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ABSTRACT

Dynamic mechanical analysis is a method to characterize the frequency domain

viscoelastic properties including storage and loss moduli. Methods have been

developed to transform these properties to time domain and extract elastic

modulus over strain rates, which is useful in mechanical design. However,

application of these methods becomes increasingly complex for materials con-

taining multiple thermal transitions. Neural networks can provide advantages

in solving such problems. As the form of radial basis neural network satisfies the

form obtained from time–temperature superposition principle, it is used in the

present work with back-propagation to establish the master relation of loss

modulus. The influence of regulation factor and neuron number is investigated

to find the best parameter set. Then, storage modulus is divided into frequency-

dependent and frequency-independent part. Both parts are individually calcu-

lated from loss modulus using Kramers–Kronig relation. The linear integral

relation of viscoelasticity can transform the storage modulus into time-domain

relaxation modulus, which can predict the stress response with specific strain

history and temperature. The transformation is tested on ethylene–vinyl acetate.

The time-domain elastic properties are extracted and compared with those from

tensile tests at room temperature. The transformation achieves an average root

mean square error of 3.3% and a maximum error 4.9% between strain rates 10-6

to 10-2 s-1. This process can predict the properties at a wide range of temper-

atures and frequencies from a single specimen and can be implemented using

parallel computing, which is promising for complex material systems.

Address correspondence to E-mail: xx579@nyu.edu

https://doi.org/10.1007/s10853-019-03481-0

J Mater Sci (2019) 54:8401–8413

Computation and theory

http://orcid.org/0000-0003-0487-9748
http://orcid.org/0000-0001-7128-4459
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-019-03481-0&amp;domain=pdf
https://doi.org/10.1007/s10853-019-03481-0


Introduction

Dynamic mechanical analysis (DMA) method has

been extensively used for characterizing viscoelastic

properties of polymers [1, 2], composites [3, 4] and

biomaterials [5, 6]. In this method, a sinusoidal

loading cycle is applied and the storage (E0) and loss

(E00) moduli are calculated from the in-phase and out-

of-phase components of load and displacement cycles

[7, 8]. The sinusoidal loading can be applied at dif-

ferent frequencies and temperatures, and the entire

dataset can be generated on a single specimen.

However, both E0 and E00 are in frequency domain

and do not have much significance in mechanical

design field. Recent studies have focused on devel-

oping methods to transform this frequency domain

data to time domain [9–11]. The time-domain data

can be used to extract elastic modulus over a range of

strain rates and temperatures, which has tremendous

importance in engineering fields, especially for

designing structures for dynamic loading conditions

that can be subjected to different temperatures.

Extracting the elastic modulus over a range of strain

rates and temperatures from the DMA results of a

single specimen eliminates the need to conduct a

large number of tensile tests [12–14]. The predictions

of this transform have been validated with data on

neat polymers [9, 15], nanocomposites [16] and hol-

low particle-filled composites [10]. The method

works by first applying the classic time–temperature

superposition principle (TTS) to build the master

curve for E0. This master curve is represented by an

equation called master relation, which provides a

relation for E0 with respect to frequency and tem-

perature. It allows extrapolating the values beyond

the frequency range covered in the DMA experi-

ments [17]. Then, E0 is transformed to time-domain

relaxation modulus E(t) using linear integral relation

of viscoelasticity [9, 10]. Finally, E(t) is used to predict

the stress response with certain strain history and

temperature and obtain the elastic modulus with

respect to strain rate and temperature [18].

Although the existing transformation method

based on storage modulus has many advantages

[11, 19, 20], it also has some limitations. First, the

equations are set up for transforming data that show

only one thermal transition peak in the DMA

response. When more than one thermal transitions

are present in the storage modulus, the current

transformation methods find it difficult to identify

and model each transition, especially if two transition

are close to each other. Loss modulus is able to

resolve the thermal transitions better, and an

approach based on loss modulus is expected to be

more robust. The difficulties increase with the num-

ber of transitions. In addition, the method becomes

computationally expensive because a large number of

constants need to be determined to solve the equa-

tions. Use of artificial neural network (ANN) with

parallel computing may have significant benefits for

developing a generalized solution for this problem. A

method for developing ANN-based solution for a

single thermal transition material has been demon-

strated [20]. However, a generalized method

demonstrating the possibility of treating complex

material behaviors has not been tested. Inspired by

biological neural networks, ANN is efficient at han-

dling complex nonlinear behaviors and has a strong

physical foundation for use in the materials science

field [21]. ANN has been used in prediction [22–24]

and optimization [25] of material properties.

The master relation defined with respect to tem-

perature and frequency is used to develop the

scheme for extracting elastic modulus [19]. Using

temperature and frequency as the inputs, the form of

the radial basis neural network (RBNN) satisfies the

form of the TTS principle and enables massive com-

putation tasks robustly [26]. Using E00 as output, the

neural network can easily identify and model each

thermal transition, even though the two thermal

transitions are close to each other. The E0 of both

strain rate sensitive and insensitive material can be

divided into frequency-dependent and frequency-

independent parts. Both parts can be calculated sep-

arately from E00 using Kramers–Kronig (K–K) relation

[11, 27]. The properties of strain rate sensitive mate-

rial are mainly contributed by the frequency-depen-

dent part, while the properties of strain rate-

insensitive material are mainly contributed by the

frequency-independent part. By modeling both fre-

quency-dependent and frequency-independent part

separately, this work builds a general description of

strain rate sensitive and insensitive material. It is

noted that E0 has a strong dependence on tempera-

ture. It will have poor fitting results when using least

square error, which is the most popular one, as the

object function. In addition, it is sometimes not easy

to distinguish multiple thermal transitions present in

the material behavior in the storage modulus curve.

Hence, the scheme in the present work relies on using
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loss modulus E00, which varies in a smaller range than

E0 and is capable of generating better fitting results

when using least square error as the object function.

The RBNN is used in the present work to build the

master relation over a wide range of temperatures

and frequencies. The RBNN is tested at various reg-

ulation factors and neuron numbers to find the best

fitting parameters. The data are used to predict the

elastic modulus of the material over a range of strain

rates and temperatures. It is worth mentioning that

this work is focused on building the relations

between the properties obtained from different test-

ing methodologies. Since the parameters such as

materials inhomogeneity and materials quality

should affect the results obtained from both testing

methods, DMA and tensile tests, in a similar manner,

these materials related factors are not the focus of the

present study.

Materials and methods

RBNN methodology and back propagation

The two components of complex modulus, E0 and E00,

are not independent, and their relation is discussed in

section ‘‘Relations between storage and loss modu-

lus’’. The frequency range of master relation needs to

be wide enough to implement the transformation. To

build a master relation which can describe both strain

rate sensitive and insensitive material behaviors

under a wide range of temperatures and frequencies,

E0 is divided into the frequency-dependent and fre-

quency-independent parts. The master relation of E0

can be established by finding both parts individually

using K–K relation. The transformation procedure is

shown in Fig. 1.

The RBNN is used to establish the master relations

of E00. The frequency and temperature are chosen as

the inputs of the RBNN. For multiple-layer RBNN,

the mapping function between two layers can be

mathematically defined as [28]

E xð Þ ¼
XN

m¼1

bmUm x� Rmk kð Þ ð1Þ

where E(x) is the output E00, x is the vector of the

input (x and T), N is the number of basis and bm is

the coefficient of basis Um. Rm is the set of centers,

which is the center set of thermal transition in this

work. The contribution of each basis is determined by

the distance to each basis center. The basis function is

developed using the K–K relation and TTS principle.

The contribution of mth neuron in the hidden layer,

zm, can be expressed by

zm ¼ Um aTmx� am0

� �
ð2Þ

where am is the weight vector of x and am0 is the

biased term for mth neuron. A three-layer RBNN is

used, and it has two input neurons x and T and one

output neuron E00. Only one hidden layer is used, and

each neuron in the hidden layer corresponds to one

thermal transition. The accuracy of neural network is

sensitive to the neuron number and is studied in the

initial part of the analysis. To reduce the over-fitting

phenomenon, a regulation term X(a, b) is added to

the performance function as [29]

~F E00; xð Þ ¼ F E00; xð Þ þ hX a; bð Þ ð3Þ

where a and b are the parameters of RBNN and h is

the regulation factor. Proper regulation factor needs

to be chosen to achieve a balance between over-fitting

and under-fitting. The mean sum of squared errors is

used as the measure of error of neural network, and

L2 regulation or ridge regression is used for regula-

tion term as

F E00; xð Þ ¼ 1

N

XN

i¼1

Fi ¼
1

N

XN

i¼1

E00 xið Þ � ~E00 xið Þ
� �2 ð4aÞ

X a; bð Þ ¼ 1

J

XJ

j¼1

a2j þ
1

K

XK

k¼1

b2k ð4bÞ

where ~E00 is the fitted loss modulus and E00 is the

experimental loss modulus, Fi is the prediction error

of ith data, N is the size of the dataset, J is the number

of parameters between input layer and hidden layer

and K is the number of parameters between hidden

layer and output layer.

In order to train the RBNN, the DMA results of one

specimen are used. The dataset contains the storage

and loss modulus measurements at 860 combinations

of temperatures and frequencies. The training pro-

cess of RBNN starts by randomly dividing the dataset

into training set, validation set and test set in 60:15:25

ratio. The corresponding sizes of training, validation

and test set are 516, 129 and 215 data points,

respectively. Then, the RBNN is trained by mini-

mizing the performance function using training set.

When the improvement in the performance dimin-

ishes, the training is stopped. The neural network is
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trained using back-propagation method to establish

the master relation of E00. The weights are trained to

minimize the error using gradient descent, and the

change of each weight for each iteration (r) can be

expressed as

a rþ1ð Þ
lm ¼ a rð Þ

lm � c
2

N

XN

i¼1

oFi

oa rð Þ
lm

þ h
2

J
a rð Þ
lm

" #
ð5aÞ

b rþ1ð Þ
m ¼ b rð Þ

m � c
2

N

XN

i¼1

oFi

ob rð Þ
m

þ h
2

K
b rð Þ
m

" #
ð5bÞ

where c is the learning rate, which is kept as 0.01; bm
is the weight between mth neuron and output; and

alm is the weight between lth input and mth neuron in

the hidden layer. The gradient of F can be expressed

as

oFi

oa rð Þ
lm

¼ � E00 xið Þ � ~E00 xið Þ
� �

b rð Þ
m xiU

0
m aTmxi � a0m
� �

ð6aÞ

oFi

ob rð Þ
m

¼ � E00 xið Þ � ~E00 xið Þ
� �

Um aTmxi � am0

� �
ð6bÞ

The back-propagation process converges when the

gradients of the weights are below 10-5.

Material and experiments

The virgin EVA is of grade N8038 produced by TPI

Polene, Thailand. It is injection molded into DMA

and tensile test specimens at 150˚C and 60 bar. The

dimensions for DMA specimens are

60.0 9 12.7 9 2.5 mm3 (length 9 width 9 height),

and the geometry of tensile test specimens conforms

to ASTM D638.

A TA Instruments (New Castle, DE) Q800 DMA is

used to characterize the specimens in - 150 to 60̊ C

temperature range with a temperature step of 5˚C.

The DMA tests are conducted under dual-cantilever

configuration (span length: 35 mm) with strain con-

trol mode with a maximum displacement of 25 lm.

For each temperature step, the soaking time is set as

5 min to ensure thermal equilibrium. Frequency

sweeps are conducted at 20 discrete frequencies log-

arithmically spaced between 1 and 100 Hz. The

experiment is terminated when the force magnitude

drops below 10-4 N. Three specimens are tested for

repeatability. The profile of E0 and E’’ with respect to

temperature is shown in Fig. 2 at 1 Hz frequency.

The glass transition temperature is observed to be at

- 30̊ C in the material. The initial part of the graph

also shows the presence of another peak at - 150̊ C.

In the previous studies, storage modulus is used for

modeling the material response; however, thermal

transitions are not reliably resolved in the storage

modulus curve so the loss modulus is the better

choice for modeling the material behavior for thermal

transition temperatures. The three-dimensional

response surfaces of E0 and E00 are shown in Fig. 3,

where both temperature and frequency sweeps are

Figure 1 The procedure of

radial basis neural network

modeling scheme for dynamic

mechanical analysis data.
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conducted. Similar response surfaces will be plotted

from the modeling results for comparison with the

experimental results.

An Instron 4467 universal test system is used for

the time-domain viscoelastic properties at room

temperature. An Instron 25-mm gage length exten-

someter is used to obtain the strain history data

under different initial strain rates from 2.5 9 10-6 to

2.5 9 10-3 s-1. Four specimens are repeated for each

strain rate, and a representative set of stress–strain

curves for EVA is presented in Fig. 4.

Relations between storage and loss modulus

The E0(x) and E00(x) are not independent and their

relation at a given temperature T can be expressed as

[30]

E0 x;Tð Þ � E0 0;Tð Þ ¼ 2

p

Z1

0

x2E00 k;Tð Þ
k x2 � k2
� �dk ð7Þ

where x is the angular frequency and E0(0, T) is the E0

at frequency 0. The right side represents the differ-

ence between storage modulus at frequency 0 and x,
which can be named as DE0. DE0 is a function of fre-

quency and temperature while E0(0, T) is frequency-

independent. Using this relation, the temperature-

dependent E0 can be divided into frequency-inde-

pendent component E0(0, T) and frequency-depen-

dent component DE0(x, T). The E0(0, T) is simplified

as E0
0(T) for convenience in the following work as

DE0 x;Tð Þ ¼ 2

p

Z1

0

E00 k;Tð Þx2

k x2 � k2
� �dk ð8aÞ

E0
0 Tð Þ ¼ E0 x;Tð Þ � 2

p

Z1

0

E00 k;Tð Þx2

k x2 � k2
� �dk ð8bÞ

To implement this process, E00 at wide range of

frequencies and temperatures needs to be found.

Taking derivative with respect to x on both sides of

Eq. 8.b:

dE0 x;Tð Þ
d lnx

¼ dDE0 x;Tð Þ
d lnx

¼ � 4

p

Z1

0

kE00 k;Tð Þ
x2 � k2
� �2 dk ð9Þ

The K–K relation can be found when E00 changes

slowly with x as per the following equation [27] and

can be used to find the radial basis function

E00 x;Tð Þ � p
2

dE0 x;Tð Þ
d lnx

ð10Þ

Zeltmann et al. [9] used sigmoid function to

describe E0 for single thermal transition as

E0 xð Þ ¼ aþ b tanh c ln xð Þ þ dð Þ ð11Þ

where a, b, c and d are the parameters that need to be

determined. By combining Eqs. 8 and 9, the corre-

sponding radial basis of E00 for ith transition can be

found as

E00 xð Þ ¼ sech2 c ln xð Þ þ dð Þ ð12Þ

The radial basis can be expanded to temperature

using TTS principle. According to TTS principle, the

master relation of the instantaneous modulus does

not change shape as the temperature is changed.

Following TTS principle, the parameters c is constant

under different temperatures and only d is a function

of temperature T. The linear form is used between

hidden layers and the radial basis function of E00 for

ith transition can be established as

E00
i x;Tð Þ ¼ sech2 ci ln xð Þ þ diT þ eið Þ ð13Þ

where ei is the bias term for each layer. The RBNN is

used to establish the material relation of E00 for mul-

tiple transitions material. The neural network can be

expanded to a frequency range of 10-50 to 1050, which

is large enough for Eq. 8.

The RBNN can be integrated with respect to x to

find E0
0(T). It is fitted using a sigmoid function as

Figure 2 Profile of storage and loss moduli with respect to

temperature at 1 Hz frequency.
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Figure 3 Three-dimensional

(3D) response surfaces of

a storage modulus and b loss

modulus for EVA constructed

from dynamic mechanical

analysis data.
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E0
0 Tð Þ ¼ a0 þ b0 T � T0ð Þþþw0 tanh d0T þ e0ð Þ ð14Þ

where a0, b0 and w0 are parameters to fit E0
0(T),

(T - T0)? is a piecewise linear function and it can be

defined as

T � T0ð Þþ¼
T � T0ð Þ T�T0

0 T\T0

�
ð15Þ

Following this method, the master relations of E0

and E00 can be found, which can describe the vis-

coelastic relation at a wide range of frequencies and

temperatures and be used for transformation to time

domain.

Transform to time domain

The frequency domain master relation of E0 can be

transformed to time-domain relaxation function at a

certain temperature T, E(t, T), using integral relations

of viscoelasticity as [30]

E t;Tð Þ ¼ 2

p

Z1

0

E0 x;Tð Þ
x

sin xtð Þdx ð16Þ

For thermal equilibrium, the stress–strain relation

with specific strain history can be found using

r t;Tð Þ ¼ E � _e ¼
Z t

0

E t� s;Tð Þde sð Þ
ds

ds ð17Þ

where r, e and s are stress, strain and time variable,

respectively. For tensile test, the strain rate is

assumed to be constant and the time-dependent

stress history can be approximated as [30]

r t;Tð Þ ¼ _e
Z t

0

E s;Tð Þds ð18Þ

Using this transformation, the stress–strain relation

can be predicted and the time-domain elastic modu-

lus can be extracted at various temperatures and

strain rates.

Results and discussion

Model tuning

As the fitting results are influenced by the penalty

factors h and neuron numbers, the modeling process

consists of two steps: First, RBNN is tested by

mathematical experiments to determine the best

training parameters; then, the parameters are used on

experimental data to establish the master relation of

E0 and E00 under a wide range of temperatures and

frequencies.

The best training parameter is found by a mathe-

matical experiment. A mathematical model is used to

simulate the material behavior with two thermal

transitions. The RBNN is trained on the simulated

data to find the best parameters. The mathematical

model is generated by training the RBNN using the

experimental E00 without penalty factor (h = 0). The

RBNN for the mathematical model has one hidden

layer containing two neurons. The training, valida-

tion and test sets are generated using the mathe-

matical model. To test the robustness of the method,

two different levels of Gaussian noises are added into

training set as

~E0
train=validation ¼ ~E0 1þ nð Þ ð19Þ

where n is a Gaussian distribution with mean of 0 and

the standard deviation is set at 0.05 and 0.025. Then

the RBNN is trained with different penalty factors

and neuron numbers using the data generated by the

mathematical model. The accuracy of RBNN is found

by comparing the prediction of RBNN and mathe-

matical model, and average training and testing

Figure 4 A representative set of tensile stress–strain curves for

EVA at four different strain rates.
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errors are found using root mean square error. The

experiments are repeated for 500 times to find the

average training and testing errors.

The RBNN is trained in the penalty factor range of

10-11 to 10-1. The errors with respect to penalty

factor h are shown in Fig. 5. The RBNN achieves the

best accuracy when the penalty factor h is around

10-5. The under-fitting problem imperils the accuracy

when the penalty factor h is more than 10-3 and the

penalty factor is so large that it dominates the fitting.

On the contrary, the over-fitting problem appears

when the penalty factor h is less than 10-7. The

penalty factor is not strong enough to constrain the

over-fitting and compromise the accuracy.

The trend of accuracy with respect to neuron

number is also investigated. The penalty factor h is

set to be 10-5 and it is trained with different neuron

numbers as per the results shown in Fig. 6. The

RBNN achieves the best accuracy when its neuron

number equals 2, which agrees with the neuron

number in the mathematical model. Similar to the

trend in penalty factor, the under-fitting jeopardizes

the accuracy when the neuron number is less than 2

and the RBNN is not powerful enough. The accuracy

decreases when the neuron number is much larger

than 2 due to over-fitting.

The master relation of E00 is established using

RBNN with 2 neurons and penalty factor 10-5. The

Figure 5 The training error and testing error with respect to regulation factor h at a 2.5% and b 5% Gaussian noises (Number of

neurons = 2).

Figure 6 The training error and testing error with respect to number of neurons at a 2.5% and b 5% Gaussian noises (Regulation factor

h = 10-5).
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Figure 7 a Response surface

of loss modulus fitted by

RBNN. b Map of the fitting

error with respect to

temperature and frequency.

J Mater Sci (2019) 54:8401–8413 8409



average error of test set is 2.72 MPa, which is 3.89% of

the average loss modulus. The response surface of

predicted E00 with respect to temperature and fre-

quency is shown in Fig. 7a, and the map of fitting

error is shown in Fig. 7b. The Pearson correlation

coefficient R for training set and test set is found to be

0.9897 and 0.9824, as shown in Fig. 8. The region near

the thermal transition temperature, where E00

achieves the peak, shows the highest level of error.

With the master relation of E00, DE0 and E0(0) can be

calculated individually. The E0(0) and the fitting

results are shown in Fig. 9 and show close matching

with each other at the entire temperature range. The

variation of experimental E0(0) is contributed by the

error of E00.

Transformation to elastic modulus

The master relation of E0 can be transformed to time-

domain relaxation modulus E(t,T) using Eqs. 16–18.

The E(t,T) at different temperatures is shown in

Figure 8 The Pearson’s correlation coefficient R of the

experimental and predicted storage modulus for a training set

b test set.

Figure 9 The frequency-independent part of storage modulus

E0(0).

Figure 10 Time-domain relaxation modulus E(t, T) with respect

to frequency at different temperatures. Both increase in

temperature and frequency show decrease in the relaxation

modulus.
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Fig. 10. Then the stress response with certain strain

history under different temperatures can be extrac-

ted, which can be used to calculate the elastic

modulus.

The elastic modulus is defined using 0.5% secant

modulus due to nonlinear elastic response of EVA,

and its response surface of EVA with respect to

temperature and strain rates, predicted from the

present model, is presented in Fig. 11. To evaluate the

accuracy of transformation results, the elastic mod-

ulus obtained from the transform is compared with

the experimentally measured modulus obtained from

tensile test results shown in Fig. 12. Four experi-

mental data points are plotted in this figure for each

strain rate. Some of the values are very close and

overlap with each other. The predictions achieve an

average root mean square error (RMS) of 3.3% RMS

and the maximum error is 4.9%, which affirms the

applicability and accuracy of the present method.

The method can predict the elastic properties over

a wide range of temperatures and strain rates from

the results of DMA testing on a single specimen. It is

also successful in dealing with material that has two

thermal transitions in the test temperature range. A

similar procedure will be applicable if there are a

larger number of thermal transitions, with the pos-

sible main difference that the RBNN optimization

process will result in a different parameter set for

optimization. The present method eliminates the

need for a large number of tensile tests. In addition,

Figure 11 Response surface

of predicted elastic modulus

with respect to temperature

and strain rate.

Figure 12 Comparison between predicted and experimental

elastic modulus values at room temperature. Four experimental

data points are plotted at each strain rate but some of them overlap

due to the close values.
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the present scheme based on artificial neural network

can be effectively implemented in parallel computing

to allow transforming properties of materials that

have multiple thermal transitions in the test results.

Conclusions

In this work, a method is developed to transform the

frequency domain DMA testing results to time-do-

main elastic modulus at various temperatures and

strain rates. EVA is used as the study material for this

work, and RBNN is used to establish the master

relations of E00 at a wide range of temperatures and

frequencies. With the L2 regulation factor, the RBNN

is tested under various regulation factors and neuron

numbers to find the best training parameters. Then E0

is divided into frequency-dependent and frequency-

independent components to build a general descrip-

tion of strain rate sensitive and insensitive materials

with multiple thermal transitions. Two parts are

individually calculated from master relations of E00

using the K–K relation and then transformed to E(t,T).

The E(t,T) can be used to predict the viscoelastic

response with certain strain history and temperature,

and the elastic properties can be extracted. To verify

the accuracy of the transform, the elastic modulus

predicted from the DMA transform is compared with

the values obtained from experimental tensile tests.

At strain rate between 10-6 and 10-2 s-1, the trans-

formation achieves 3.3% RMS average error and 4.9%

maximum error. Based on the RBNN, the process is

easy to be implemented using parallel computing

and is robust. The study focuses on the testing

methodology, not on the material composition or

microstructure, and the transform should work on

any other material with multiple thermal transitions.
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[1] Polak-Kraśna K, Dawson R, Holyfield LT, Bowen CR,

Burrows AD, Mays TJ (2017) Mechanical characterisation

of polymer of intrinsic microporosity PIM-1 for hydrogen

storage applications. J Mater Sci 52(7):3862–3875. https://d

oi.org/10.1007/s10853-016-0647-4

[2] Lai J-C, Li L, Wang D-P, Zhang M-H, Mo S-R, Wang X,

Zeng K-Y, Li C-H, Jiang Q, You X-Z, Zuo J-L (2018) A

rigid and healable polymer cross-linked by weak but abun-

dant Zn(II)-carboxylate interactions. Nat Commun 9(1):2725

[3] Feng J, Guo Z (2016) Effects of temperature and frequency

on dynamic mechanical properties of glass/epoxy compos-

ites. J Mater Sci 51(5):2747–2758. https://doi.org/10.1007/

s10853-015-9589-5

[4] Helgeson ME, Moran SE, An HZ, Doyle PS (2012) Meso-

porous organohydrogels from thermogelling pho-

tocrosslinkable nanoemulsions. Nat Mater 11:344

[5] Zhang Y, Nanda M, Tymchyshyn M, Yuan Z, Xu C (2016)

Mechanical, thermal, and curing characteristics of renewable

phenol-hydroxymethylfurfural resin for application in bio-

composites. J Mater Sci 51(2):732–738. https://doi.org/10.

1007/s10853-015-9392-3

[6] Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch AR

(2011) Slow dynamics and internal stress relaxation in

bundled cytoskeletal networks. Nat Mater 10:236

[7] Shunmugasamy VC, Pinisetty D, Gupta N (2013) Vis-

coelastic properties of hollow glass particle filled vinyl ester

matrix syntactic foams: effect of temperature and loading

frequency. J Mater Sci 48(4):1685–1701. https://doi.org/10.

1007/s10853-012-6927-8

[8] Ferry JD (1980) Dependence of viscoelastic behavior on

temperature and pressure. Viscoelastic properties of poly-

mers. Wiley, New York

[9] Zeltmann SE, Bharath Kumar BR, Doddamani M, Gupta N

(2016) Prediction of strain rate sensitivity of high density

polyethylene using integral transform of dynamic mechani-

cal analysis data. Polymer 101:1–6

[10] Zeltmann SE, Prakash KA, Doddamani M, Gupta N (2017)

Prediction of modulus at various strain rates from dynamic

mechanical analysis data for polymer matrix composites.

Compos B Eng 120:27–34

[11] Xu X, Gupta N (2018) Determining elastic modulus from

dynamic mechanical analysis: a general model based on loss

modulus data. Materialia 4:221–226

[12] Romero PA, Zheng SF, Cuitiño AM (2008) Modeling the

dynamic response of visco-elastic open-cell foams. J Mech

Phys Solids 56(5):1916–1943

[13] Luong DD, Pinisetty D, Gupta N (2013) Compressive

properties of closed-cell polyvinyl chloride foams at low and

8412 J Mater Sci (2019) 54:8401–8413

https://doi.org/10.1007/s10853-016-0647-4
https://doi.org/10.1007/s10853-016-0647-4
https://doi.org/10.1007/s10853-015-9589-5
https://doi.org/10.1007/s10853-015-9589-5
https://doi.org/10.1007/s10853-015-9392-3
https://doi.org/10.1007/s10853-015-9392-3
https://doi.org/10.1007/s10853-012-6927-8
https://doi.org/10.1007/s10853-012-6927-8


high strain rates: experimental investigation and critical

review of state of the art. Compos B Eng 44(1):403–416

[14] Peroni L, Scapin M, Fichera C, Lehmhus D, Weise J,

Baumeister J, Avalle M (2014) Investigation of the

mechanical behaviour of AISI 316L stainless steel syntactic

foams at different strain-rates. Compos B Eng 66:430–442

[15] Koomson C, Zeltmann SE, Gupta N (2018) Strain rate

sensitivity of polycarbonate and vinyl ester from dynamic

mechanical analysis experiments. Adv Compos Hybrid

Mater 1(2):341–346

[16] Xu X, Koomson C, Doddamani M, Behera RK, Gupta N

(2019) Extracting elastic modulus at different strain rates and

temperatures from dynamic mechanical analysis data: a

study on nanocomposites. Compos B Eng 159:346–354

[17] Jia Z, Amirkhizi AV, Nantasetphong W, Nemat-Nasser S

(2016) Experimentally-based relaxation modulus of polyurea

and its composites. Mech Time-Dependent Mater

20(2):155–174

[18] Lin KSC, Aklonis JJ (1980) Evaluation of the stress-relax-

ation modulus for materials with rapid relaxation rates.

J Appl Phys 51(10):5125–5130

[19] Xu X, Gupta N (2018) Determining elastic modulus from

dynamic mechanical analysis data: reduction in experiments

using adaptive surrogate modeling based transform. Polymer

157:166–171

[20] Xu X, Gupta N (2019) Artificial neural network approach to

predict the elastic modulus from dynamic mechanical anal-

ysis results. Adv Theory Simul. https://doi.org/10.1002/adts.

201800131

[21] Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A

(2018) Machine learning for molecular and materials sci-

ence. Nature 559(7715):547–555

[22] Ning L (2009) Artificial neural network prediction of glass

transition temperature of fluorine-containing polybenzoxa-

zoles. J Mater Sci 44(12):3156–3164. https://doi.org/10.10

21/ci010062o

[23] Lin YC, Fang X, Wang YP (2008) Prediction of metady-

namic softening in a multi-pass hot deformed low alloy steel

using artificial neural network. J Mater Sci

43(16):5508–5515. https://doi.org/10.1007/s10853-008-283

2-6

[24] Shabani MO, Mazahery A (2011) Modeling of the wear

behavior in A356–B4C composites. J Mater Sci

46(20):6700–6708. https://doi.org/10.1007/s10853-011-562

3-4

[25] Malho Rodrigues A, Franceschi S, Perez E, Garrigues J-C

(2015) Formulation optimization for thermoplastic sizing

polyetherimide dispersion by quantitative structure–property

relationship: experiments and artificial neural networks.

J Mater Sci 50(1):420–426. https://doi.org/10.11648/j.am.2

0180704.14

[26] Dey P, Gopal M, Pradhan P, Pal T (2017) On robustness of

radial basis function network with input perturbation. Neural

Comput Appl. https://doi.org/10.1007/s00521-017-3086-5

[27] Booij HC, Thoone GPJM (1982) Generalization of Kramers-

Kronig transforms and some approximations of relations

between viscoelastic quantities. Rheol Acta 21(1):15–24

[28] Dorffner G (1992) EuclidNet—a multilayer neural network

using the euclidian distance as propagation rule. In: Alek-

sander I, Taylor J (eds) Artificial neural networks. North-

Holland, Amsterdam, pp 1633–1636

[29] Goodfellow I, Bengio Y, Courville A (2016) Deep learning.

Adaptive computation and machine learning series. The MIT

Press, Cambridge

[30] Christensen RM (1982) Theory of viscoelasticity: an intro-

duction. Dover Civil and Mechanical Engineering, 2nd edn.

Academic Press, New York

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

J Mater Sci (2019) 54:8401–8413 8413

https://doi.org/10.1002/adts.201800131
https://doi.org/10.1002/adts.201800131
https://doi.org/10.1021/ci010062o
https://doi.org/10.1021/ci010062o
https://doi.org/10.1007/s10853-008-2832-6
https://doi.org/10.1007/s10853-008-2832-6
https://doi.org/10.1007/s10853-011-5623-4
https://doi.org/10.1007/s10853-011-5623-4
https://doi.org/10.11648/j.am.20180704.14
https://doi.org/10.11648/j.am.20180704.14
https://doi.org/10.1007/s00521-017-3086-5

	Application of radial basis neural network to transform viscoelastic to elastic properties for materials with multiple thermal transitions
	Abstract
	Introduction
	Materials and methods
	RBNN methodology and back propagation
	Material and experiments
	Relations between storage and loss modulus
	Transform to time domain

	Results and discussion
	Model tuning
	Transformation to elastic modulus

	Conclusions
	Acknowledgements
	References




