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ABSTRACT

Design and development of nanoparticle-based drug delivery systems (DDS)

have always been extremely challenging due to unacceptable leakage of drug or

unsatisfactory release in the lesion. Herein, we presented an effective approach

for facile preparation of DDS by imprinting doxorubicin (DOX) via miniemul-

sion polymerization. In order to investigate the release of DOX in this system,

the cumulative release of DOX by molecularly imprinted polymers (GMIPs) and

non-imprinted polymers (GNIPs) was compared. The results revealed that the

DOX’s leakage of GMIPs was more moderate than that of GNIPs. Moreover,

after fitting the release curves with several mathematical models, it was found

that the release of DOX from the GMIPs can be partially fitted with zero-order

model (R2 = 0.929) which implied that molecular imprinting techniques for

drug loading could reduce the common ‘burst effect.’ In addition, excellent

release of DOX with controllable property was achieved by switching pho-

tothermal effect of graphene oxide quantum dots which were doped in GMIPs

as the near-infrared light (NIR) window. Thus, it would be anticipated that the

novel drug-loaded GMIPs combining with inductive NIR heating would be

promising to be applied in the synergy of chemotherapy and thermotherapy for

cancer therapy.

Introduction

Drug delivery system (DDS) is the strategy that

transports drugs into the specific site to achieve the

desired therapeutic effect [1]. To maximize the safety

and efficacy of drugs, DDS should be able to prevent

the premature leakage of drugs to lessen harm of the

normal cells and maintain their concentration in the

therapeutic window [2–4]. Therefore, the develop-

ment of drug loading with high loading efficacy and
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little leakage has become more urgent [5, 6]. Gener-

ally, drug loading involved physical adsorption [7],

chemical conjugation [8] and solvent evaporation [9].

Nevertheless, the majority of studies focus on drug

release rather than drug loading [10], which has slo-

wed down the development of DDS.

Molecular imprinted polymers (MIPs) are cross-

linked polymers that exhibit specific binding sites for

the target molecule [11, 12]. The most common

strategy for the preparation of MIPs only needs one-

step self-assembly of functional monomer with tem-

plate molecule via non-covalent interactions and then

the polymerization with the help of cross-linking

agent as well as initiator, which is effortless and well

established [13–16]. On the basis of their unique

properties and multiple forces generated from

imprinting, MIPs seem to be perfectly designed for

drug loading [1, 17]. For example, Zhang et al. [10]

reported a surface molecular imprinting polymer

using mesoporous silica nanoparticles as substrate

with loading efficiency of 70 ± 8% for DOX. In

another work, paclitaxel molecularly imprinted

polymer-PEG-folate nanoparticles were designed,

which showed high drug loading and encapsulation

efficiency of 15.6 ± 0.8 and 100%, respectively [18].

Moreover, the release profile showed that the burst

release within 24 h was only 11.2% (pH = 5) and

6.7% (pH = 6) [18]. These researches clearly indicated

that MIPs possess great potential for the drug loading

with high loading efficacy and little leakage.

Traditionally, MIPs were prepared by bulk poly-

merization with the following crushing and sieving

to obtain polymer beads [19]. However, several

methods can be used to synthesize polymer micro-

and nanoparticles directly, thus could avoid the time-

and labor-consuming process of crush sieving.

Miniemulsion polymerization is one of the desirable

methods, and it could incorporate drug and quantum

dots into the polymerization for functional polymer

particles [20]. However, the elution of surfactants

after polymerization is not easy, and the adsorbed

and absorbed surfactants desorb with time, possibly

leading to physical discomfort [21]. Fortunately,

polymerizable surfactants perfectly solve the above

problems. In addition, it was reported that the imi-

dazolium-based ionic liquids surfactants with alkyl

substitution of C-12 chain length were found to be

effective against microbes [22] and shown very low

cytotoxicity in most of the cases [23–25]. Moreover,

due to the difference in biochemical properties of

microbes, normal cells and tumor cells, the positive

charge that is carried out by the cationic surfactant

has passive targeting ability in tumor tissue and

selective killing to microbe [26, 27]. It is gratified that

polymer materials used in anticancer drug delivery

system could satisfy both antimicrobial and biocom-

patibility properties [28]. Therefore, utilizing poly-

merizable imidazolium-based ionic liquids as

surfactants for MIPs is very promising.

It should be noted that DDS not only prevents drug

leakage but also requires immediate release of the

drug at a specific site [29]. Generally, the release of

DDS was triggered by distinct external stimulation,

such as pH [4, 10, 30, 31], temperature [30, 31],

magnetism [30], redox-responsive [32] or NIR [33]. In

recent years, more and more insights have been

gained on cancer therapy through the combining the

synergistic effect of chemotherapy with NIR pho-

tothermal therapy [33, 34]. Graphene quantum dots

(GQDs) are greatly desirable for the development of

DDS because of their strong NIR absorbance, high

photothermal conversion efficiency and excellent

thermal conductivity in vivo [35]. Simultaneously,

their high surface area and various surface functional

groups make it possible to load drugs [36]. Moreover,

the combination of molecular imprinting technology

and quantum dots has received widespread attention

in recent years, which provides favorable references

for our work [37–39].

Based on the above-mentioned factors, the present

study describes the synthesis of molecular imprinted

polymers doped GQDs (GMIPs) and their application

in instantaneous release of the anticancer drug dox-

orubicin (Scheme 1). Specifically, a antibacterial

cationic polymerizable surfactant, 1-vinyl-3-dode-

cylimidazolium bromide (ViDoIm?Br-) was pre-

pared and used as the emulsifier in miniemulsion

polymerization for the preparation of GMIPs. During

the polymerization, DOX and GQDs were encapsu-

lated in the polymer to achieve loading and pho-

tothermal conversion in the selection of NIR window.

Valuable properties of the obtained DDS include: safe

delivery to avoid premature drug release, precise

treatment in the lesion site because of the triggering

mechanisms of NIR, and antibacterial surface to meet

the requirements of anticancer drug delivery system.
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Experimental section

Chemicals and materials

GQDs were obtained from Nanjing XFNANO Mate-

rials Tech Co., Ltd. 1-Bromododecane, 1-vinylimida-

zole, doxorubicin hydrochloride (DOX, 98%),

dodecyltrimethylammonium bromide (DTAB), ethy-

lene glycol dimethacrylate (EGDMA, 98%), methyl

methacrylate (MMA, 99%), cetyl alcohol (CA), 2,2-

azobisisobutyronitrile (AIBN) were purchased from

Shanghai Macklin Biochemical Co., Ltd. Deionized

water was used in all experiments.

Synthesis of ViDoIm1Br2

The product, ViDoIm?Br-, was prepared referencing

the procedures described in the literature [23]. Under

vigorous stirring, 5.99 mL (0.025 mol) of 1-bromod-

odecane were added dropwise to 2.27 mL (0.025 mol)

of 1-vinylimidazole in a 50 mL round bottom flask

with one necked. The mixture was reacted at 45 �C
for 72 h. The resulting white–yellow solid was

washed several times with ethyl acetate. And then,

the product was filtered and dried in a vacuum oven

until constant weight.

Determination the micellar properties
of surfactants

Conductivity method is an easy method for deter-

mining the critical micelle concentration (CMC) of

surfactants [40]. ViDoIm?Br- was added to pure

water, and a series of precise concentrations of sur-

factants in aqueous solution were formulated,

respectively. The solution was stirred for 1 min prior

to the conductivity measurement.

Synthesis of polymer microspheres
via miniemulsion polymerization

All the components required for the preparation of

GNIPs were divided into two parts [41]. One was an

aqueous phase, which included 50 mL deionized

water, 100 mg of ViDoIm?Br- and 6 mg of GQDs.

The other was oil phase, which composed of 400 lL

of EGDMA, 200 lL of MMA, 10 mg of CA. The oil

phase without initiator was mixed by stirring for

10 min and was ultrasonicated in an ice bath for

10 min to obtain a homogenous dispersion. Then,

10 mg of AIBN was dissolved in the oil phase. The oil

phase containing the initiator was slowly added to

the aqueous phase and pre-emulsifying the O/W

mixture by magnetic stirring for 30 min. Then, the

O/W mixture was ultrasonicated using a ultrasoni-

cator (KQ-200KDE Sonifier, Kunshan Shumei, China)

in an ice bath for 20 min (input power 200 W, fre-

quency 40KHZ). The obtained miniemulsion was

stirred for 30 min to homogenize the system. After-

ward, the miniemulsion was poured into 100 mL

three-necked glass reactor equipped with condenser

and mechanical stirrer in an oil bath and was carried

out at 70 �C for 4 h under stirring rate 300 rpm. After

polymerization, the product was demulsified and

purified from surfactant by centrifugation (at

5000 rpm for 5 min) and redispersion in anhydrous

ethanol for four times. Then, the microspheres were

washed thoroughly with distilled water. Finally,

GNIPs was obtained after freeze-drying for 24 h. The

same protocol was followed for preparation of

GMIPs, but adding 3 mg DOX to the oil phase early

for pre-assembling with the monomer.

To highlight the effectiveness of surfactants

ViDoIm?Br- designed in our work, we selected

DTAB whose chemical structure was similar to

ViDoIm?Br- to prepare corresponding GNIPs-DTAB

as references. The protocol of GNIPs was followed for

Scheme 1 Schematic diagram

of GMIPs synthesis and DOX

release by an ex vivo.
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preparation of GNIPs-DTAB, but DTAB was substi-

tuted for ViDoIm?Br- in the aqueous phase. The

detailed composition is shown in Table 1.

Antibacterial tests

Antibacterial tests were performed to examine the

antimicrobial properties of GNIPs-DTAB, GNIPs and

unloaded GMIPs (after template removal) micro-

spheres against the Gram-negative bacterium of

E. coli and the Gram-positive bacterium of S. aureus.

Nutrient agar medium was prepared by adding agar

(20.0 g) into the solution (peptone 10.0 g, yeast 5.0 g,

sodium chloride 10.0 g, and distilled water 1000 mL)

with pH of 7.4. The agar medium was sterilized in a

conical flask at 121 �C for 30 min under a pressure of

0.1 MPa. This medium was then transferred into

sterilized Petri dishes. The culture of the microor-

ganism was diluted by sterile distilled water to

approximately 106 CFU/mL. After solidification of

the medium, the mixture of microorganism culture

and 2.5 mg/mL microspheres solution was coated on

the solid surface of the medium by spread plate

method. The colonies were observed after incubating

bacteria strains at 37 �C for 24 h.

Determination of the drug loading content
and entrapment efficiency

The GMIPs were heated with aqueous solution at

60 �C for two days to remove the template. For

comparison, GNIPs were handled by the same

operation. After freeze-drying, the intact DOX was

then adsorbed as the loading drug. Specifically,

10 mL of 1 mg/mL DOX solution (PBS buffer, pH

7.4) was added to 100 mg of GMIPs or GNIPs, and

the mixture was kept shaking for 24 h. Finally, the

content of DOX in the supernatant was measured by

a UV–visible spectrophotometer. The drug loading

content and entrapment efficiency were determined

by the following equations:

drug entrapment efficiency

¼ weight of drug in nanoparticles

weight of drug injected
ð1Þ

drugloadingcontent¼weightofdruginnanoparticles

weightofnanoparticlestaken

ð2Þ

Drug release behaviors of DOX in vitro

In vitro release experiments were performed in PBS

buffer at pH values of 7.4. In detail, 200 mg of GMIPs

and GNIPs nanoparticles was placed in a dialysis bag

with a molecular weight cutoff of 3500 Da, respec-

tively. In the instantaneous release experiment, the

GMIPs solution was additionally exposed to the 808-

nm laser at a power density of 2 W/cm2. Samples

(3 mL) were periodically collected, and the removed

liquid is returned to the original system after the test.

The samples were analyzed with a UV–visible spec-

trophotometer to measure the amount of released

DOX. The drug cumulative release at time t (Rt) was

determined by the following equations:

Rt¼
Weightofdrugreleaseattimet

Weightofdruginnanoparticlesattheinitialmoment

ð3Þ

In order to effectively simulate and predict drug

release behavior, drug release data were studied

using zero-order (Eq. 4), first-order (Eq. 5), Higuchi

(Eq. 6), and Hixson–Crowell (Eq. 7) mathematical

models.

Rt ¼ K0t ð4Þ

lnð1 � RtÞ ¼ �K1t ð5Þ

Rt ¼ KH

ffiffi

t
p

ð6Þ

1�
ffiffiffiffiffiffiffiffiffiffiffi

1�Rt
3
p

¼ KHCt ð7Þ

where K0, K1, KH, and KHC are the release constants of

the respective equations.

Table 1 Recipe of preparing

polymer microspheres Sample notation Template Surfactants Dosage

GNIPs-DTAB – DTAB 90 mg (2.9 9 10-4 mol)

GNIPs – ViDoIm?Br- 100 mg (2.9 9 10-4 mol)

GMIPs DOX ViDoIm?Br- 100 mg (2.9 9 10-4 mol)
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Characterization

In order to elucidate the structure of prepared poly-

merizable ionic liquid, nuclear magnetic resonance

(NMR, Bruker Avance 400 MHz, Bruker, Germany)

using CDCl3 as solvent was performed. The con-

ductivity measurements of surfactant solutions were

taken at 25 �C using a conductometer (DDS-307,

Leici, China), and the average of three measurements

was taken. Transmission electron microscopy (TEM,

FEI Talos F200X, FEI, USA) was employed to obtain

the morphologies and size of the prepared micro-

spheres. FTIR spectra in the region of 4000–400 cm-1

were recorded by the KBr pellet method with Fourier

transform infrared spectrometer (FTIR, TENSOR27,

Bruker, Germany). Chemical surface characterization

was performed by X-ray photoelectron spectrometry

(XPS, Kratos Axis Ultra DLD, Kratos, UK). Zeta

potential and dynamic light scattering (DLS) mea-

surements of the prepared microspheres were per-

formed using a Zetasizer Nano detector (Zeta,

ZEN3690, Malven, Britain). Thermal data were

obtained by a thermogravimetric analyzer (TGA, SDT

Q6000, USA) under the temperature range 20–800 �C
at a heating rate of 10 �C min-1 under a nitrogen

atmosphere.

Results and discussion

Synthesis of ViDoIm1Br2

Here, the ionic liquid was not only used as an

emulsifier for miniemulsion polymerization, but also

capable of participating in the polymerization of

GNIPs and GMIPs. Therefore, the ionic liquid needs

to satisfy two essential conditions. First, it must be

the same like traditional surfactant, consisting both of

hydrophilic and lipophilic parts. Second, the resul-

tant surfactant should have the polymerizable double

bond. Hence, we synthesized ViDoIm?Br-, which

consisted of a hydrophilic imidazole group with a

double bond and a hydrophobic dodecyl chain. As

shown in Fig. 1, H-NMR of the ViDoIm?Br- was

performed to verify the synthesis of the anticipated

products. ViDoIm?Br-: 1H-NMR (CDCl3, 400 MHz,

ppm): d10.86 (s, 1H, H1), 7.98 (d, 1H, H2), 7.63 (d, 1H,

H3), 7.49 (t, 1H, H4), 6.03 (d, 1H, H5), 5.35 (d, 1H, H6),

4.40 (t, 2H, H7), 1.93 (m, 2H, H8), 1.23 (m, 18H, H9),

0.86 (t, 3H, H10).

The micellar properties of surfactants
ViDoIm1Br2

We anticipated that ViDoIm?Br- would exhibit an

interfacial and aggregation behavior which was

analogous to the conventional cationic surfactants.

Figure 2 shows the change of the conductivity values

(d) with the increase in the surfactant concentration.

The breakpoint of two straight lines gave the CMC

value of ViDoIm?Br-. Below CMC value, the d value

rose with an increase in surfactant concentration due

to the free surfactant ions in the medium. The sur-

factant molecules began self-aggregating to form

micelles when the surfactant concentrations came to

the intersection point. The conductivity increased

slowly at the concentrations above the CMC because

the micelle mobility was lower than the free surfac-

tant ions. The experimental result showed that the

CMC value of ViDoIm?Br- was 4.1 9 10-3 M and

ViDoIm?Br- would exhibit rather good surface

activity.

Morphology and characterization
of polymer microspheres

The morphology and size of polymer microspheres

were characterized by TEM. In Fig. 3b, c, the GNIPs

and GMIPs synthesized using ViDoIm?Br- as sur-

factant showed a comparatively broad distribution of

sizes ranging from 80 to 600 nm. A few reports have

declared that the particles which as the delivery of

Figure 1 1H-NMR spectrum of ViDoIm?Br- in CDCl3.
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pharmacologically active agents less than 5 lm are

relatively safe, because the size range has unde-

manding access to absorbing and transporting into

the bloodstream [42]. Therefore, this system would be

suitable for clinical application in some extent.

GNIPs-DTAB synthesized using DTAB as surfactant

was basically the same as GNIPs, except for bigger

size (Fig. 3a). In addition, the DLS measurement

results were consistent with TEM and the size of the

three microspheres was not uniform, which indicated

that the microspheres prepared via miniemulsion

polymerization method using considerable amounts

of cross-linkers had a polydisperse diameter.

To further ascertain the properties of the polymer

microspheres, other characterizations were

employed. The results of XPS characterization are

shown in Fig. 4. The only source of N elements was

from the surfactants due to the absence of N in MMA

and EGDMA. Since most of DTAB was washed away

after rinsing with water, the characteristic peaks of N

1s were not observed in the wide scan spectra and

high magnification of N 1s of GNIPs-DTAB (Fig. 4a,

b). However, N 1s of GNIPs still could not be detec-

ted in XPS wide scan (Fig. 4a), which was due to the

complete concealment of N 1s by long alkyl chains of

the polymerizable surfactant [43]. Fortunately, there

was a characteristic peak in GNIPs microspheres after

high magnification which was assigned to the nitro-

gen (N 1s) of the imidazole groups (Fig. 4b). As

shown in Table 2, the N content in GNIPs was 0.44%,

which completed the transition from scratch. Such a

significant change in N content indicated that more

polymerizable surfactants eventually stayed on the

Figure 2 Variation in the conductivity with ViDoIm?Br-

concentration in aqueous solution.

Figure 3 TEM images and size distributions as measured by DLS of GNIPs-DTAB (a), GNIPs (b), and GMIPs (c).

J Mater Sci (2019) 54:9124–9139 9129



surface of the GNIPs. The content of N element in the

GMIPs was similar to that of GNIPs. In order to

indicate the successful incorporation of functional

monomers and cross-linkers into GNIPs-DTAB,

GNIPs and GMIPs, FTIR characterization is shown in

Fig. 5. The peak at 1732 cm-1 was assigned to the

C=O stretching of EGDMA, and the peaks around

1257 and 1152 cm-1 were ascribed to C–O–C

stretching. Note that the characteristic adsorption

peaks of poly (MMA) in poly (MMA-co-EGDMA)

microspheres were not discernible due to their

overlap with those of poly (EGDMA). Moreover, the

C=C functional groups at around 1634 cm-1 were

found [23].

Zeta potential of different microspheres is pre-

sented in Table 2. For GNIPs, zeta potentials

remained positive (43.09 mV), demonstrating that

most of the surfactants involved in the polymeriza-

tion still existed on the surface after washing.

Although DTAB was not detected in the high mag-

nification of N 1s, GNIPs-DTAB surface charge still

showed to the relatively low positive zeta potential

value (8.14 mV) after washing, indicating that

although most DTAB had been ‘washed off’ (des-

orbed) from the surface, a few remained [44]. The

zeta potential of GMIPs (36.36 mV) was slightly

lower than GNIPs. The reasonable explanation might

be that the interaction sites between the microspheres

and GQDs increase after the addition of the template

DOX, causing more GQDs to be attracted and more

positive charges to be neutralized.

Figure 4 XPS wide scan spectra (a) and high magnification of N 1s (b) of GNIPs-DTAB, GNIPs, and GMIPs.

Table 2 Zeta potential and

surface atomic compositions

from XPS spectra of GNIPs-

DTAB, GNIPs and GMIPs

Sample notation Zeta potential (mV) Atomic concentration (atomic %)

C O N

GNIPs-DTAB 8.14 78.26 21.74 0

GNIPs 43.09 78.66 20.90 0.44

GMIPs 36.36 78.69 20.91 0.40

Figure 5 FTIR spectra of GNIPs-DTAB, GNIPs and GMIPs.
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NIR photothermal conversion

We irradiated these polymer microspheres solutions

(6 mg/mL) with an 808-nm laser for 40 min at a laser

power of 2 W/cm2. As shown in Fig. 6, the temper-

ature of all solutions increased rapidly under irradi-

ation within five minutes and then leveled off at 38,

40, and 43 �C for GNIPs-DTAB, GNIPs, and GMIPs,

respectively. Variations in temperature might be

related to the density of GQDs. GQDs with nega-

tively charged because of the presence of hydroxyl

and carboxyl groups might show electrostatic inter-

actions with the positively charged imidazole ionic

liquids. Therefore, GNIPs and GMIPs showed a

higher temperature than GNIPs-DTAB. Zeta poten-

tial data indicated that GQDs in GMIPs was more

than GNIPs, so the temperature of GMIPs was

highest. In theory, protein deformation and DNA

damage might occur when the local temperature of

the tumor exceeded 42 �C, which would directly kill

the cancer cells [45]. Excitingly, DDS performed

enhanced permeation retention effect (EPR) under

tumor microenvironments, which benefited the

nanospheres accumulation [46], possibly making

higher local temperature with NIR. Therefore, this

system would have the possibility of clinical hyper-

thermia which will not be discussed in this work.

Antimicrobial activity

Because of the severe decline in body immunity,

cancer patients are susceptible to bacterial infection

after chemotherapy. Inflammatory cells can also

affect cancer metastasis. Thus, it is necessary to avoid

infection during cancer treatment [47, 48]. The aim of

this study was to synthesize a novel multi-potent

smart antibacterial nanocarrier for anticancer drug

delivery purposes. Therefore, antimicrobial tests of

GNIPs were carried out and the results were com-

pared with GNIPs-DTAB (Fig. 7). As shown in the

horizontal row of GNIPs, after co-culture with GNIPs

for 24 h, the viable colonies of S. aureus and E. coli

decreased sharply. The quaternary ammonium com-

pounds such as imidazolium-based ionic liquids

exhibit a strong antimicrobial activity [49]. The

antimicrobial activity was mainly due to the interac-

tion of the ammonium salt with the cell membrane of

microorganisms [50]. On the contrary, the horizontal

row of GNIPs-DTAB showed relatively poor antimi-

crobial activity. It was due to the fact that the content

of DTAB was too low to exhibit significant antibac-

terial properties, although DTAB was also a quater-

nary ammonium salt compound [51]. In addition, the

electrostatic attraction between positively charged

nanoparticles and negatively charged bacterial cells

was shown to be an important aspect with regard to

the antimicrobial activity [52, 53]. The zeta potential

of GNIPs (43.09 mV) was slightly higher than GMIPs

(36.36 mV), so the results show that the antimicrobial

effect of GNIPs was better than that of unloaded

GMIPs. But overall, the antimicrobial surface caused

by ionic liquids would allow polymeric materials to

be better used in anticancer drug delivery systems. So

far, the characterization of materials has been com-

pleted. Next, we have begun to focus on the prop-

erties of GNIPs and GMIPs as drug delivery systems.

Characterization of drug loading

The DOX loading to GMIPs had been calculated as

high as 7.08%, corresponding to the encapsulation

efficiency of 70.8%. Compared to other DDS in

Table 3, the drug loading content and encapsulation

efficiency of the new materials in this work were

similar to or even better than that of the general

polymer drug delivery system, although there was

still a certain gap compared with nanogels and

mesoporous materials. The drug loading depends on

two reasons.

First, the GQDs have shown extraordinary poten-

tial in the field of drug delivery because of their six-

membered carbon ring structure, which could allow

p–p and hydrophobic interactions with aromatic

rings of DOX [60]. Figure 8 illustrates the UV–Vis

spectra of GQDs, free DOX, and DOX-GQDs. Free

DOX displayed absorption at 233.6, 254.0, and

480.5 nm (black line), and the peak was slightly

redshifted from 480.5 to 485.0 nm after DOX adsor-

bed on the surface of GQDs (green line), indicating

DOX loaded to GQDs successfully. In addition,

GQDs as a new class of two-dimensional materials

with large specific surface area [61], could not only

improve the affinity and sensitivity of the template

drug molecules, but also improve the drug loading of

the existing MIP-based DDS.

Second, there might be various kinds of interac-

tions between template drugs and imprinting sites of

polymers in aqueous medium [1]. To illustrate the

interaction between DOX and MMA, the pore size

distribution of GNIPs and GMIPs was examined by
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the nitrogen adsorption–desorption isotherms and

the corresponding BJH pore size distributions curves.

The results are shown in Fig. 9 that both samples

showed obvious hysteresis loop because of the exis-

tence of pores [62]. The porous structure of polymers

resulted from a phase separation between the poly-

mer and cetyl alcohol as porogen during the poly-

merization [63]. Moreover, the pore diameter of

GNIPs and GMIPs was measured to be 1.93 and

2.53 nm, respectively. The larger pore size of GMIPs

was derived from the intermolecular forces between

DOX and functional monomers MMA. In addition,

many researchers have also confirmed that the

molecular imprinting technique was developed

based on interaction between template drug mole-

cules and suitable functional monomers [1, 10, 58].

Figure 10 illustrates the results of thermogravi-

metric analysis of loaded GMIPs (before template

removal), unloaded GMIPs (after template removal),

GNIPs and DOX. For all polymer microspheres,

similar results were obtained. An initial mass loss

was observed below 300 �C due to continuous

removal of solvents and water that was enclosed in

the cross-linked polymers. The dramatic weight loss

was observed at approximately 300–450 �C which

was connected with the decomposition of the poly-

mers. However, there were still differences in the

details. At 220 �C, a relatively significant mass

change was only observed in loaded GMIPs curve,

corresponding to the weight loss of the DOX. In

addition, the mass loss of 300–450 �C was slightly

lower for the loaded GMIPs compared to the two

GNIPs-DTAB GNIPs GMIPs(a)

(b)

Figure 6 Thermal images of GNIPs-DTAB, GNIPs, and GMIPs solution, respectively, after 40 min (a); temperature change curves of

GNIPs-DTAB, GNIPs, and GMIPs solution exposed to the 808-nm laser at a power density of 2 W/cm2 (b).
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other polymers. To make this discussion more con-

crete, the plots were made from the same starting

weight (%) at 300 �C (Fig. 10b). The final platform of

loaded GMIPs was slightly higher, which clearly

indicated that more additional non-volatile material

was present in the residue. Because DOX was not

fully decomposed into volatile material under nitro-

gen atmosphere [1], this result indicated that DOX

was imprinted in loaded GMIPs’ structure. Therefore,

the coverage and drug load of GNIPs were lower

than the corresponding values of GMIPs, which were

4.00% and 39.98%, respectively.

In addition, the cumulative release of GNIPs and

GMIPs over time also demonstrated that molecular

imprinting techniques provided multiple forces for

drug loading. The typically high loading efficiency of

drug molecules indicated high potential of the GMIPs

system as nanocarrier.

Drug release behaviors of DOX in vitro

A desirable property of MIPs is the ability to desorb

the template in a controlled manner for their appli-

cation in drug delivery systems [64]. To demonstrate

this potential, the kinetic release curve of the relation

Table 3 Summary of data on loading content and encapsulation efficiency for several typical drug delivery systems

Drugs Drug delivery systems Loading

content (%)

Encapsulation

efficiency (%)

References

Doxorubicin Surface molecular imprinting polymer on the surface of mesoporous silica

nanoparticles

10.5 70 [10]

Doxorubicin Heparin nanogels 30 90 [54]

Docetaxel Chitooligosaccharide nanomicelle 3.2 99.4 [55]

Doxorubicin PEG-PLGA nanopolymersomes 7.3 91.2 [56]

Curcumin Regenerated silk fibroin nanospheres 1.2 40.3 [57]

Gatifloxacin Molecularly imprinted poly(methacrylic acid) nanospheres MIPs 9.0 90.7 [58]

NIPs 6.7 68.5

Metronidazole Itaconic acid-based molecular imprinted polymers MIPs 4.646 61 [59]

NIPs 1.512 20

E. coli S. aureus

control

GNIPs

-DTAB

GNIPs

unloaded

GMIP

Figure 7 Antimicrobial activities of GNIPs-DTAB, GNIPs and

GMIPs against E.coli (a) and S. aureus (b).

Figure 8 UV-Vis absorption spectra for free DOX, GQDs with

and without bound DOX.
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between the cumulative release of DOX and release

time in the solution is shown in Fig. 11a. It can be

seen that the DOX released from GNIPs was char-

acterized by an initial rapid release and then a step of

slower release. More than 23.34% of the DOX was

released from GNIPs after 60 min. In the case of

GMIPs, the release of DOX was slower, particularly

between 10 and 60 min and less than 14.21% were

released after 180 min. These results could be

explained by the fact that most of the DOX loading on

GNIPs came from weak and non-specific adsorption,

as can be seen from the rapid release. DOX-GMIPs

interactions dominated the release profile of GMIPs

because DOX was incorporated into highly specific

cavities in the nanoparticles where specific and

cooperative retention mechanisms took place, caus-

ing slower release. The lower diffusion rate of DOX

from GMIPs indicated that the specific binding

characteristic of these systems can provide a useful

means of sustaining the delivery profile and prevent

drugs from leaking during delivery.

It was well known that ideal drug release was

carried out by controllably switching on or off the

drug supply in order to maintain the active drug at

the appropriate concentration in vivo for the required

time to produce therapeutic effect [33]. To realize the

on or off release of DOX, GMIPs aqueous dispersions

were continuously irradiated by an 808-nm laser with

Figure 9 N2 adsorption–desorption isotherms (a) and pore size distribution (b) for GNIPs and GMIPs.

Figure 10 TGA results of drug-loaded GMIPs, drug-unloaded GMIPs, and GNIPs. Temperature range: 20–800 �C (a); 300–800 �C (b).
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a power density of 2 W/cm2 for different times

(Fig. 11b). For comparison, the release of DOX from

GMIPs nanocomposites (without NIR) was also

recorded under otherwise identical conditions. The

cumulative release of DOX without NIR was 4.05% at

30 min, and then increased slowly with time. When

the NIR fell into the particles only for 30 min, the

temperature was still in the rising stage at this

moment, which was not only unfavorable for the

change of binding energy between GODs and DOX

[65], but also for the acceleration of thermal motion of

drug molecules. That is why the amount of drug

release low at 4.86% until 30 min. But then, the

cumulative release of DOX increased almost linearly

to 26.02% at 90 min, exhibited a slow increase to

36.54% (at 180 min). This controllable release results

showed the fact that GQDs in the GMIPs micro-

spheres converted the 808-nm laser energy to heat

and then conferred the temperature elevation, lead-

ing to change of the binding energy between GQDs

and DOX [65]. Moreover, the release kinetics of 34,

37, 40 and 43 �C (Fig. 12) expectedly revealed the

important influence of temperature changes on the

drug release performance. Compared to lower tem-

peratures, higher temperatures could lead to

increased release rates and cumulative release. Sim-

ply raising the temperature was also conducive to

drug release, so more DOX were released from

GMIPs with NIR switching on.

Several mathematical models were utilized for

analyzing the DOX release. The values of corre-

sponding release constants k and correlation

coefficients (R2) are collected in Table 4. For GNIPs,

GMIPs, GMIPs (NIR), the release of DOX could be

nicely fitted with first-order model (R2 = 0.924, 0.939,

and 0.959, respectively). This implied that drugs were

released relatively rapidly at first, but then the release

significantly decelerates [66]. The release of DOX

from the GMIPs can be partially fitted with zero-

order model (R2 = 0.929), whereas for GNIPs, the R2

values are relatively low (R2 = 0.888). It was reported

that zero-order release systems could minimize the

side effect of the drug, as they allow the delivery of

drugs without the common ‘burst effect’ in which a

Figure 11 Kinetic release curve of DOX from GNIPs to GMIPs (a); The cumulative release of DOX from GMIPs under or without the

irradiation of 808-nm laser (2 W/cm2) for different time (b).

Figure 12 The effect of temperature on drug release behavior of

GMIPs.
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significant amount of drugs was released in the initial

stage of the process [67]. Although the obtained R2

value of GMIPs (NIR) (R2 = 0.934) was similar to

GMIPs, noticeable differences in Ko values indicated

that the release rate of DOX from GMIPs (NIR) was

significantly faster than GMIPs. Compared with

Hixson–Crowell mathematical models, the release of

DOX from GNIPs and GMIPs was perfectly fitted

with the Higuchi model (R2 = 0.974 and 0.973,

respectively). It can be assumed that the release

mechanism of two materials was mostly based on

Fickian diffusion. The R2 value of Higuchi model by

GMIPs (NIR) was relatively low, which indicates that

the release mechanism was different from that of

GMIPs due to photothermal effect.

Conclusions

Here, we successfully prepared a polymer micro-

sphere doped with GQDs via miniemulsion poly-

merization using a polymerizable ionic liquid

ViDoIm?Br- as emulsifier and a photothermally

triggered molecular imprinted DDS was designed by

adding the template DOX. The GMIPs dramatically

enhanced DOX loading efficiency and weakened

drug leakage rate in comparison with GNIPs because

of multiple forces provided by molecular imprinting

techniques. Importantly, the effective releasing of

loaded DOX from GMIPs was controlled by NIR

irradiation due to the photothermal effect of GQDs.

This work has provided an idea for designing novel

drug delivery systems, which allows the drug to

reach the therapeutic effect only at suitable location.

We believe that the combination of molecular

imprinting techniques and photothermally control-

lable drug delivery systems would exhibit great

potential application in nanomedicine fields.
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