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ABSTRACT

The lead-free perovskites derivatives of Cs3Sb2X9 (X = Cl, Br, I) have been

synthesized, but their photocatalytic properties are not explored. To evaluate the

feasibility for the visible light catalytic performance, we calculate the structural,

electronic, optical and charge transfer properties of Cs3Sb2X9, based on the

hybrid density functional theory of HSE06 with the projector augmented wave

potential. The results show the decrease of band energy gaps and the redshift of

absorption edges from X = Cl to I. The absolute potential of the valence band

maximum and conduction band minimum is determined to justify the feasibility

of the photocatalytic water splitting or CO2 reduction. The calculated carrier

mobilities reveal that the high electron mobilities of Cs3Sb2I9 are beneficial to the

reducing powers for hydrogen generation and CO2 reduction. The present

results indicate that Cs3Sb2I9 is appropriate for the photocatalytic water splitting

to produce hydrogen or the CO2 reduction driven by the visible light.

Introduction

As one of the most abundant energy sources, solar

energy is inexhaustible. Photocatalytic water splitting

to generate hydrogen and photocatalytic reduction of

CO2 into fuels driven by sunlight are a kind of arti-

ficial photosynthesis processes that only require

sunlight, water and a photocatalyst for realizing the

conversion of solar energy into chemical energy. It is

a sustainable strategy to apply solar energy and to

address current energy crisis as well as to alleviate

the environmental issues caused by CO2 emissions,

such as ‘‘the greenhouse effect.’’ Therefore, it is

indispensable to explore and develop the efficient

photocatalysts with excellent optoelectronic proper-

ties such as high solar-light absorption and superior

carrier mobilities to enhance the solar energy photo-

chemical conversion efficiency.

Over the last few years, hybrid organic–inorganic

lead halide perovskites have been extensively

employed in optoelectronic applications, including
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photodetectors [1, 2], light-emitting diodes [3, 4],

which can be ascribed to their excellent optoelec-

tronic properties. Recently, some studies about the

lead halide perovskites for photocatalytic applica-

tions such as the degradation of organic dyes, CO2

reduction and hydrogen production have been

reported [5–10]. However, the instability of lead-

based perovskite and the toxicity of heavy metal lead

restrict the maximization of commercial applications

of lead halide perovskites. The first-principle calcu-

lations for CsPbX3 (X = Cl, Br, I) [11–14] confirm that

the prominent optoelectronic properties of the Pb-

based perovskites are associated with the outermost

ns2 electronic configuration of Pb2?. The hybridiza-

tion of s orbitals with p orbitals between lead and

halogen is responsible for the antibonding character

at the valence band maximum (VBM) as shown in

Fig. 1. Zakutayev et al. [15] have reported that the

presence of antibonding orbitals usually makes the

defect levels induced by any kind of intrinsic defects

lie within valence band as resonances and does not

bring about a deep trap state in the forbidden band.

Like Pb2?, the outermost electronic configuration of

Sb3? is also ns2, which is a stable valence electronic

configuration. Thus, perovskites based on Sb3? are

expected to be promising materials which not only

possess the excellent optoelectronic properties like

those of lead halide perovskites but are less toxic than

Pb [16]. Recently, some investigations about anti-

mony halide complexes [17–19] including Sb halide

complexes applicable to photodevices have been

reported [20–22]. As a member of the Sb-based per-

ovskites family, the cesium antimony halide per-

ovskites with the formula of Cs3Sb2X9 (X = Cl, Br, I)

have attracted much interest due to their good sta-

bility. In 2000, Zemnukhova et al. [23] have reported

that the Cs3Sb2X9 (X = Cl, Br, I) perovskites can be

prepared from CsX and SbX3 aqueous solutions.

Subsequently, more detailed studies for Cs3Sb2X9

(X = Cl, Br, I) appeared in recent years. Remarkably,

Saparov et al. [24] have reported that the layered

structure of Cs3Sb2I9 perovskite can be prepared by a

two-step deposition approach and the density func-

tional theory (DFT) calculations show that the optical

absorption of Cs3Sb2I9 is comparable to that of CH3

NH3PbI3. Moreover, the single crystal and quantum

dots (QDs) for Cs3Sb2Br9 have been synthesized by

Song et al. [25]. Recently, Kuang et al. [26] have

reported that their synthesized novel lead-free all-

inorganic Cs2AgBiBr6 double perovskite nanocrystal

shows an excellent performance for CO2 reduction,

implying the possibility of lead-free halide per-

ovskites for photocatalytic applications. With these

findings in mind, we explore the photocatalytic per-

formance of Cs3Sb2X9.

In the present work, we systematically investigate

the photocatalytic properties of Cs3Sb2X9 via calcu-

lating their electronic and optical properties by the

first-principles hybrid DFT. The carrier mobility is

calculated to examine the migration and separation of

photogenerated electrons and holes. Our results

indicate that Cs3Sb2X9 has obvious absorptions in a

wide range from near ultraviolet to visible light.

Especially, Cs3Sb2I9 exhibits a large absorption coef-

ficient in the high-energy region of the visible light.

The band edges alignments have been calculated to

demonstrate that the positions of the band edges for

Cs3Sb2X9 straddle the corresponding absolute

potentials of water splitting or CO2 reduction. The

present findings are expected to provide insights into

the photocatalytic properties of Cs3Sb2X9 and a

helpful reference to develop the efficient photocat-

alytic materials.

Computational details

The cesium antimony halide perovskites derivatives

with a formula of A3B2X9 are derived from the tra-

ditional ABX3-type perovskites with two-thirds of

Figure 1 Schematic diagram of bonding (ppp, rpp) and

antibonding (ppp*, rpp*) orbitals of CsPbI3 showing the

formation of the valence and conduction band. The ppp
nb

represents the non-bonding orbital.
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occupancies of B site. As shown in Fig. 2a, b, Song

et al. [25] have reported that the crystal structure of

Cs3Sb2Br3 (P 3m1, no. 164) can be constructed by

removing every third Sb layer along \111[ in

CsSbBr3 perovskites to achieve correct charge bal-

ance. The crystal lattices of Cs3Sb2X9 are demon-

strated in Fig. 2c. All the structures have been fully

optimized by using a conjugate gradient algorithm

with the exchange and correlation potentials of Per-

dew–Burke–Ernzerhof (PBE) [27] parameterization

under the generalized gradient approximation

(GGA). The convergence criteria of the total energy of

the system and the forces on each atom are set to

10-6 eV and 0.01 eV/Å, respectively. The 5 9 5 9 5

Monkhorst–Pack k-point meshes are used for sam-

pling the Brillouin zone, and the kinetic energy cutoff

is set to 500 eV after a careful convergent test

(Table 1). Since the PBE functional usually underes-

timates the band energy gap and the improvement

effect of the Heyd–Scuseria–Ernzerhof (HSE06)

hybrid functional [28] has been confirmed by Le

Bahers and Sautet et al. [29–31], we employ the

HSE06 hybrid functional to calculate the band energy

structures and optical absorptions of Cs3Sb2X9. All

the calculations are carried out with the Vienna

ab initio simulation package (VASP 5.4.4) [32, 33].

The core-valence interactions are described by the

projected augmented wave (PAW) pseudopotentials

method [34]. The choice of valence electrons for Cl,

Br, I, Sb, Cs and Pb atoms is Cl (3s23p5), Br (4s24p5), I

(5s25p5), Sb (5s25p3), Cs (5s25p66s1) and Pb (6s26p2),

respectively.

Figure 2 Removal of every

third Sb layer along the\111[
direction of a the perovskite

structure results in b the 2D

layered modification of

Cs3Sb2Br9. The purple, gray

and red spheres represent Cs,

Sb or Br elements,

respectively. c The optimized

structure of Cs3Sb2Br9. d The

selected high-symmetry lines

in the Brillouin zone are C–
M–K–C–A–L–H–A.

Table 1 Calculated lattice parameter a, b, c (Å), bond length of

X-Sb (X = Cl, Br, I) (Å), band energy Eg (eV) of, Cs3Sb2X9 (Cl,

Br, I)

Species Lattice constants BX-Sb Eg

a b c

Cs3Sb2Cl9
Present 7.827 7.827 9.472 2.83 3.11

Exp.1 7.6331 7.633 9.345 – 3.092

Error 2.5% 2.5% 1.3% – –

Cs3Sb2Br9
Present 8.138 8.138 9.943 2.97 2.60

Exp. 7.9303 7.930 9.716 – 2.303

Error 2.6% 2.6% 2.3% – –

Cs3Sb2I9
Present 8.664 8.664 10.633 3.18 2.04

Exp. 8.4204 8.420 10.386 3.161 2.054

Error 2.8% 2.8% 2.4% – –

Theory 8.6614 8.661 10.625 – 2.064

1Ref. [35]
2Ref. [38]
3Ref. [25]
4Ref. [24]
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Results and discussion

Geometrical and band energy structures

The calculated lattice parameters, bond lengths of

Cs3Sb2X9, including the available experimental and

the previous theoretical values, are presented in

Table 1. From the table, we can see that the errors

between the present lattice parameters of Cs3Sb2X9

with their experimental values [24, 25, 35] are less

than 3% and the results for Cs3Sb2I9 are also consis-

tent with the previous theoretical values [24], indi-

cating that the present theoretical level is credible.

The lattice parameters and the length of Sb–X bonds

increase from Cs3Sb2Cl9 to Cs3Sb2I9, which can be

understood from the fact that the effective radius of

the X atom increases from Cl to I.

The calculated energy band structures of Cs3Sb2X9

with PBE and HSE06 functional along with the high-

symmetry k points in the Brillouin zone are shown in

Fig. 3. One can observe from the figure that Cs3Sb2Br9
and Cs3Sb2I9 exhibit a direct band energy gap with

the VBM and the conduction band minimum (CBM)

located at U point. However, Cs3Sb2Cl9 has an indi-

rect band energy gap, because the VBM is located at

U point but the CBM at A point (Fig. 3c). Although

the PBE functional may underestimate the band

energy gap of the semiconductor compared with the

HSE06 hybrid functional, the contours of the energy

levels remain a similar characteristic for the two cal-

culational methods [36, 37]. The calculated band

energy gaps for Cs3Sb2X9 by HSE06 functional are

listed in Table 1. The present 3.11, 2.60 and 2.04 eV

for the band energy gaps of Cs3Sb2X9 are in good

agreement with the available experimental data

[24, 25, 38] and the other theoretical values in the

literature [24]. The total density of states (TDOS) and

the partial density of states (PDOS) of Cs3Sb2X9 can

be used to understand the orbital characteristics of

VBM and CBM. For Cs3Sb2Cl9, as shown in Fig. 4a,

the first interaction is the strong p–p interactions

resulting from the overlap of Cl(3p)–Sb(5p) through-

out most of the conduction band and the low energy

part of the valence band, which leads to the anti-

bonding characteristic of the CBM and the bonding

one at the low energy zone of the valence band. The

other one is the typical s–p interaction from the

hybridization of Sb(5s) atomic orbitals and Cl(3p)

atomic orbitals at the valence band, which is

responsible for the presence of antibonding orbitals at

VBM. Moreover, similar interactions can be found for

Cs3Sb2Br9 and Cs3Sb2I9 but not are described here for

the sake of brevity.

Absolute energy-level positions
and feasibility for photocatalytic water
splitting and CO2 reduction

In a photocatalytic process, the semiconductor

absorbs the light, transfers the electron at valence
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c Cs3Sb2I9 calculated by PBE and HSE06 functional. The red

solid lines and blue solid lines represent the PBE and the HSE06

results, respectively. The energy zero represents the Fermi level.
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band to the conduction band and produces the pho-

togenerated electron–hole pairs. Then, the photo-

generated electrons and holes transfer to the

corresponding reaction sites for the oxidation or

reduction reactions. Accordingly, the absolute

energy-level positions of CBM and VBM must satisfy

the requirement of the photocatalytic reactions which

can be described by two half reactions. Specifically,

for the hydrogen evolution or CO2 photoreduction to

CH4, the potential is determined according to the

following half-reactions, respectively:

2Hþ þ 2e� ! H2 ð1Þ

CO2 þ 8e� þ 8Hþ ! CH4 þ 2H2O ð2Þ
while the half-reaction steps for the water oxidation

of both reactions can be summarized as follows:

2H2Oþ 4hþ ! O2 þ 4Hþ ð3Þ

Therefore, the CBM for the water-splitting reaction

should be higher than the reduction potential of H?/

H2 (EHþ=H2
= - 4.44 eV at pH = 0.0). Similarly, CBM

for the photoreduction of CO2 should be more neg-

ative than the potentials for CO2/CH4

(ECO2=CH4
= - 4.62 eV at pH = 0.0). On the other

hand, the VBM should be lower than the oxidation

potential of O2/H2O (EO2=H2O = - 5.67 eV at pH =

0.0). Obviously, it is crucial to calculate precisely the

edge position of materials to evaluate the feasibility

of photocatalytic water splitting and CO2 reduction;

especially, the surface chemistry and interfacial

effects are considered in the process. Galli et al. [39]

have summarized recent progress and open theoret-

ical challenges present in simulations of PEC inter-

faces. They provide a good policy to treat the effect of

the interface on the band position of the surface

structure, in which the aqueous solution model has

been considered. However, it is still a challenging

task to establish a theoretical approach for predicting

the absolute energy positions of CBM and VBM for

the bulk structure. Here, we calculate the absolute

band edges of Cs3Sb2X9 based on a reliable approxi-

mate method supposed by Xu et al. [40] for a bulk

semiconductor by the following equations:

EVBM ¼ v� 1

2
Eg ð4Þ

ECBM ¼ EVBM þ Eg ð5Þ

where EVBM and ECBM represent the absolute poten-

tials of VBM and CBM. The v is the electronegativity

of the semiconductor which can be determined by the

absolute electronegativities of the constituent atoms

as:

vðcompoundÞ ¼ va1v
b
2. . .v

c
n ð6Þ

where v1,v2 and vn represent the electronegativities of
the atoms in the compound, while a, b and c are the

molar fractions of the atoms. Here, the
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electronegativity of atoms are evaluated by the Mul-

liken electronegativity as follows [41]:

v ¼ ðI þ AÞ=2 ð7Þ

where I is the ionization energy and A is the electron

affinity of the atom. The electronegativities of Cs, Sb,

Cl, Br and I can be obtained using Eq. (7). Finally, the

calculated values of EVBM and ECBM for Cs3Sb2X9 at

pH = 0 based on Formulas (4) and (5) are given in

Table 2. The results show that the values of EVBM for

Cs3Sb2Cl9, Cs3Sb2Br9 and Cs3Sb2I9 are - 7.15 eV,

- 6.58 eV and - 5.92 eV, which are 1.48 eV, 0.91 eV

and 0.25 eV lower than the water oxidation potential,

respectively, while ECBMs are about 0.40 eV, 0.46 eV

and 0.56 eV higher than the hydrogen reduction

potential, respectively. Therefore, Cs3Sb2X9 satisfies

the requirement of the absolute potentials of VBM

and CBM for water-splitting reaction. Figure 5 visu-

ally expresses the absolute energy positions of band

edges and the redox potentials of the water-splitting

reaction and CO2 reduction. The figure demonstrates

that the absolute potential of CBM for Cs3Sb2I9 is the

most negative one among the three structures, which

suggests that it is more efficient for hydrogen

reduction. Moreover, all the positions of CBM for

Cs3Sb2X9 are higher than the reduction potential for

CO2 to CH4 and their VBMs are located at a more

positive position than the water oxidation potential,

implying that the EVBM and ECBM satisfy the

requirement of the CO2 reduction reaction.

Optical absorption properties

The optical absorption coefficient a(x) can be used to

evaluate the response ability of photocatalyst. A large

absorption coefficient means more photons can be

captured to impact on the photocatalytic perfor-

mance. The a(x) can be obtained from the real parts

e1(x) and imaginary parts e2(x) of the dielectric

function via the following equation [42]:

a xð Þ ¼
ffiffiffi

2
p

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e21 xð Þ þ e22 xð Þ
q

� e1 xð Þ
r

ð8Þ

Therefore, we first calculated the dielectric function

of Cs3Sb2X9 by employing HSE06 functional. The

details of the calculation of the dielectric function can

be found from the previous literature [43] and omit-

ted here for brevity. The calculated e2(x) of the

dielectric function for Cs3Sb2X9 is shown in Fig. 6a.

The characteristics of e1(x) and e2(x) can be under-

stood from the electronic properties. The contours of

e2(x) are well consistent with those of the total DOS

in Fig. 4a. For example, the peak of e2(x) for Cs3Sb2I9
appears at around 2.8 eV corresponding to the elec-

tronic transition from VBM to the sharper peak of

DOS at around 2.8 eV.

The calculated optical absorption coefficients for

the three structures are presented in Fig. 6b. The

optical absorption edge of Cs3Sb2Cl9 occurred near

the UV light region corresponding to its band energy

gaps (Egs) of 3.1 eV, while that of the other two

structures shows a continuous redshift. For Cs3Sb2
Br9, a large absorption coefficient of about

40000 cm-1 has been identified in the high-energy

region of the visible light. Notably, Cs3Sb2I9 exhibits a

more obvious and wider absorption around the peak

at about 3.0 eV in the visible light range, which

mainly comes from the transition from I 5p states to

Sb 5p states. The larger absorption coefficient sug-

gests that more photons could be captured in the

corresponding light range, which is a benefit to

generate electron–hole pairs. In the sense, Cs3Sb2I9 is

Table 2 Calculated EVBM

(eV) and ECBM (eV) for

Cs3Sb2X9(Cl, Br, I)

Species EVBM ECBM

Cs3Sb2Cl3 - 4.04 - 7.15

Cs3Sb2Br3 - 3.98 - 6.58

Cs3Sb2I3 - 3.88 - 5.92

Figure 5 VBM and CBM positions of Cs3Sb2X9(Cl, Br, I) with

respect to water and CO2 redox potential.
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the most efficient one of the three structures to

respond to the visible light in the photocatalysis.

Migration and separation of photogenerated
electron–hole pairs

The charge spatial separation and the migration rate

of the photogenerated charge pair play a key role in

the practical photocatalysis. The carrier mobility can

give a quantitative description of the transferring

ability of the photoinduced charges. The higher car-

rier mobility implies that charge transfer is more

efficient. Moreover, the larger mobility differences

between the electrons and the holes are more signif-

icant for separation of the photogenerated electron–

hole pairs.

The carrier mobility can be calculated via the

deformation potential (DP) theory by the following

formula [44–46]:

l ¼ 2
ffiffiffiffiffiffi

2p
p

e�h4B

3m�
I ðm�

bkBTÞ
3
2E2

ð9Þ

where e, �h, kB and T represent the electron charge,

reduced Planck constant, Boltzmann constant and

temperature, respectively. B is the bulk modulus

defined as B ¼ V0 o2Etot

�

oV2
� �

, where Etot is the total

energies of the systems and V0 is the equilibrium

volume of the system. E is the deformation potential

constant determined by E ¼ DEedge

� ��

ðDV=V0Þ,
where DV is the variation of volume caused by

changing lattice parameters and Eedge is the corre-

sponding change of the energy for CBM or VBM. The

conductivity effective mass m�
I ¼ 3(1

�

m�
x þ

1
.

m�
y þ 1

.

m�
z)

�1 and the DOS effective mass m�
b ¼

ðm�
xm

�
ym

�
zÞ

1=3 are evaluated by calculating the effective

mass along the x, y and z directions, respectively.

By employing the similar treats of Lv et al. [36] and

Chin et al. [46], we estimated the effective masses of

electrons (me*) and holes (mh*) in different directions

by PBE functional with the equation:

m� ¼ ��h2 d2Ek

dk2

� ��1
. The calculated mx*, my*, mz*, mI*

and mb* of electrons and holes for all structures are

summarized in Table 3. Considering the high carrier

mobility is the obvious characteristic of the lead

halide perovskites, we also calculated the carrier

mobility of CsPbBr3 as a contrast for that of Cs3Sb2X9.

The spin–orbit coupling (SOC) effects have been

employed to overcome the degeneracy of energy

level of CsPbBr3 in the electronic properties calcula-
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Figure 6 a Imaginary part of the dielectric function and

b absorption coefficient of Cs3Sb2X9(Cl, Br, I).

Table 3 Calculated effective masses (m*s) of electrons and holes

in the unit of free electron mass and other works for pristine

CsPbBr3, Cs3Sb2X9(Cl, Br, I)

Species Electrons Holes

mx* my* mz* mx* my* mz*

CsPbBr3 0.25 0.25 0.22 0.25 0.27 0.23

CsPbBr3
other 0.151 0.14 0.15 0.161 0.15 0.15

Cs3Sb2Cl3 0.71 0.71 0.66 1.00 1.00 0.64

Cs3Sb2Br3 0.29 0.29 0.53 2.98 2.98 0.44

Cs3Sb2I3 0.21 0.21 0.39 1.05 1.05 0.44

1Ref. [47]
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tion due to the heavy element lead (Fig. S1). The

calculated results of CsPbBr3 are in agreement with

those of Yettapu et al. [47]. Table 3 demonstrates that

mx*, my* of electron or hole for Cs3Sb2X9 are equiva-

lent but different from their mz*, which can be ascri-

bed to the same arrangement in x and y directions. It

implies that the transport properties of Cs3Sb2X9 are

anisotropic for both electron and hole. The bulk

modulus B and the deformation potential constant

E were calculated by fitting parabolic functions of the

total energy and band edge positions toward unit

strain, respectively. The results are shown in Fig. S2.

Finally, the calculated values of mI*, mb*, B, E, l are

summarized in Table 4.

As we can see from the table that the calculated

mobility of electron and hole for CsPbBr3 is

75.4 cm2 V-1 s-1 and 38.5 cm2 V-1 s-1, which is

consistent with the experimental 52.0 cm2 V-1 s-1

and 11.0 cm2 V-1 s-1 of Bakr et al. [48], respectively.

It is worth mentioning that the electron mobility of

Cs3Sb2I9 reaches 75% of that of CsPbBr3, although

that of Cs3Sb2Cl9 and Cs3Sb2Br9 is obviously small.

The high electron mobility of Cs3Sb2I9 implies that

the photogenerated electrons can rapidly transfer

from the inside to the surface of the semiconductor

for the proton reduction reaction. In addition, the

differences between mobilities of the electron and the

hole for Cs3Sb2I9 are more obvious in comparison

with those of CsPbBr3, which will significantly

reduce the recombination rate of the photogenerated

carriers and enhance the photocatalytic activity of

Cs3Sb2I9. In this sense, Cs3Sb2I9 is more suitable for

efficient photocatalysis than the other Cs3Sb2X9.

Conclusions

In conclusion, we have investigated the feasibility of

Cs3Sb2X9 in the photocatalytic water splitting to

produce hydrogen or CO2 reduction by using the

first-principles DFT with the HSE06 hybrid func-

tional. The results reveal that all the three structures

have appropriate band edges for the water splitting

and CO2 reduction reactions. It is worth noting that

one most suitable band energy gap of 2.04 eV is

identified for Cs3Sb2I9, which corresponds to an

obvious absorption in the visible light range. Unlike

the other two structures, the mobility of the electrons

for Cs3Sb2I9 is close to that of the lead perovskite

CsPbBr3, which implies that the rapid migration of

photogenerated charge pairs is also possible for Cs3
Sb2I9. Moreover, the large differences between the

mobilities of the electron and hole for Cs3Sb2I9 could

decrease the recombination rate of electron and hole

and enhance the photocatalytic performance. To sum

up, Cs3Sb2I9 is a promising candidate for the photo-

catalytic CO2 reduction or water splitting to produce

hydrogen driven by the visible light on the basis of

the optimal band energy gap with the appropriate

band edges, the strong visible light absorption and

the large electron mobility.
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Table 4 Calculated

conductivity effective mass

mI*(m0), density-of-states

effective mass mb*(m0) and

elastic constant B (eV/Å3),

deformation potential constant

E (eV), carrier mobility l
(cm2 V-1 s-1) of the

Cs3Sb2Cl9 Cs3Sb2Br9 Cs3Sb2I9 CsPbBr3

Electrons Holes Electrons Holes Electrons Holes Electrons Holes

mI* 0.69 0.84 0.34 1.02 0.25 0.72 0.24 0.25

mb* 0.69 0.86 0.35 1.58 0.26 0.79 0.24 0.25

B 0.16 0.16 0.13 0.13 0.11 0.11 0.13 0.13

E 9.97 11.55 9.06 10.26 9.01 9.89 7.73 10.42

l 3.9 1.7 22.1 1.1 56.8 1.9 75.4 38.5
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