
MATERIALS FOR LIFE SCIENCES

A facile approach to fabricate highly sensitive, flexible

strain sensor based on elastomeric/graphene platelet

composite film

Qingshi Meng1,* , Zhiwen Liu1 , Sensen Han1 , Lisheng Xu2 , Sherif Araby1,3,4 ,
Rui Cai5 , Yu Zhao1 , Shaowei Lu1,* , and Tianqing Liu6

1College of Aerospace Engineering, Shenyang Aerospace University (SAU), Shenyang 110136, China
2School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang 110819, Liaoning, China
3School of Engineering, University of South Australia, Adelaide, SA 5095, Australia
4Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt
5School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry, UK
6QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia

Received: 18 February 2019

Accepted: 19 April 2019

Published online:

29 April 2019

� Springer Science+Business

Media, LLC, part of Springer

Nature 2019

ABSTRACT

This work developed a facile approach to fabricate highly sensitive and flexible

polyurethane/graphene platelets composite film for wearable strain sensor. The

composite film was fabricated via layer-by-layer laminating method which is

simple and cost-effective; it exhibited outstanding electrical conductivity of

1430 ± 50 S/cm and high sensitivity to strain (the gauge factor is up to 150). In

the sensor application test, the flexible strain sensor achieves real-time moni-

toring accurately for five bio-signals such as pulse movement, finger movement,

and cheek movement giving a great potential as wearable-sensing device. In

addition, the developed strain sensor shows response to pressure and temper-

ature in a certain region. A multifaceted comparison between reported flexible

strain sensors and our strain sensor was made highlighting the advantages of

the current work in terms of (1) high sensitivity (gauge factor) and flexibility, (2)

facile approach of fabrication, and (3) accurate monitoring for body motions.

Introduction

Within the last two decades, strain sensors were

widely used in various fields and applications, such

as aerospace, automotive, construction, biomedical

and other new energy fields [1–5]. Since strain sensor

has the ability to detect mechanical deformations due

to external loads, it has attracted considerable inter-

ests for various wearable devices to transform human

physical motion to electric signals for disease diag-

nosis, therapy, and health conditions monitoring

[6–10]. In most cases, strain sensor is based on piezo-

resistance theory in which mechanical deformations

translate into resistance changes by strain gauge and
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finally monitored by electric signal. At present, the

commonly used strain sensors are made of rigid

materials such as copper-nickel and nichrome alloy.

These types of strain sensors are accurate in mea-

surement, reliable and produced in large scale.

However, their main limitations that they are made

of rigid materials featuring low gauge factor and

hence low sensitivity. Thus, they are not able to

detect large deformation on complex curved surface

or monitor body motions as a wearable device. The

strain sensor based on flexible conductive composites

possesses high flexibility and gauge factor, and able

to detect small to large strain deformations.

There are various conductive nanomaterials

including metals (gold nanoparticle, gold and silver

nanowires) and carbon-based nanomaterials such as

carbon blacks (CBs) and carbon nanotubes (CNTs),

which have been extensively studied in developing

flexible strain sensors [11–16]. Although metal-based

nanomaterials are stable, most of them are costly and

poorly stretchable, and they are susceptible to oxi-

dization when they are used in wearable devices

[17, 18]. CBs and CNTs show advantages of light-

weight and desirable sensitivity, but they also have

limitations; CB-based polymer composites show rel-

atively low electrical conductivity due to its low

dimensionality (aspect ratio) which is detrimental to

strain sensor, and CB has harmful effect on human

health [19–21]. Single-walled carbon nanotubes

(SWCNTs) have fascinating properties in strain

gauging performances and conductivity, but high

cost and difficulty in large-scale industrial produc-

tion limit their application. Multi-walled carbon

nanotubes (MWCNTs) are relatively cheaper with

similar properties. However, both of them are not

favorable in developing thin-films composite due to

their highly entangled structure [17, 22–24]. There-

fore, it is a formidable challenge to select novel con-

ductive materials to fabricate highly stretchable and

flexible strain sensors.

Graphene has attracted enormous interest in fab-

rication of flexible strain sensors due to its excep-

tional properties—Young’s modulus 1 TPa, tensile

strength 130 GPa, stretch ability up to 25%, and

electrical conductivity 6000 S/cm [25, 26]. Pristine

graphene and graphene fabricated by CVD are not

cost-effective with poor reproducibility and control-

lability on size dimensions [27]. Graphene oxide and

reduced graphene oxide [28] are other derivatives of

graphene; their fabrication process needs strong acids

and large quantities of other chemicals. Fabrication

process takes dozens of hours, and the yield is not

scalable [29]. Additionally, it is limited by low

structural integrity implying unsatisfactory electrical

conductivity [30]. More recently, graphene platelets

(GnPs) have been reported to demonstrate the fol-

lowing advantages: (1) high electrical conductivity of

1460 S/cm, (2) each platelet being 3 nm in thickness,

offering sufficient interface for stress and electron

transfer in composites, and (3) cost-effectiveness

($20/kg) [31–35]. Polyurethane (PU) is a multi-pur-

pose polymer with the advantage of tailoring to meet

demands; it can be molded in various forms includ-

ing foams, thermoplastic elastomers, adhesives, and

paintings. PU–nanofiller composites have been

reported in plethora studies to improve mechanical

performance [36, 37], and functional properties such

as hydrophilicity [37], electrical conductivity [37],

and piezo-resistivity’s sensibility [38, 39].

Developing nanofiller-based sensors to detect

numerous signals including—but not limited—me-

chanical strain, temperature change [40, 41], and

pressure change [42] using nanofillers is an interest

for both academia and industry. For example, Tang’s

group has investigated polyurethane/graphene

oxide composite as multifunctional sensors to detect

flame [40, 41] and organic vapor sensing [43]. Herein,

we developed a flexible, highly sensitive and elec-

trically conductive polyurethane (PU)/GnP compos-

ite film fabricated by a facile approach for wearable

strain sensor. The flexible strain sensor has sandwich

structure similar to the traditional strain sensor. The

PU film was used as substrate with the advantage of

excellent elasticity, ultra-lightweight, and non-toxic-

ity. The PU/GnP thin film was used as strain gauge

in a strain sensor system. The PU/GnP composite

film demonstrates excellent electrical conductivity

(1430 ± 50 S/cm) and high sensitivity (gauge factor

up to 150), demonstrating high potential as a flexible

strain sensor. It is as wearable strain sensor device

achieving accurate monitoring for body motions such

as pulse movement, cheek movement, and forearm

muscle movement. Comparing with the previously

demonstrated flexible strain sensor, our sensor real-

ized accurate real-time monitoring for both low- and

high-frequency body motions. Additionally, since

fabrication of GnPs is simple and scalable compared

to graphene oxide, our strain PU/GnP strain sensor

has high potential in commercialization.
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Experimental section

Materials

The graphite intercalation compound (GIC Asbury

1395) was kindly supplied by Asbury Carbons, NJ,

USA. The elastomer that was used in this study is

polyurethane (PU). A PU film - 0.04 mm in thick-

ness—was purchased from local market which is

widely used in medical treatment and leather

industry. Acrylics pressure-sensitive adhesive was

provided by Shuhua Hengsheng chemical company,

Sichuan, China.

Fabrication of graphene platelets

GnPs were prepared by a published method [44]. In

brief, the fabrication of GnPs is thermally expanding

a commercial graphite intercalation compound in a

crucible at 700 �C for 1 min. The thermal expansion

converted the compounds into wormlike structure

which is delaminated by ultrasonicating for 2 h in

acetone (under 20 �C); then, GnPs were produced

after drying them in the oven overnight [30, 45].

Fabrication of GnP film

A glass mold was designed to load GnPs and then

pressed them using two metal sheets with smooth

surface to make GnPs into primary rectangular shape

with uniform thickness followed by further pressing

the film using a hydraulic press for 1 min under

1 MPa pressure to form a thin GnP film. As shown in

Fig. 1, this GnP film has good surface integrity,

desirable flexibility, and uniform thickness.

Fabrications of strain sensor

Figure 2 illustrates the schematic of fabrication of

strain sensor based on PU/GnP composite film. The

sensor was assembled on an ultra-thin PU film. First,

an acrylics pressure-sensitive adhesive was smeared

over ultra-thin PU film (image a) and then placed a

GnP film at the center area of the PU film (image b).

An isotropic conductive adhesive (ICA) was painted

at both ends of the GnP film connected to copper

wires (image b). Another PU film with acrylics

pressure-sensitive adhesive covered the top of the

GnP film (image c). Finally, the composite film was

pressed by the hydraulic press at 1 MPa for 1 min

(image C). Eventually, a PU-GnP-PU sandwich is

used as strain sensor (image d).

The average thicknesses of PU film and acrylics

pressure-sensitive adhesive (APSA) are

0.04 ± 0.003 mm and * 0.01 mm, respectively. The

thickness of GnP film depends on the weight of GnPs.

The thickness of assembled composite film is equal to

the sum of thicknesses of GnP film, PU film, and

acrylics pressure-sensitive adhesive layer. Table 1

Figure 1 Schematic

illustrates the fabrication

procedures of graphene

platelets film with digital

images for the prepared film.
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lists the specification of all the prepared GnP com-

posite films.

Characterization

Scanning electron microscope (SEM) was conducted

using a SEM (JEOL JSM-7800F) at 5 kV accelerating

voltage. It was used to present images for the com-

posite films’ cross section and surface. The high-

magnification transmission electron microscope

(TEM) images were taken from a JEOL microscope

operated at 120 kV.

Mechanical properties were measured using

Instron tensile testing machine at a cross-head speed

of 2 mm/min at room temperature (25 �C). Young’s
modulus and tensile strength of the samples were

determined from the obtained stress–strain curves.

The sensitivity of the strain sensor is represented

by the gauge factor (GF), that is, the ratio of the

changes in relative electrical resistance to the applied

tensile strain. In order to investigate the sensitivity of

the strain sensor, the GF of the composite films is

calculated using the following equation:

GF ¼ DR=R0

DL=L0
¼ DR=R0

e
ð1Þ

where R0 is the initial resistance of the sensor, DR is

the relative resistance change under deformation, L0
is the initial length of the sensor, DL is the relative

elongation of the film in the axial direction, and e is
the strain [46]. The strain was collected by Instron

tensile machine at speed of 2 mm/min. FLUKE data

acquisition unit was used to measure the electrical

resistance of the strain sensor simultaneously while

tensile testing was running; then, the GF was calcu-

lated according to the equation.

In the sensor applications section, the flexible strain

sensor was glued on the skin surface and the FLUKE

Figure 2 Schematic

illustrations of the fabrication

of strain sensor with digital

photograph of strain sensor

prepared.

Table 1 The specification of GnP composite films

Samples Weight of GnPs (g) Thickness of GnP film (mm) Thickness of GnP composite film (mm) Film size (mm)

1 0 0 0.1 40 9 40

2 0.040 ± 0.005 0.02 ± 0.003 0.12 40 9 40

3 0.082 ± 0.005 0.05 ± 0.003 0.15 40 9 40

4 0.115 ± 0.005 0.07 ± 0.003 0.17 40 9 40

5 0.165 ± 0.005 0.10 ± 0.003 0.20 40 9 40
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data acquisition unit was used to measure the resis-

tance of the flexible strain sensor. Similarly, the

temperature and pressure responses were performed

using the FLUKE data acquisition unit to record the

resistance of flexible strain sensor under different

pressure and temperature conditions. Program-con-

trolled temperature furnace was used to control the

temperature of the sensor from 20 to 150 �C at heat-

ing rate 1 �C/min. The hydraulic press was used to

apply pressure on the sensor from 0 to 1000 kPa at

room temperature (25 �C).

Results and discussion

Characterization of graphene platelets
(GnPs)

Figure 3a illustrates high-resolution TEM micro-

graphs of a typical GnP sheet. The ordered lines

suggest the GnP sheet has intact crystalline struc-

tures. These crystalline structures reflects high elec-

trical conductivity of GnP. This highly crystalline

structure is in agreement with the X-ray photoelec-

tron spectroscopy (XPS) analysis (Fig. 3b) which

showed the C/O ratio is nearly 13.2 for GnPs. Thus,

our GnPs would be a promising precursor for the

fabrication of highly conductive sensors.

In Fig. 3c, GnPs lead to obvious absorptions at

1340 cm-1, 1585 cm-1, and 2690 cm-1 which corre-

spond to D, G, and 2D bands, respectively. G band

refers to sp2 resonance on an ordered graphitic lattice,

while D band is activated from the first-order scat-

tering process of sp2 carbons by the presence of in-

plane substitutional hetero-atoms, vacancies, grain

boundaries, or other defects, which might be sp3-

hybridized carbon structure associating with the

quantity of impurity or oxidation degree. Since all

samples were tested in the powder form, there is no

point to discuss 2D band. The D- to G-band ratio of

GnPs (ID/IG = 0.07) is much lower than those of other

graphene derivates and graphite [30, 47], revealing a

far better structural integrity in case of our GnPs.

These results also align with TEM and XPS analysis.

Morphology of PU/GnP composite film

Each of our GnP contains 1–4 layers of graphene

sheets as reported previously [44, 45]. The GnP film

was fabricated by pressing powder of GnPs forming

a 2D overlap GnP film (illustrated in Fig. 2). Then,

following the procedures mentioned in ‘‘Fabrications

of strain sensor’’ section, a PU/GnP composite film

was fabricated. A cross section of PU/GnP composite

film of 0.17 mm in thickness was investigated using

SEM imaging. Figure 4a shows the cross-sectional

morphology of the composite film. The composite

film shows a layered structure which consists of GnP

film, acrylics pressure-sensitive adhesive (APSA),

and PU layers. As shown in images b and c (Fig. 4),

GnPs are tightly stacked and overlapped after

pressing to form global conductive network. At high

magnification, images d–f show the surface mor-

phology of the GnP film; Fig. 4e demonstrates that

the film has good surface integrity; Fig. 4d shows the

connections and overlaps between adjacent platelets

creating plenty of conductive paths. Figure 4f shows

the micro-sized cracks and pores contained in the

GnP film. Stress, strain, vibration, and other defor-

mations cause the changes of conductive network

resulting in dramatic resistance change mainly

attributed to three mechanisms: (1) tunneling
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Figure 3 Morphology of graphene platelets: a high-resolution TEM image, b XPS analysis, and c Raman spectra.
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resistance change between adjacent platelets due to

the expansion of micro-cracks, (2) influence of geo-

metrical changes of GnP films, and (3) piezo-resis-

tance of individual GnPs due to deformation upon

loading [48]. The schematic in Fig. 4g demonstrates

these mechanisms. In general, the resistance of a

conductor is derived from the equation: R = q 9 L/A,

where q, L, and A are the specific resistivity, length,

and cross-sectional area of the conductor, respec-

tively. Thus, resistance change could be given by DR/
R0 = (1 ? 2m) e ? Dq/q, where the m and e are Pois-

son’s ratio and strain, respectively. According to the

equation, the resistance change is dependent on the

strain and resistivity, and the resistivity of GnP stays

the same after stretch [49]. Thus, the composite film

could be used as a strain gauge of flexible strain

sensor.

Mechanical performance

Young’s moduli and tensile strengths are measured

to investigate the mechanical performance of the

composite films. Figure 5a shows the Young’s moduli

and tensile strengths of PU film and GnP composite

films with different thicknesses. The thicknesses of

the composite films are in range of 0.12–0.2 mm.

Obviously, Young’s moduli and tensile strengths are

increasing with thickness. Since the PU films and

acrylics pressure-sensitive adhesive (APSA) are

identical for all GnP composite films while the weight

of GnP is variable (Table 1), the improvement in

mechanical properties is due to GnP’s content; the

larger thickness of GnP composite film is, the higher

GnP’s content is. The enhancement of strength and

moduli of PU/GnP composite films are owing to the

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4 a–c Cross-sectional morphology of the composite film; d–f surface morphology of the GnP film; g schematic of sensor

mechanism.
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increase in the rigid and high-strength phase (GnPs)

in the composite. This is confirmed when comparing

the results of samples 2–5 (thickness range

0.12–0.2 mm) which contain GnPs to sample 1

(thickness 0.1 mm) with no GnPs. It also indicates

that the thicker films have stronger overlapped

structure. Figure 5b shows the flexibility of the com-

posite film of thickness 0.17 mm in which the com-

posite film was bended into different angles, and the

resistance increases with angles; however, the com-

posite film still shows excellent electrical

conductivity.

Sensitivity of strain sensor

Sensitivity is the key property for a strain sensor,

which affects the performance of strain sensor

directly [9]. Therefore, the gauge factor (GF) was

employed to investigate the sensitivity of the strain

sensor. Four GnP composite films with different

thicknesses were examined to obtain their GF. Fig-

ure 6a is the schematic of GF testing in which the

electrical resistance was measured when the tensile

test was performing. Figure 6b is the fixture diagram

of tensile machine. Figure 6c shows the relationship

between electrical resistance changes and tensile

strain of GnP composite films with different thick-

nesses. The result shows that the electrical resistance

increases with strain due to the mechanisms dis-

cussed in ‘‘Morphology of PU/GnP composite film’’

section. Furthermore, the change in resistance (DR)
decreases with the composite film thickness at same

strain. By contrast, the black curve (0.12 mm) shows

the highest (DR) among all other curves at same

strain range in Fig. 6c, while it is less linear with

some fluctuations which could be caused by struc-

tural instability of thinner film, suggesting fewer GnP

overlaps in the thickness direction and more micro-

sized cracks. The other three curves show stable in-

crease, and the green curve (0.20 mm) is most stable.

In addition, the measurement range increases with

thickness and the 0.17-mm- and 0.20-mm-thick films

have wide measurement range of 0–25%. Figure 6d is

the GF calculated by the result in Fig. 6c. In sum-

mary, the film with 0.12 mm thickness shows highest

gauge factor but lowest linearity and smallest mea-

surement range. The other films show better linearity

and stable increased resistance. Therefore, based on

both mechanical performance test and GF measure-

ment, we chose the composite film with 0.17 mm

thickness to fabricate the flexible strain sensor as the

object of the following study.

Sensitivity of strain sensor

We then conducted cyclic tensile testing to study

the stability and reproducibility of the strain sensor.

The result exhibits good durability after 1000 cycles

at 5% in Fig. 7a, the resistance changes of first 10

cycles and last 10 cycles are compared, and we

found the waveform is roughly same, indicating the

sensor has good stability and reproducibility

thanks to the good elasticity of PU film and strong

adhesion of the acrylics pressure-sensitive adhe-

sive. Besides, a response time testing of the strain

sensor was conducted and the result is shown in

Fig. 7b; the strain sensor responds instantaneously

to cyclic loading. We measured the response time
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Figure 5 a Young’s moduli and tensile strength of GnP composite films with different thicknesses; b the flexibility of a 0.17-mm-thick

composite film.
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when the strain sensor was applied 10% strain; it is

70 ms, indicating the flexible sensor has quick

response ability. A good sensor requires not only

high sensitivity but also good stability and quick

response ability. Obviously, our sensor meets these

requirements.
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Figure 6 a Schematic of gauge factor testing; b the fixture schematic of tensile machine; c the curve of resistance changes and strain;

d the curves of gauge factor and strain.
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Sensor application

As discussed previously, to be applied as wearable

device for body motion measurement, the strain

sensor needs to be flexible, highly sensitive, and light

in weight [17, 50]. In this study, five typical body

motions for wearable device including pulse, finger,

cheek, forearm muscle movements, and human

vocalization were investigated.

Figure 8 shows the flexible strain sensor used to

monitor real-time pulse movement. Figure 8a is the

schematic of pulse movement measurement, and the

sensor was glued on the skin region where pulse

movement is strongest. A photograph of the sensor

was given in which the black part is GnP film and the

transparent part is PU film. The pulse of an adult

male’s in the normal condition is around 12–13 beats

per 10 s. The results recorded by our strain sensor

accurately reflect the pulse movement of a healthy

adult clearly (Fig. 8b). And the sensor achieves

stable pulse movement monitoring. In order to

amplify the pulse signal and remove undesirable

noise over faint pulse signal, we measured pulse

movement again and used a 0.5–10 Hz band-pass

filter on MATLAB at same time to filtrate the ambient

noise. Figure 8c gives the comparison between the

pulse waveforms before filter and after filter. The

pulse waveform measured by our strain sensor

highly agrees with the standard pulse waveform in

Fig. 8d, even the percussion wave and the descend-

ing limb wave were observed [51, 52]. It is well

known that pulse waveform signal is an important

auxiliary parameter to examine whether the arterial

blood vessels are normal. It can be used to predict

hypertension, coronary heart disease, and other dis-

eases, especially in hospital settings [53–55]. There-

fore, our GnP composite films can be used as

wearable device to monitor pulse movement to

monitor a human body health.

Figure 9a shows the strain sensor recorded the

behavioral changes when the fingers were repeatedly

bended. The strain sensor was attached tightly on a
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Figure 8 a Schematic of pulse movement measurement and

photographs of the strain sensor; b the result of real-time

monitoring for pulse movement; c pulse waveform contrast

between before filter and after filter; d the standard pulse

waveform. 0.17 mm thickness strain sensor was used for all

measurement.
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finger in straight state; the resistance of the sensor

nearly remains constant with slight fluctuation. When

the finger starts bending, the sensor would be stret-

ched resulting in a sharp increase in resistance. Once

the finger moves back to its original position, the

resistance recovers instantly due to elasticity of the

sensor. Meanwhile, the change of electrical resistance

increases with the degree of finger bending motion.

In order to further check the wearable application

of our sensor, another two subtle body motions were

measured. Figure 9b, c shows the sensor used to

monitor forearm muscle and cheek movement caused

by muscle deformation. As shown in Fig. 9b, the

sensor was glued on forearm, and when we clench,

the brachioradialis would contract and cause a

deformation perpendicular to the direction of the

arm, forming a resistance change signal of the strain

sensor. In Fig. 9b, the peak corresponds to the

clenching. The resistance of the sensor recovers with

opening of the palm.

We proceeded to sense facial muscle movement,

because facial expression recognition is vital for the

development of human monitoring techniques. Fig-

ure 9c shows the strain sensor used to monitor cheek

movement, which is a subtle body movement caused

by risorius muscle deformation. There are two peaks

corresponding to the bulge movement of cheek skin

due to blowing. The left picture in Fig. 9c shows

cheek in still state, and resistance of the strain sensor

keeps stable. The right one is the cheek in movement

state. When mouth is blowing, the resistance change

reaches peak. This result indicates that our sensor has

potential to monitor human facial emotion.

Human vocalization is based on muscle movement

and vibration, and the sensor was attached onto the

throat to identify various pronouncing of English
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Figure 9 0.17 mm thickness strain sensor used to monitor a finger-bend movement, b forearm muscle movement, c cheek movement,

and d voice vibration.
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words. The result in Fig. 9d indicates that each signal

curve of a word is apparently different to others, and

similar to the wave shape of corresponding word,

which provides evidence that our sensor can be used

for voice recognition.

Temperature response and pressure
response

Temperature has influence on electrical conductivity,

and GF is temperature dependent [56, 57]. The

resistance change caused by temperature is called

temperature drift. The electrical resistance of the

strain sensor was measured over a temperature range

of 20–150 �C to study the temperature response.

Figure 10 shows the temperature–resistance curve.

The resistance does not change significantly under

100 �C, while it increases sharply above 100 �C with

more distinct error. According to the result, the strain

sensor’s appropriate operating temperature range is

20–100 �C, and temperature drift of the strain sensor

in this range is too tiny to consider. On the other

hand, resistance changes obviously when sensor

temperature is beyond 100 �C. This is because the

isotropic conductive adhesive (ICA) starts to lose its

binding strength to the GnP film; the glass transition

temperature of ICA is * 90 �C [58]. This would

increase the electrical resistance at the interface

between GnP film and ICA, and ICA with the copper

wires which consequently increases the overall elec-

trical resistance of the strain sensor. The viscous state

of ICA explains the high standard deviation attained

at temperature[ 100 �C.

To evaluate the pressure response of the strain

sensor, different levels of pressure were given to

measure the electrical resistance of the strain sensor.

Figure 11 shows the resistance of the strain sensor

under pressure ranging from 0 to 1 MPa. The elec-

trical resistance of the strain sensor decreases with

the pressure, possibly due to the decrease in the inter-

particle distance and increase in GnP sheets connec-

tion and overlaps. The pressures on skin surface

during body motions are generally not more than

10 kPa. For example, the pressure on skin surface of

normal pulse movement is 5.33 kPa. The electrical

resistance changes of the strain sensor under 10 kPa

pressures are too tiny to obverse. Thus, the resistance

changes are mainly caused by strain in the sensor

application as wearable device in this work. Besides,

in Fig. 11, the sharpest decline is between 200 kPa

and 600 kPa; therefore, the sensor could be used as a

pressure sensor in the operating range of

200–600 kPa.

We have compared our PU/GnP flexible strain

sensor with reported flexible strain sensors in terms

of thickness, stretch ability, fabrication/difficulty,

electrical conductivity, and wearable ability (Table 2).

In contrast to the previously demonstrated flexible

strain sensor, our strain sensor based on PU/GnP

exhibits various advantages, including (1) high level

of electrical conductivity (1430 S/cm), (2) high sen-

sitivity (GF), (3) facile and cost-effective approach of

fabrication, and (4) reliable bio-signal measurement.

The GF of flexible strain sensor in this work is

255.45% higher than the strain sensor based on

polydimethylsiloxane (PDMS)/graphene, 72.69%
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higher than PU core/graphene, and 89.87% higher

than electrospun mats/RGO, respectively. High GF

enables the strain sensor to detect the slight move-

ment such as pulse movement accurately. In this

work, we measured five bio-signals to study the

wearable ability of our strain sensor. As shown, our

strain sensor has greater potential to be used as

wearable device because it has the ability to monitor

both large and slight, low- and high-frequency

movements.

Conclusion

In summary, we developed a highly sensitive and

flexible strain sensor based on PU/GnP composite

film fabricated by a facile approach. The flexible

strain sensor was fabricated via layer-by-layer lami-

nating method which is simple and cost-effective.

The PU substrate gives the strain sensor good flexi-

bility and stretch ability (up to 25%). The strain gauge

made of GnP composite film achieves excellent elec-

trical conductivity and high GF of 150, which is

higher than the similar sensors reported. The cyclic

tensile test shows our strain sensor has good stability

and reproducibility after 1000 cyclic tensile test at 5%

strain. For sensor applications, the flexible strain

sensor successfully achieves accuracy monitoring for

five body motions covering both large and slight,

low- and high-frequency movements, and thus, it has

good potential for wearable devices. In addition, the

strain sensor has low-temperature drift in the oper-

ating temperature range of 0–100 �C, and it has the

ability of working in most condition of wearable

device. According to the pressure response test of the

strain sensor, the resistance changes are not influ-

enced by pressure when the strain sensor was used as

wearable device. Finally, we made a multifaceted

comparison of different flexible strain sensors and

summarized four advantages of our strain sensor

including (1) high sensitivity (GF), (2) facile fabrica-

tion approach, and (3) various applications in wear-

able device.
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