurston JH, Hunter NM, Wayment LJ, Cornell KA (2017) Urea-derived graphitic carbon nitride (u-g-C₃N₄) films with highly enhanced antimicrobial and sporicidal activity. J Colloid Interface Sci 505:910–918
- [28] Thurston JH, Hunter NM, Cornell KA (2016) Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C₃N₄) films. RSC Adv 6:42240–42248
- [29] Fu J, Yu J, Jiang C, Cheng B (2018) g-C₃N₄-based heterostructured photocatalysts. Adv Energy Mater 8:1–31
- [30] Liebig J (1834) Uber einige Stickstoff—Verbindungen. Annalen der Pharmacie. Eur J Organ Chem 10:1–47
- [31] Zhou Z, Zhang Y, Shen Y et al (2018) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47:2298–2321
- [32] Wang A, Wang C, Fu L et al (2017) Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett 9:47
- [33] Zhu J, Xiao P, Li H, Carabineiro SC (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465
- [34] Thomas A, Fischer A, Goettmann F et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893
- [35] Praus P, Svoboda L, Ritz M et al (2017) Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater Chem Phys 193:438–446
- [36] Dong R, Tian B, Zeng C et al (2012) Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. J Phys Chem C 4:213–220
- [37] Zheng Y, Liu J, Liang JJ et al (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731
- [38] Fanchini G, Tagliaferro A, Conway NMJ, Godet C (2002) Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a – CN:H thin films. Phys Rev B 66:195415
- [39] Lyth SM, Nabae Y, Moriya S et al (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113:20148–20151
- [40] Dong G, Zhang L (2012) Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J Mater Chem 22:1160–1166
- [41] Zhou J, Chen W, Sun C et al (2017) Oxidative polyoxometalates modified graphitic carbon nitride for visible-

light CO₂ reduction. ACS Appl Mater Interfaces 9:11689–11695

- [42] Yu J, Wang K, Xiao W, Cheng B (2014) Photocatalytic reduction of CO_2 into hydrocarbon solar fuels over g- C_3N_4 -Pt nanocomposite photocatalysts. Phys Chem Chem Phys 16:11492
- [43] Mao J, Peng T, Zhang X et al (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO₂ reduction under visible light. Catal Sci Technol 3:1253
- Xia J, Di J, Yin S et al (2014) Solvothermal synthesis and enhanced visible-light photocatalytic decontamination of bisphenol A (BPA) by g-C₃N₄/BiOBr heterojunctions. Mater Sci Semicond Process 24:96–103
- [45] Wang Y, Zhao S, Zhang Y et al (2018) Facile synthesis of self-assembled g-C₃N₄ with abundant nitrogen defects for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 6:10200–10210
- [46] Hu C, Chu Y, Wang M, Wu X (2017) Rapid synthesis of g-C₃N₄ spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J Photochem Photobiol A Chem 348:8–17
- [47] Papailias I, Giannakopoulou T, Todorova N et al (2015) Effect of processing temperature on structure and photocatalytic properties of g-C₃N₄. Appl Surf Sci 358:278–286
- [48] Guo Q, Xie Y, Wang X et al (2003) Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem Phys Lett 380:84–87
- [49] Guo Q, Yang Q, Zhu L et al (2004) A facile one-pot solvothermal route to tubular forms of luminescent. Solid State Commun 132:369–374
- [50] Dai H, Gao X, Liu E et al (2013) Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diam Relat Mater 38:109–117
- [51] Hu C, Chu Y, Wang M, Wu X (2017) Rapid synthesis of g-C₃N₄ spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J Photochem Photobiol A Chem 348:8–17
- [52] Wang J, Miller DR, Gillan EG (2002) Photoluminescent carbon nitride films grown by vapor transport of carbon nitride powders. Chem Commun 19:2258–2259
- [53] Kang S, Huang W, Zhang L et al (2018) Moderate bacterial etching allows scalable and clean delamination of $g-C_3N_4$ with enriched unpaired electrons for highly improved photocatalytic water disinfection. ACS Appl Mater Interfaces 10:13796–13804
- [54] Zhou S, Liu Y, Li J et al (2014) Facile in situ synthesis of graphitic carbon nitride (g-C₃N₄)-N-TiO₂ heterojunction as

an efficient photocatalyst for the selective photoreduction of CO_2 to CO. Appl Catal B Environ 158–159:20–29

- [55] Ye L, Wu D, Chu KH et al (2016) Phosphorylation of g-C₃N₄ for enhanced photocatalytic CO₂ reduction. Chem Eng J 304:376–383
- [56] Dong F, Zhao Z, Xiong T et al (2013) In situ construction of $g-C_3N_4/g-C_3N_4$ metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5:11392–11401
- [57] Jing L, Xu Y, Chen Z, He M (2018) Different morphologies SnS₂ supported on 2D g-C₃N₄ for excellent and stable visible light photocatalytic hydrogen generation. ACS Sustain Chem Eng 6:5132–5141
- [58] Teng Z, Yang N, Lv H et al (2018) Edge-functionalized g-C₃N₄ nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5:1–17
- [59] Liang S, Zhang D, Pu X et al (2019) Separation and purification technology a novel Ag₂O/g-C₃N₄ p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity. Sep Purif Technol 210:786–797
- [60] Wang XJ, Tian X, Sun YJ, Zhu JY, Li FT, Mu HY, Zhao J (2018) Enhanced Schottky effect of a 2D–2D CoP/gC₃N₄ interface for boosting photocatalytic H₂ evolution. Nanoscale 10(26):12315–12321
- [61] Xia K, Chen Z, Yi J et al (2018) Highly efficient visiblelight-driven schottky catalyst MoN/2D g-C₃N₄ for hydrogen production and organic pollutants degradation. Ind Eng Chem Res 57:8863–8870
- [62] Shen Y, Zhu Z, Wang X et al (2018) Synthesis of Z-scheme g-C₃N₄/Ag/Ag₃PO₄ composite for enhanced photocatalytic degradation of phenol and selective oxidation of gaseous isopropanol. Mater Res Bull 107:407–415
- [63] Kroke E, Schwarz M, Horath-bordon E et al (2002) Tri-striazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C_3N_4 structures y. New J Chem 26:508–512
- [64] Wen J, Xie J, Chen X, Li X (2017) A review on g-C₃N₄based photocatalysts. Appl Surf Sci 391:72–123
- [65] Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176
- [66] Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89
- [67] Li S, Wang Z, Wang X et al (2017) Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Res 10:1710–1719
- [68] Chen P, Wang H, Liu H et al (2018) Directional electron delivery and enhanced reactants activation enable efficient

photocatalytic air purification on amorphous carbon nitride Co-functionalized with O/La. Appl Catal B Environ 242:19–30

- [69] Cui AW, Li J, Sun Y, Wang H (2018) Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. Appl Catal B Environ 237:938–946
- [70] Li J, Zhang Z, Cui W, Wang H, Cen W, Johnson G, Jiang G, Zhang S, Dong F (2018) The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C₃N₄. ACS Catal 8:8376–8385
- [71] Xiong T, Wang H, Zhou Y, Sun Y, Cen W, Huang H, Zhang Y, Dong F (2018) KCl-mediated dual electronic channels in layered g-C₃N₄ for enhanced visible light photocatalytic NO removal. Nanoscale 10:8066–8074
- [72] Cui J, Liang S, Wang X, Zhang J (2015) First principle modeling of oxygen-doped monolayer graphitic carbon nitride. Mater Chem Phys 161:194–200
- [73] Wang J, Guan Z, Huang J, Li Q, Yang J (2014) Enhanced photocatalytic mechanism for the hybrid g-C₃N₄/MoS₂ nanocomposite. J Mater Chem A 2:7960–7966
- [74] Ji Y, Dong H, Lin H, Zhang L, Hou T, Li Y (2016) Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Adv 6:52377– 52383
- [75] Wirth J, Neumann R, Antonietti M, Saalfrank P (2014) Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study. PhysChemChemPhys 16:15917– 15926
- [76] Hua E, Liu G, Zhang G, Xu X (2018) In situ fabrication of two-dimensional g-C₃N₄/Ba₅Ta₄O₁₅ nanosheet heterostructures with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination. Dalt Trans 47:4360–4367
- [77] Adekoya DO, Tahir M, Aishah N, Amin S (2017) g-C₃N₄/ (Cu/TiO₂) nanocomposite for enhanced photoreduction of CO₂ to CH₃ OH and HCOOH under UV/visible light. J CO2 Util 18:261–274
- [78] Huang J, Ho W, Wang X (2014) Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun 50:4338–4340
- [79] Xu J, Wang Z, Zhu Y (2017) Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C₃N₄ nanosheets. ACS Appl Mater Interfaces 9:27727–27735
- [80] Kang S, Huang W, Zhang L et al (2018) Moderate bacterial etching allows scalable and clean delamination of g-C₃N₄ with enriched unpaired electrons for highly improved

photocatalytic water disinfection. Appl Mater Interfaces 10:13796-13804

- [81] Zhao H, Yu H, Quan X et al (2014) Fabrication of atomic single layer graphitic-C₃N₄ and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 152–153:46–50
- [82] Li Y, Zhang C, Shuai D et al (2016) Visible-light-driven photocatalytic inactivation of MS₂ by metal-free g-C₃N₄: virucidal performance and mechanism. Water Res 106:249–258
- [83] Zhang C, Li Y, Zhang W et al (2018) Metal-free virucidal effects induced by $g-C_3N_4$ under visible light irradiation: statistical analysis and parameter optimization. Chemosphere 195:551–558
- [84] Patra KK, Gopinath CS (2016) Bimetallic and plasmonic Ag–Au on TiO₂ for solar water splitting: an active nanocomposite for entire visible-light-region absorption. ChemCatChem 8:1–9
- [85] Zhang Q, Gangadharan DT, Liu Y et al (2016) Recent advancements in plasmon-enhanced visible light-driven water splitting. J Materiomics 3:33–34
- [86] Li S, Zhang J, Kibria MG, Mi Z, Chaker M, Ma D, Nechache R, Rosei F (2013) Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO₃ nanowires under visible-light. Chem Commun 49:5856–5858
- [87] Xue J, Ma S, Zhou Y et al (2015) Facile photochemical synthesis of Au/Pt/g-C₃N₄ with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637
- [88] Qin J, Huo J et al (2015) Improving photocatalytic hydrogen production of Ag/g-C₃N₄ nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8:2249–2259
- [89] Bing W, Chen Z, Sun H et al (2015) Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res 8:1648–1658
- [90] Ma S, Zhan S, Jia Y et al (2016) Enhanced disinfection application of Ag-modified g-C₃N₄ composite under visible light. Appl Catal B Environ 186:77–87
- [91] Xu J, Gao Q, Bai X et al (2019) Enhanced visible-lightinduced photocatalytic degradation and disinfection activities of oxidized porous g-C₃N₄ by loading Ag nanoparticles. Catal Today 332:227–235
- [92] Liu C, Wang L, Xu H et al (2016) one pot green synthesis and the antibacterial activity of g-C₃N₄/Ag nanocomposites. Mater Lett 164:567–570
- [93] Muñoz-Batista MJ, Fontelles-Carceller O, Ferrer M et al (2016) Disinfection capability of Ag/g-C₃N₄ composite

photocatalysts under UV and visible light illumination. Appl Catal B Environ 183:86–95

- [94] Wang Z, Dong K, Liu Z et al (2016) Activation of biologically relevant levels of reactive oxygen species by Au/ g-C₃N₄ hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157
- [95] Wang W, Li G, An T, Chan DKL, Yu JC, Wong PK (2018) Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C₃N₄/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment. Appl Catal B Environ 238:126–135
- [96] Li G, Nie X, Chen J et al (2015) Enhanced visible-lightdriven photocatalytic inactivation of *E. coli* using g-C₃N₄/ TiO₂ hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res 86:17–24
- [97] Xu J, Li Y, Zhou X et al (2016) Graphitic C₃N₄-sensitized TiO₂ nanotube layers: a visible-light activated efficient metal-free antimicrobial platform. Chem Eur J 22:3947–3951
- [98] Zhang Q, Quan X, Wang H et al (2017) Constructing a visible-light-driven photocatalytic membrane by g-C₃N₄ quantum dots and TiO₂ nanotube array for enhanced water treatment. Sci Rep 7:3128
- [99] Liu Y, Zeng X, Hu X et al (2018) Two-dimensional g-C₃N₄/TiO₂ nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection. Catal Today. https://doi.org/10.1016/j.cattod.2018.11.053
- [100] Li J, Yin Y, Liu E et al (2017) In situ growing Bi_2MoO_6 on g- C_3N_4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J Hazard Mater 321:183–192
- [101] Xia D, Wang W, Yin R et al (2017) Enhanced photocatalytic inactivation of *Escherichia coli* by a novel Z-scheme g-C₃N₄/m-Bi₂O₄ hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl Catal B Environ 214:23–33
- [102] Deng J, Liang J, Li M, Tong M (2017) Enhanced visiblelight-driven photocatalytic bacteria disinfection by g-C₃N₄-AgBr. Colloids Surf B Biointerfaces 152:49–57
- [103] Li Y, Li Y, Ma S et al (2017) Efficient water disinfection with Ag_2WO_4 -doped mesoporous g- C_3N_4 under visible light. J Hazard Mater 338:33–46
- [104] Wang R, Kong X, Zhang W et al (2018) Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C₃N₄ heterostructures. Appl Catal B Environ 225:228–237
- [105] Wang AW, An T, Li G, Xia D (2017) Earth-abundant Ni₂P/ g-C₃N₄ lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B Environ 217:570–580

- [106] Vidyasagar D, Ghugal SG, Kulkarni A, Shende AG, Umare SS, Sasikala R (2018) Microwave assisted in situ decoration of g-C₃N₄ surface with CdCO₃ nanoparticles for visible light driven photocatalysis. New J Chem 42:6322–6331
- [107] Sundaram IM, Kalimuthu S, Ponniah GP (2017) Highly active ZnO modified g- C_3N_4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Compos Commun 5:64–71
- [108] Ong W (2017) 2D/2D graphitic carbon nitride nanocomposites for photocatalysis: why does face-to-face interface. Front Mater 4:1–10
- [109] Sun L, Du T, Hu C et al (2017) Antibacterial activity of graphene oxide/g- C_3N_4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng 5:8693–8701
- [110] Wang W, Yu JC, Xia D et al (2013) Graphene and g-C₃N₄ nanosheets cowrapped elemental α-sulfur as a novel metalfree heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732
- [111] Ouyang K, Dai K, Chen H et al (2017) Metal-free inactivation of *E. coli* O157:H7 by fullerene/C₃N₄ hybrid under visible light irradiation. Ecotoxicol Environ Saf 136:40–45
- [112] Zhang C, Li Y, Shuai D et al (2018) Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection. Chemosphere 208:84–92
- [113] Adhikari SPAGP, Lee J, Park CH, Kim CS (2016) Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C₃N₄ sheets customized with metal nanoparticle-decorated TiO₂ nanofibers. RSC Adv 6:55079–55091
- [114] Joo H, Chan K, Park H, Sang C (2015) One pot synthesis and characterization of Ag-ZnO/g-C₃N₄ photocatalyst with improved photoactivity and antibacterial properties. Colloids Surf A 482:477–484
- [115] Pant B, Park M, Lee JH et al (2017) Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process. J Colloid Interface Sci 496:343–352
- [116] Vidyasagar D, Ghugal SG, Kulkarni A et al (2018) Silver/ Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation. Appl Catal B Environ 221:339–348
- [117] Zhang M, Liu Z, Gao Y, Shu L (2017) Ag modified g-C₃N₄ composite entrapped PES UF membrane with visible-lightdriven photocatalytic antifouling performance. RSC Adv 7:42919–42928

- [118] Zeng X, Lan S, Lo IMC (2019) Rapid disinfection of *E. coli* by ternary BiVO₄/Ag/g-C₃N₄ composite under visible light: photocatalysis mechanism and performance investigation in authentic sewage. Environ Sci 6:610–623
- [119] Lin AT, Son Z, Wu Y et al (2018) Boron- and phenylcodoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection. J Hazard Mater 358:62–68
- [120] Liu B, Han X, Wang Y et al (2018) Synthesis of g-C₃N₄/ BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity. J Mater Sci Mater Electron 29:14300–14310
- [121] Younis SA, Abd-Elaziz A, Hashem A (2016) Utilization of a pyrrole derivative based antimicrobial functionality impregnated onto CaO/g-C₃N₄ for dyes adsorption. RSC Adv 6:89367–89379
- [122] Zhao H, Chen S, Quan X et al (2016) Environmental integration of microfiltration and visible-light-driven photocatalysis on g-C₃N₄ nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl Catal B Environ 194:134–140
- [123] Tian Y, Zhou F, Zhan S et al (2018) Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modi fi ed by $-C_3N_4/Bi_2MoO_6$ under the visible-light. J Photochem Photobiol A Chem 350:10–16
- [124] Faraji M, Mohaghegh N, Abedini A (2017) Ternary composite of TiO₂ nanotubes/Ti plates modified by g-C₃N₄ and SnO₂ with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. J Photochem Photobiol B Biol 178:124–132
- [125] Li C, Sun Z, Zhang W et al (2017) Highly efficient g- C_3N_4 / TiO₂/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Appl Catal B Environ 220:272–282
- [126] Song AJ, Wang X, Ma J (2017) Visible-light-driven in situ inactivation of *Microcystis aeruginosa* with the use of floating g-C₃N₄ heterojunction photocatalyst: performance, mechanisms and implications. Appl Catal B Environ 226:83–92
- [127] Song J, Wang X, Ma J et al (2018) Removal of microcystis aeruginosa and microcystin-LR using a graphitic- $C_3N_4/$ TiO₂ floating photocatalyst under visible light irradiation. Chem Eng J 348:380–388
- [128] Wang X, Wang X, Zhao J et al (2018) Adsorption-photocatalysis functional expanded graphite C/C composite for in situ photocatalytic inactivation of *Microcystis aeruginosa*. Chem Eng J 341:516–525
- [129] Niu P, Yang Y, Yu JC et al (2014) Switching the selectivity of the photoreduction reaction of carbon dioxide by

controlling the band structure of a $g-C_3N_4$ photocatalyst. Chem Commun 50:10837

- [130] Su Q, Sun J, Wang J et al (2014) Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO₂ conversion into cyclic carbonates. Catal Sci Technol 4:1556
- [131] Wang H, Sun Z, Li Q et al (2016) Surprisingly advanced CO_2 photocatalytic conversion over thiourea derived g-C₃N₄with water vapor while introducing 200–420 nm UV light. J CO2 Util 14:143–151
- [132] Tahir B, Tahir M, Amin NAS (2017) Photo-induced CO_2 reduction by CH_4/H_2O to fuels over Cu-modified $g-C_3N_4$ nanorods under simulated solar energy. Appl Surf Sci 419:875–885
- [133] Tang JY, Zhou WG, Guo RT, Huang CY, Pan WG (2018) Enhancement of photocatalytic performance in CO₂ reduction over Mg/g-C₃N₄ catalysts under visible light irradiation. Catal Commun 10(107):92–95
- [134] Wang Y, Xu Y, Wang Y et al (2016) Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO₂ with H₂O. Catal Commun 74:75–79
- [135] Wang K, Li Q, Liu B et al (2015) Sulfur-doped g-C₃N₄ with enhanced photocatalytic CO₂-reduction performance. Appl Catal B Environ 176–177:44–52
- [136] Yuan YP, Cao SW, Sen LY et al (2013) Red phosphor/g-C₃N₄ heterojunction with enhanced photocatalytic activities for solar fuels production. Appl Catal B Environ 140–141:164–168
- [137] Kuriki R, Sekizawa K, Ishitani O, Maeda K (2015) Visiblelight-driven CO_2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew Chem Int Ed 54:1–5
- [138] Ong W, Putri LK, Tan Y et al (2017) Unravelling charge carrier dynamics in protonated $g-C_3N_4$ interfaced with carbon nanodots as co-catalysts toward enhanced photo-catalytic CO₂ reduction: a combined experimental and first-principles DFT study. Nano Res 10:1673–1696
- [139] Photocatalysis L (2018) g-C₃N₄-based nanomaterials for visible light-driven photocatalysis. Catalyst 8:74
- [140] Sun Z, Wang H, Wu Z, Wang L (2018) g- C_3N_4 based composite photocatalysts for photocatalytic CO_2 reduction. Catal Today 300:160–172
- [141] Zeng D, Zhou T, Ong W et al (2019) Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous $g-C_3N_4$ for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 11:5651–5660
- [142] Zeng D, Ong W, Chen Y et al (2018) Co2P nanorods as an efficient cocatalyst decorated porous g-C₃N₄ Nanosheets

for photocatalytic hydrogen production under visible light irradiation. Part Part Syst Charact 35:1700251

- [143] Zeng D, Wu P, Ong W et al (2018) Construction of network-like and flower-like 2H-MoSe₂ nanostructures coupled with porous $g-C_3N_4$ for noble-metal-free photocatalytic H₂ evolution under visible light. Appl Catal B Environ 233:26–34
- [144] Ye S, Wang R, Wu M, Yuan Y (2015) A review on $g-C_3N_4$ for photocatalytic water splitting and CO_2 reduction. Appl Surf Sci 358:15–27
- [145] Liu J, Jia Q, Long J et al (2017) Amorphous NiO as cocatalyst for enhanced visible-light-driven hydrogen generation over $g-C_3N_4$ photocatalyst. Appl Catal B Environ 222:35–43
- [146] Zhou X, Luo Z, Tao P et al (2014) Facile preparation and enhanced photocatalytic H₂-production activity of Cu(OH)₂ nanospheres modified porous g-C₃N₄. Mater Chem Phys 143:1462–1468
- [147] Li F, Liu S, Xue Y et al (2015) Structure Modification Function of $g-C_3N_4$ for Al_2O_3 in the in situ hydrothermal process for enhanced photocatalytic activity. Chem Eur J 21:10149–10159
- [148] Ji C, Du C, Steinkruger JD et al (2019) In-situ hydrothermal fabrication of CdS/g-C₃N₄ nanocomposites for enhanced photocatalytic water splitting. Mater Lett 240:128–131
- [149] Naseri A, Samadi M, Pourjavadi A et al (2017) Recent advances and future development directions. J Mater Chem A Mater energy Sustain 5:23406–23433
- [150] Cui W, Li J, Dong F et al (2017) Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters @ amorphous carbon nitride highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters @ amorphous carbon nitride. Environ Sci Technol 51:10682–10690
- [151] Li AJ, Dong X, Sun Y (2018) Tailoring the rate-determining step in photocatalysis via localized excess electrons

for efficient and safe air cleaning. Appl Catal B Environ 239:187-195

- [152] Li J, Dong X, Sun Y, Jiang G, Chu Y, Lee SC, Dong F (2018) Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Appl Catal B Environ 232:69–76
- [153] Chen P, Dong F, Ran M, Li J (2018) Synergistic photothermal catalytic NO purification of MnO_x/g-C₃N₄: enhanced performance and reaction mechanism. Chin J Catal 39:619–629
- [154] Chen X, Zhao X, Kong Z, Ong WJ, Li N (2018) Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atom embedded in defective graphitic carbon nitride. J Mater Chem A 6:21941–21948
- [155] Xu Y, Niu X, Zhang H et al (2015) Switch-on fluorescence sensing of glutathione in food samples based on a g-CNQDs-Hg₂⁺ chemosensor. J Agric Food Chem 1(63):1747–1755
- [156] Zhan Y, Liu Z, Liu Q, Huang D, Wei Y, Hu Y, Lian X, Hu C (2017) A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging application. New J Chem 41:3930–3938
- [157] Ong W, Tan L, Ng YH et al (2016) Graphitic carbon nitride (g-C₃N₄)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329
- [159] Xu Y, Gao S (2012) Band gap of C_3N_4 in the GW approximation. Int J Hydrogen Energy 37:11072–11080
- [160] Teter DM, Hemley RJ (2019) Low-compressibility carbon nitrides. Science (80-) 271:53–55

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.