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Introduction

The discovery of various carbonaceous nanofillers,
such as carbon black (CB), fullerene, carbon nan-
otubes (CNTs), carbon nanofibers (CNFs) and gra-
phene largely extends the functionalities of
polymers from traditional features: lightweight,
cost-effective, easily formed, to new ones, including
electrically and thermally conductive, electromag-
netic shielded, wave absorbed and shape memo-
rized, etc. [1-3]. Therefore, a series of
multifunctional polymeric nanocomposites are
reported. Recently, with the ever-increasing utilities
of multifunctional polymer composites applicable in
the electronics, sensors, energy, automobile and
aerospace industries, the electrical and mechanical
properties are among the two most important
parameters to determine the performance of the
polymeric nanocomposites.

Achieving polymer nanocomposites with high
electrical and mechanical properties requires metic-
ulous design of three segments: construction of
strong and conductive nanofiller networks, appro-
priate polymer matrix, and good interfaces between
the two components, as illustrated in Fig. 1. In
specific terms, building efficient interconnected net-
works is closely related to the selection of carbon
nanofiller type(s), which directly controls the geo-
metric shape of the network structure. In addition,
nanofiller content determines the amount of “bricks”
for the network building and there is always a min-
imum content (percolation threshold content)
required to ensure the build-up of the structure, from
which the polymer instantly transforms from insu-
lated to conductive [4]. Dispersion and distribution
are two essential issues for the establishment of the
conductive networks [5]. Good dispersion and
homogeneous distribution of carbon nanofillers are
definitely beneficial for constructing interconnected
networks. However, certain extent of agglomeration
and uniquely designed nonhomogeneous distribu-
tion can also realize interesting segregated structures
with excellent electrical and mechanical properties
[6], depending on the type of the polymer matrix. For
example, good processability of thermoset polymers
enables relatively easy effort to achieve good dis-
persion of nanofillers in the polymer matrix via
solution mixing, ultrasonication, spin coating, etc.,
while for high viscosity thermoplastic polymers,
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those aforementioned methods are not effective for
improving the dispersion of nanofibers and alterna-
tive approaches, such as melt mixing, milling, latex
technology, double percolation method, were adop-
ted, resulting in very different dispersion and distri-
bution characteristics. The interface between
nanofiller and polymer matrix is also a critical factor
in influencing the electrical and mechanical proper-
ties of the bulk nanocomposite [7]. Surface modifi-
cations can be divided into covalent and non-
covalent techniques, which are widely used to
improve interfacial interactions by means of chemical
bonding or surfactant coating approaches. Covalent
techniques can generate strong C-C bond between
nanofillers and molecular chains of the polymer
matrix to provide superb mechanical properties.
However, the electrical property maybe otherwise
damaged due to the destruction of the harsh treat-
ment of carbon nanofiller surfaces [5]. Non-covalent
technique, on the other hand, can preserve the
integrity and pristine electrical property of the
nanofillers, while the mechanical properties may vary
regarding the efficiency and compatibility of surfac-
tants, types of polymer matrix and fabrication
method. In general, comprehensive consideration of
the types and contents of nanofillers, the polymer
matrix, fabrication method affecting dispersion
quality and interfacial behavior should be taken into
account for the design of polymer nanocomposite

with  both  high electrical and mechanical
performance.
Therefore, in this paper, the electrical and

mechanical properties of diverse dimensional carbon
nanofiller-reinforced polymer nanocomposites are
reviewed and summarized in Tables 1, 2, 3, 4 and 5.
Here, we arrange the main body of the paper
according to the different dimensional structures of
the nanofillers (including 3D foam and hybrid
structures) aims to focus on the construction of highly
conductive composite (> 107°S/m) [6] that has
potential applications in electric power, energy bat-
teries and aircraft structure fields, etc. [8-10]. Other
issues, such as polymer types, fabrication methods,
and surface treatment methods are also discussed
within this framework. We hope this review paper
can provide readers with a broad and systematic
landscape and guidance to the design of polymeric
nanocomposites with high electrical conductivities
and mechanical performance.
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Zero-dimensional carbon nanofiller-
reinforced polymer composites

Carbon black (CB)-reinforced polymer
composites

Carbon black (CB) is one of the most frequently
applied zero-dimensional carbon nanofillers in the
conductive polymeric composites because of their
abundancy, superior electrical conductivity and
chemical stability. However, CBs are often agglom-
erated into large aggregates due to the strong Van der
Waals force, leading to high-percolation threshold
content (15-20 wt%) for achieving conductive net-
works [11, 12]. In the meanwhile, the large clusters of
aggregates often result in bad interfacial interaction
and defects to the polymer matrix and decrease the
mechanical properties of the bulk nanocomposites.
Traditional methods to improving dispersion of CBs
involved using chemical or physical modifications,
for instance, covalently graft chemical groups [13] or
non-covalent surfactants [172] on the CB surface.
However, these treatments showed no significant
decrease in percolation threshold and even caused
adverse effects on the electrical properties of the
resulting nanocomposite materials.

Recently, a so called double percolation method
was used to solve the high percolation threshold
problem for CB-reinforced nanocomposites. The
critical technique is to selectively localize CB
nanoparticles in a polymer blend made of two
immiscible polymer matrices. In specific, CB is firstly
dispersed and percolated in one polymer phase of the
blend, and this filler-rich phase is then dispersed in

Highly electrical, mechanical
nanocomposite

Polymer “ Strong, conductive “ Good
matrix nanofiller networks interfaces

e | o I o

Thermoplastlc el
covalent
Dlstrlbutlon

L Fabrication method J

Figure 1 General considerations for the fabrication of high
electrical and mechanical performed nanocomposite.
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& §T ET § g another polymer matrix, constructing a co-continu-
F = = = = ous double percolated structure, as shown in Fig. 2. It
S & -~ - should be noted that the weight ratio between the

E :3 Tg: § ,°§ two polymer phases is an important value as it

—§ 5 AL L9 + %+ changes the morphology of the blend to different
S8 e« T T 2TCS features. Polymers, such as polystyrene (PS) [14, 17],
s R A thermoplastic polyurethane (TPU) [15, 18] and poly-

> = § S = z\: amide-6 (PA6) [18, 173], have been selected as the
5 %0 E - : N individual phase due to their good interfacial inter-
clas|xT"2 2 7 actions with CB and this affinity can be determined
6 ° by the surface tension of every single constituent in
E = £ § o S the blend [14, 17, 18, 173]. Gong et al. [14] introduced
g % .E EAR i PS in the CB/polypropylene (PP) composite and

o — — — v

successfully reduced the percolation threshold from
2.75 to 0.37 vol%. The results showed that the CB
were selectively dispersed at the interfaces between
PP and PS, which led to decrease in the percolation
and increase in the conductivity and mechanical
properties. It is noted that the polymer blend was not
always restricted to the two phases. Some researchers
introduced a third component in polymer blends to

Electrical conductivity  Filler

(S/m)
0.003
60

0.001
0.013

- S perform either as surfactant to tailor the location of
5 5| % s % % the CB in the matrix or as compatibilizer to increase
— = LAl . .
ZEg|l2 ¥ = g the mechanical properties of the bulk polymer com-
2 posites [17, 18]. Apart from double percolation, con-
“oci structing segregated structures in a polymer matrix is
& g S another way to fabricating conductive composites
TlE2=2|le T© = s . .
S E RS s s < with low percolation threshold. Phua et al. [19] added
2|93 N .
8|8 g ,i S 9 i polymethylmethacrylate (PMMA) powder in the
Hla=s]le = = = epoxy matrix to separate CB nanoparticles so as to
promote conductive networks for achieving good
Té electrical and mechanical properties. Liu et al. [20]
8 2 B proposed a similar but cleverer approach to adding
T_ T_ T_ poly(p-lactide) (PDLA) in the poly(r-lactide) (PLLA)
S T - B~ matrix for spontaneously producing stereo-complex
g ;,E) - g - g 2 crystallites through co-crystallization in the two
2832w G = £ components in order to construct segregated con-
2FE L8282 2. ; .
2 §S§&85 8% S ductive structures (Fig. 3). Results showed that the
e a . .
& S E S g S % S o crystallites can not only reduce the percolation
= == "2 2 £ threshold value of the composite but also perform as
° toughening agents to strengthen the mechanical
% properties.
» =
5 @ S . .
g = £ 9 = .3 Fullerene-reinforced polymer composites
(2]
o 2
£
qé 2 % Fullerene is another type of zero-dimensional carbon
g E 2) 0 a nanofiller with an interesting soccer ball shaped
- ) SR 32 £ close-cage molecular structure. Among its various
=2 R % . .
2|5 N g% 2 = é‘é E allotropic family members, the most well-known
— < < = . . . . .
E|E 8 §-&5-& 2 fullerene material is Cgp, which is consisted of 12

I
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Figure 2 SEM images of co-continuous morphology of PS/PP polymer blend under different PS/PP weight ratio. Reproduced with

permission from [17]. Copyright: 2017 Elsevier.

pentagons and 20 hexagons from sp” hybridized
carbon atoms. However, literature showed that the
number of the published papers on the electrical and
mechanical properties of fullerene-based polymer
composites is significantly less than the CB-based
ones. This is probably due to its relatively low elec-
trical conductivity (10~> S/cm) [174] and high cost in
comparison to other carbon nanofillers. In fact, some
results even showed that fullerene embedded poly-
mer materials can be applied in the energy storage
area due to its good dielectric properties and high
resistivity [175]. Regarding mechanical properties,
surface treatments via acid oxidation and silaniza-
tion, and fabrication methods such as in situ poly-
merization were found to be effective approaches for
strengthening the fullerene-based polymer compos-
ites [21, 176, 1771].

One-dimensional carbon nanofiller-
reinforced polymer composites

Carbon nanotubes (CNTs)-reinforced
polymer composites

Carbon nanotubes (CNTs) are typical one-dimen-
sional conductive fillers due to their remarkably high
length-to-diameter ratios (aspect ratio ~ 1000) [178],
impressive electrical conductivities (107-10% S/m)
[179] and mechanical properties (modulus 1 TPa,
strength 100 GPa) [180]. As such, numerous studies
have been conducted on various CNT/polymer
composites to explore their electrical and mechanical
potentials. Single-walled CNTs which were first dis-
covered by lijima in 1991 [181] is a capping ended
cylindrical structure composed of hexagonal carbon
atoms connected by sp® bonds. Depending on dif-
ferent fabrication methods, CNTs can be further
divided into single-walled CNTs (SWCNTs) and
multi-walled CNTs (MWCNTs) as demonstrated in
Fig. 4. A SWCNT is shaped from the roll-up of one
single layer graphene sheet into a perfectly bonded
tube and a MWCNT is formed by a series of

@ Springer
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Figure 3 Schematic
formation of stereo-complex
crystallites to construct
conductive pathways in the
CB/PLLA nanocomposites.
Reproduced with permission
from [20]. Copyright: 2018
American Chemical Society.

untouched concentric single-walled tubes linked by
Van der Waals force. The distance between these
adjacent tubes is 0.34 nm [179].

Since the first reported research of a CNT/epoxy
nanocomposite in 1994 [182], tremendous efforts
have been made to increase and maximize electrical
and mechanical properties of various CNT-reinforced
polymeric nanocomposites. From the reported stud-
ies, it can be found that the content of CNT filler in
the polymer is usually controlled under 10 wt% due
to the significant increase of viscosity, which leaded
to the poor processability and inferior quality of the
final nanocomposite material. Typically, when the
CNT filler content exceeds percolation threshold, the
electrical conductivity of the CNT-reinforced poly-
mer composites can be increased by 4-10 orders of
magnitude due to the superb electrical conductivity
and high aspect ratio of CNTs. The random disper-
sion of CNT fillers in a polymer matrix can form
multiple conductive pathways to transform the
insulating polymeric material into a conducting
composite. However, the mechanical properties of
the CNT-reinforced polymer composite are not
always satisfied as expected. The modulus and
strength of various CNT-based polymer composites

@ Springer
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JCB

% SC crystallites

vary in a large range from more than 200% to less
than 20% of the original polymer matrix (Table 2).
Purity, integrity, content, dispersion of the CNT as
well as polymer types are all believed to be the
essential factors of influencing the electrical and
mechanical properties of the composites. To make a
systematically analysis, different polymer typed CNT
nanocomposites will be reviewed and discussed
under thermoset and thermoplastic frameworks as
follows.

Thermoset polymer composites

Epoxy resins are one of the mostly used thermoset
polymer materials in the world. The unique epoxide
functional groups can react with a vast of co-reactants
(hardener) to form multiple cross-linked structures,
resulting in good mechanical, adhesive, chemical and
temperature resistance properties. Taking advantage
of these excellent characteristics, researchers exten-
sively investigated epoxy-based CNT nanocompos-
ites worldwide to exploit the potential application in
automotive, aerospace, civil construction and elec-
tronics industries [183].
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Figure 4 TEM images and
molecular structures of
different typed CNTs

(a) single-walled CNT

(b) multi-walled CNT.
Reproduced with permission
from [180]. Copyright: 2016
Elsevier.

(a) SWCNT

Similar to CB, CNTs also tend to form aggregates
that prevent the fully display of the attractive features
in the nanocomposites. Therefore, significant efforts
have been contributed to improvement of the dis-
persion of CNTs in polymer matrices, for which the
methods were categorized into physical and chemical
methods. Physical methods are those that mechani-
cally disperse CNTs in the polymers by intensive
stirring  [22, 23, 39, 46] ,ultrasonication
[25-27, 35, 36, 41, 43, 45, 48], high shear mixing
[28, 45], ball milling [25, 29, 35], spin coating [45] hot
pressing [30, 35, 42] and combination of some of these
methods [25-28, 31, 33, 36, 45, 48]. The reported
results showed that the electrical conductivity of the
non-treated CNT/epoxy composites can reach a
range from 107 to 10 S/m within 5 wt% depending
on the specific parameter settings and the geometric
characteristics (aspect ratio) of the nanofillers [39]. On
mechanical properties, however, the improvement
was marginal and even decreased with addition of
CNTs in the epoxy matrix [36, 42], which was largely
caused by the entanglement of CNTs and poor
interfacial bonding between CNTs and the polymer
matrix.

To solve the entanglement issue, chemical methods
were applied via introducing chemical moieties
covalently or non-covalently onto CNTs to simulta-
neously improve dispersion and strengthen interfa-
cial bonding with the resin matrix material. Strong
acids were mostly used to untangle C-C bonds and
generate carboxyl groups [184, 185], amino groups
[35, 186], silane groups [32], epoxide groups [187],
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etc., on the sidewall of CNTs. These chemical meth-
ods resulted in remarkable increases in the mechan-
ical performance for the bulk nanocomposites. UV/
O3 and plasma treatments are two other interesting
methods to relax inter-tube interactions by introduc-
ing hydrophilic groups such as oxygen molecules on
the surface of CNTs to facilitate good dispersion in
the epoxy [30, 32, 33, 37]. However, excessive chem-
ical modification can damage the = conjugation of the
CNTs and results in adverse effect to its superb
electrical property. As such, non-covalent modifica-
tions using surfactants were proposed as alternative
approaches  for fabricating high-performance
nanocomposites. It is noted that, apart from fre-
quently used surfactants such as sodium dodecyl
sulfate (SDS) [73, 96] sodium dodecylbenzene sul-
fonate (SDBS) [94, 188], polystyrene sulfate (PSS)
[189], polyphenylene ethynylene (PPE) [65],
polyaniline (PANI) [47, 190], Triton X [129], envi-
ronmentally friendly bio-surfactants such as gelatin
[48], soy protein [117], chitosan [191] have been
applied to functionalize CNTs for making epoxy
nanocomposites with impressive augments of both
electrical and mechanical properties (Fig. 5). Some
results suggested that these protein molecules were
not only effective surfactants, but also compatible
with different types of polymer matrices (e.g., epoxy,
PC, PEO), showing adaptive interface properties
[117].

Besides the above two major methods, some novel
fabrication routes to artificially manipulating orien-
tation, loading and distribution of CNTs were
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Copyright: 2018 Elsevier.

proposed. Mei et al. [40] developed an ice templating
method to prepare a CNT/epoxy composite. The
researchers freeze-dried the polymer mixtures in a
narrow, upper cover-opened container to create a
one-directional temperature gradient to realize
aligned lamellar CNT structures with conductivity
up to 15.8 S/m with only 1.5 wt%. Khan et al. [37]
proposed a similar CNT-aligned nanocomposite via
applying a DC electric field during the curing process
as presented in Fig. 6. It was shown that the perco-
lation of the nanocomposites was only 0.0048 wt%
and modulus and fracture properties were excellent.
Mecklenburg et al. [38] reported a hot-press infiltra-
tion method to obtain an ultra-high loading
nanocomposite. The critical technique was to use a
semi-permeable membrane to enwrap CNT assem-
blies to impregnate epoxy resin. A composite with a
loading of 56 wt% was achieved with significantly
high electrical conductivity (3000 S/m) and modulus
(15.5 GPa). Zaidi et al. [44] fabricated a highly con-
ductive CNT/epoxy composite with the help of
supercritical carbon dioxide. The dilated CO, gases
made CNTs redistributed in a segregated
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interconnected framework with good conductivity
and strength.

Thermoplastic polymer composites

Polyurethane (PU)-based matrix Thermoplastic poly-
urethane (TPU) is a linear segmented block copoly-
mer composed of two special parts called hard
segment and soft segment. The hard segment is
usually based on aromatic or aliphatic isocyanates;
the soft segment is a polyether or polyester typed
polyol. By varying the ratio of these two components,
TPU can have a considerable number of physical
properties, which make it an ideal CNT-based matrix
for fabricating nanocomposites with superior multi-
functional properties.

To achieve good dispersion of CNTs in the TPU
matrix, chemical modification with acids [52], sur-
factants [51], in situ polymerization [49, 53, 56, 59] are
mostly used procedures. In the meanwhile, some
post-processing techniques like annealing [57], spray
drying [58], roll milling [50] are also found to be
beneficial to the uniformity of CNTs. However, it was
found that the CNTs could influence the crystalline
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Figure 6 Fabrication method Acetone Epoxy Acetone
(above) and CNT alignment in N\ / i A
acetone solution under \l, l J, Q
different loadings (below). — —
Reproduced with permission
from [37]. Copyright: 2013 MWCNTe
Elsevier.
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behavior of the soft segment of TPU and damage the
strength of the resulting composite [49]. A novel
approach to facilitating filler agglomeration that can
accelerate the polymerization rate during the in situ
processing of the composites via microwave irradia-
tion or addition of catalyst was reported. For exam-
ple, Yakovlev et al. [54] found adding catalyst such as
iron acetylacetonate (Fe(acac);) could greatly increase
the formation of urethane bonds to achieve cross-
linked PU/CNT with significantly low percolation
threshold. In another work, a solvent/nonsolvent
one-step filtration method was proposed to fabricate
TPU/CNT composite as shown in Fig. 7 [55]. The
core idea was to mix a solvent which can well
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dissolve TPU (acetone) with a CNTs filled nonsolvent
(methanol) so that phase separation could occur that
drove the polymer onto the surface of the CNTs by
non-covalent interaction. Through this approach, the
weight ratio between CNTs and TPU were randomly
designed and precisely controlled, resulting in a
composite with ultrahigh conductivity (2300 S/m)
and significantly improved mechanical properties
(e.g., 950% increase in modulus).

Polyamide-6  (PA-6)- and polycarbonate (PC)-based
matrix Polyamide-6 and polycarbonate are two
widely used thermoplastic polymers because of their
excellent mechanical, abrasion and chemical resistant
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Figure 7 Schematics of the
one-step CNT-TPU sheets (@
fabrication method. a TPU

phase separation in the
solvent/nonsolvent mixture.

b TPU immobilization on the

CNTs surface. ¢ Photo of a

TPU-CNT composite sheet

[55]. Copyright Published.
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properties, as well as optical, thermal properties and
dimensional stabilities. However, the poor dispersion
of CNTs caused by the high melt viscosity of the two
matrices hinders their applications of the nanocom-
posites. Extrusion [60, 61, 64, 192] and surface mod-
ification [62, 63, 65, 69] of CNTs along with the
combination of the two techniques are good choices
to obtain CNT/PA-6 and CNT/PC composites with
improved performance. Specifically, Babal et al. [70]
prepared MWCNT/PC composites using an indus-
trial twin-screw extruder with back flow channel
(Fig. 8). The tensile and flexural properties of the
composite increased by 15% with only a very low
filler loading. Maiti et al. [67] proposed a mnovel
method (Fig. 9) to selectively localize CNTs at the
interfaces of PC beads to fabricate conductive segre-
gated CNT/PC composite with a high electrical
conductivity (0.45 S/m) at extremely low filler con-
tent (0.02 wt%). For surface modification efforts, Ryu
and Han [62] found that by non-covalently func-
tionalizing pyrene moieties with longer alkyl chains
on the CNTs could dramatically enhance the electri-
cal and mechanical properties of the composites due
to the improved dispersion and formation of the a-
crystalline form during the processing of the PA-6
composites. Kim et al. [63] designed a novel surfac-
tant  (poly(3-hexylthiophene)-g-polycaprolactones,
short for PBHT-g-PCLs, Fig. 10) and grafted it to the
MWCNTs by non-covalent bonding. The conductiv-
ity of the surfactant treated CNT/PC composite
dramatically increased to 64 S/m at 5 wt% loading
due to the significantly improved dispersion of
CNTs. The strong n—n interaction between CNTs and
surfactant also benefited for the interfacial bonding
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between CNTs and the matrix, contributing to a 50%
increase for both modulus and tensile strength.

Polyethylene (PE)-based matrix Polyethylene (PE),
which consisted of numerous ethylene monomers
((CoHy)p), is one of the simplest structured and
commonly used plastics. Based on its density and
branching, PE can be subsequently classified into
ultra  high  molecular weight polyethylene
(UHMWPE), high-density polyethylene (HDPE), lin-
ear low-density polyethylene (LLDPE), etc., among
which UHMWEPE is considered as a superb matrix
candidate to be used in the nanocomposite areas due
to its outstanding mechanical, chemical resistance,
moisture resistance and tribological performances.
However, because of its high melt viscosity and
molecular weight, traditional molding and extrusion
methods such as melt compounding and injection
molding would break its long molecular chains and
negatively influence its excellent properties. Thus,
alternative processing such as dry mixing [73, 75],
ball milling [72] combined with hot pressing
[65, 67, 72-75, 77], sintering [76] or blown film
extrusion [78] were investigated, in particular for the
improvement of electrical and mechanical properties
of CNT/PE composites. Many researchers attempted
dry mixing followed by hot pressing or compression
molding to disperse nanofillers directly in the
macromolecular PE powders to avoid complex
chemical-based mixing methods [73-75]. The advan-
tage of this process is that CNTs can gather at the
interfaces of PE powders to form multiple conductive
paths, which is beneficial for the creation of high
electrical composites at relatively low percolation
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Figure 8 Preparation of MWCNT/PC composites by twin-screw extrusion procedure. Reproduced with permission from [70]. Copyright:

2014 RSC Publishing.

(Fig. 11a). However, parameters such as molecular
weight of PE, compaction temperature, residence
time and even sample thickness et al. [76, 77] should
be carefully selected, which greatly influences the
CNT dispersion and the crystallization of the poly-
mer matrices.

Polypropylene  (PP)-based matrix Polypropylene is
gathered from chains of propylene monomers which
has similar structure to PE. Good chemical, thermal,
dielectric, optical as well as mechanical properties
make it a desirable candidate in the automobile, civil,
toy and medical industries. The most commonly used

method to fabricate CNT/PP composites is extru-
sion/injection molding and hot pressing with the
electrical conductivity attaining around 0.1-10 S/m
in less than 2 wt% [79, 80]. Recently, a new method
called latex technology to fabricate highly conductive
CNT/PP composites was proposed [82, 84] via mix-
ing CNTs with latex PP matrix (aqueous emulsion) to
form a mixture, then freeze-dried (remove aqueous
solution) and hot pressed to fabricate the composites
(Fig. 11b). Similar to the dry mixing method men-
tioned above, the latex technology could also
manipulate nanofillers to be distributed the interfaces
of polymer particles to achieve good electrical and
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mechanical properties with an ultralow filler content.
However, this method was restricted to the highly
viscous polymers to prevent the diffusion of CNTs
into the polymer matrix. For semi-crystalline low-
viscosity polymers, Wu et al. [84] wisely selected
temperature and pressure as the hot-pressing
parameters according to the phase diagram of the
polymer (melt temperature curve), and then obtained
the composite with ultrahigh conductivity (117 S/m
at 5 wt%) and electromagnetic interference shielding
(EMI) shielding properties. An excellent review
paper on fabrication of segregated conductive poly-
mer composites using this method can be referred in

[6].

Polystyrene (PS)-based matrix Polystyrene is an aro-
matic thermoplastic polymer polymerized from
monomer styrene. It has widely been used in the
consumer products like cups, dishes, bags and com-
mercial packaging due to its inexpensive cost, excel-
lent mechanical properties and chemical stability.
Traditional fabrication methods for making CNT/PS
composites are mechanically blending or in situ
polymerization coupled with hot pressing, injection
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molding, casting or spin coating [89-91]. However,
these methods usually require lengthy blending or
sonication, which may damage CNTs and decrease
its electrical or mechanical performance in the poly-
mer matrix. In terms of the significantly high vis-
cosity of PS matrix, recently many researchers
attempted the latex technology mentioned above to
make high quality CNT/PS composites. Solvents
such as dimethylformamide (DMF), tetrahydrofuran
(THF) [90], acid [88, 193], chloroform [89] and sur-
factants such as cetyltrimethylammounium 4-vinyl-
benzoate (CTAVB) [87], sodium dodecyl sulfate
(SDS) [92, 93, 95-97], sodium dodecylbenzene sul-
fonate (SDBS) [94] were used first to increase the
dispersion of CNTs, then blended and freeze-dried in
the latex PS matrix to form conductive paths at latex
interfaces, finally hot pressed to finish specimen
fabrication. The maximum electrical conductivity can
be achieved to 10> S/m in 3% CNT loadings [92]. It is
noted that the type and content of surfactants [93, 96],
molecular weight of the matrix [92, 97] and molding
parameters [94] are essential to the performances of
the nanocomposite made via latex technology.
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Figure 10 Synthesis
procedure of surfactant P3HT-
g-PCLs. Reproduced with
permission from [63].
Copyright: 2009 Elsevier.
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lightweight make it a suitable alternative to polycar-
bonate and glass. Like other thermoplastic-based
nanocomposites, good dispersion of nanofillers in the
matrix is the most critical issue to be solved. Apart
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from the popular latex technology [92, 93], some
researchers [99, 101, 103] found that SOCI, and
COOH- functionalized CNTs can significantly
increase both electrical and mechanical performance
of the composites. Koysuren et al. [98] non-covalently
coated poly(glycidyl methacrylate) (PGMA) on the
surface of CNTs via initiated chemical vapor depo-
sition (CVD) method, which greatly improved the
interaction between the nanofiller and the matrix.

Metal-CNTs-reinforced polymer composites

Metal-CNTs are a new type of functionalized nan-
otubes decorated with noble metal nanoparticles
(NPs) such as Au [194, 195], Ag [35, 50, 104-108], Cu
[111, 196], Pt [195, 197], Rh [195] and their combina-
tions [198]. Due to the unique conductivity, magnetic
and active chemical behavior of the metal NPs, this
new type of nanofiller can further elevate the prop-
erties of nanotubes to be used in broader areas,
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especially for electronic, medical, biological and
energy sectors [199]. Generally, there are two ways to
attaching metal NPs onto CNTs: (1) direct attachment
of metal NPs on the CNTs; (2) indirect attachment of
metal NPs around CNTs through specific linkages.
Direct attachment is to introduce moieties such as
carboxyl and hydroxyl groups on CNTs by means of
acid, laser, sputtering, electron-beam or thermal
evaporation, etc., to provide harbor points for the
deposition of NPs [35, 104, 105, 107, 108, 111, 194-
196, 200]. This method is always followed by a
reduction process through reducing agents such as
DMF [35, 104], dodecylbenzenesulfonic acid (DBSA)
[105], hydrazine [107, 200], Ethylene glycol [194],
polyethylene glycol (PEG) [195] to transfer metal ions
to NPs. Although it is a simple and effective method,
the damaged CNT sidewalls will inevitably decrease
their essential properties and degrade the perfor-
mances of the bulk polymeric composite in addition
to the expenditure of vast amounts of hazardous
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chemicals. On the other hand, indirect attachment is
to bridge CNTs and NPs by molecules or chemical
groups under chemical or physical interactions. For
example, Li et al. [197] proposed a comprehensive
approach to fabricate metal-, semiconductor- and
insulator particle-CNTs by adoption of 1-aminopy-
rene. Kumar et al. [198] doped Pd on the surface of
CNTs as nucleation sites to anchor Cu NPs (Fig. 12).
Chun et al. [106] used a synthesized “Ag NPs with
phenyl rings” molecular to associate CNTs and Ag
flakes and obtained a conductive polymer composite
with significantly high electrical conductivity (10° S/
m). Compared to the direct attachment approach, the
indirect one could largely preserve the nanofiller to
fulfill its functionality and achieve superb properties
although the material design procedure was sophis-
ticated and highly technical. Even though many
noble metal particles have been reported to be grafted
to CNTs, very few of them have been implemented in
the application of conductive polymer composite
except for Ag NPs. Amino [35, 104] and carboxyl
[107, 108] groups functionalized CNTs have been
reported to successfully capture Ag NPs by electro-
static interactions (Fig. 13). These modified nano-
fillers were easily mixed with PP, PS, epoxy, PU,
PANI, PVDF, etc., to fabricate conductive polymer
composites with conductivity higher than 10* S/m.
However, some researchers pointed out that the pH
of the CNT solution influenced the formation and the
density of Ag-NPs on the CNTs [35]. Some other
studied showed that the metal particles could not
only increase the electrical performance of the com-
posites but also helped to improve the dispersion and
interfacial adhesion of the CNTs, resulting in better
mechanical properties compared to pristine CNT/
polymer composites [35, 104, 110-112].
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Carbon nanofibers (CNFs)-reinforced
polymer composites

Besides CNTs, another frequently used one-dimen-
sional carbon nanofiller is carbon nanofiber (CNF), as
shown in Fig. 14. Different from the tube-like struc-
ture of CNTs, the typical CNFs are consisted of a
series of graphite basal planes stacking one by one
with an angle of about 25° along the longitudinal
direction of the fiber [113]. Due to this unique feature,
the diameter of the CNFs (50-200 nm) is usually
larger than CNTs (~ 10 nm), while more impor-
tantly, active carbon atoms are exposed on the out-
side surfaces of the nanofibers that effectively
increase their chemical reactivity [114]. Although the
mechanical, electrical and thermal properties of CNFs
are slightly lower than that of CNTs, the low pro-
duction cost along with their good material proper-
ties still makes CNFs an excellent carbon nanofiller
for application in the polymeric industries.

To obtain uniform dispersion of CNFs in a polymer
matrix is always the essential issue for achieving
good performed nanocomposites. Many of the fabri-
cation methods applied in the CNT-based composites
can also be used for making CNF composite because
of the similarity between the two nanofillers, which
can be roughly categorized into solution mixing and
melt mixing. Solution mixing includes mechanical
stirring [201], ultrasonication [115, 202], solvent
casting [116, 203], etc. Sometimes, chemical modifi-
cations such as silanization [204], surfactants [117],
and in situ [116, 119, 203], as well as physical treat-
ments such as plasma [205] and high temperature
heat treatment [113], were involved to preprocess
CNFs to enable better dispersion quality in the
solutions. However, the effects of these treatments on
the final electrical and mechanical properties of the
composites were not always positive. For example,
Nie et al. [204] found silanization of CNFs via APTES
could effectively strengthen the tensile and shear
strength of the composite while its electrical con-
ductivity deceased more than 16 times compared
with the untreated ones. Guadagno et al. [113]
showed high temperature heating could significantly
lower percolation threshold and increased electrical
conductivity through enhancement of stiffness and
smoothness of CNF surfaces. However, this treat-
ment of CNF surface weakened interfacial bonding
and lowered its bulk mechanical properties. When
the viscosity of the polymer matrix was high, melt
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Figure 14 TEM images of carbon nanofiber structure in different magnification levels [113]. Copyright Published.

mixing approach such as twin-screw extrusion
[114, 206] was applied to disperse CNFs in the
matrices. Nevertheless, the high shear forces gener-
ated from extrusion greatly shortened CNFs and
reduced the electrical performance. To solve the
problem, chaotic mixing [118], surface pre-treatments
combined with low shear mixing [207], condensation
cure method [120] and solution cum melt mixing
[121] were proposed and resulted in improved
properties.

Two-dimensional carbon nanofiller-
reinforced polymer composites

The most representative two-dimensional carbon fil-
ler is graphene, a one-atom-thick hexagonal lattice
connected carbon nanomaterial. Although it has long
been known that graphene is the basic layer of gra-
phite, the discovery of the individual graphene did
not come until in 2004, which led to the two scien-
tists’” Nobel Prize [208]. The quick and wide accep-
tance of graphene that has great potential for many
important and significant application is due to its
superb properties, such as extremely high mechanical
properties (e.g., 1.1 TPa modulus), electrical conduc-
tivity (10° S/m), thermal conductivity (5000 W/mK)
and optical properties (98% transmittance) [209],
which make it a fascinating nanofiller for making
multifunctional polymer-based nanocomposites.
Various fabrication methods, such as scotch tape,
chemical exfoliation, reduction of graphene oxide
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and CVD have been designed to produce graphene
with high quality and large scale, generating several
modified graphene derivatives such as graphene
oxide (GO), graphite nanoplatelet (GNP) and
expanded graphite [179, 210]. All of these materials
can be basically categorized into two types: graphene
and graphene oxide materials. Accordingly, in this
section electrical and mechanical performances of
graphene-based and graphene oxide-based polymer
composites will be briefly reviewed.

Graphene-based polymer composites

Graphite nanoplatelet (nanosheet) or expanded gra-
phite is a 2D stacked nanofiller yielded either from
the exfoliation of natural graphite or derived from
graphite intercalation compounds (GIC), an inter-
mediate modified graphite with different atomic or
molecular chemicals (e.g., acids and alkali metals)
between the graphene layers. Followed by excessive
heating and ultrasonication, hundred to thousand
length of expanded graphite nanoplatelet with a
thickness ranging from a few to a hundred nanome-
ters can be obtained [211].

Excellent material properties of GNPs enable its
wide application in the polymeric-reinforced
nanocomposites. However, high surface-to-mass
ratio, molecular scale forces and dispersion of GNPs
in the polymer matrix are big issues to prohibit its full
potential and influence the overall properties of the
composites [124]. Some researchers used very long
sonication time (2-3 h) to break GNP agglomerates in
the polymer matrices [126, 127]. Their results showed
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very high percolation thresholds and maximum
electrical conductivity filler content. Although the
electrical performance of the GNP/polymer com-
posites was improved (Table 3), the aggressive
method would inevitably waste a large amount of
GNP fillers by damaging their structural integrity.
Alternative methods, such as three-roll milling, high
shear mixing and injection molding, have been tried
with improvements on the properties of nanocom-
posites [125, 128, 136]. Latex technology is an effec-
tive way to tackling the agglomeration of GNPs by
forcing them on the interfaces of the polymer emul-
sions. Ghislandi et al. [82] adopted this method to
fabricate a highly conductive graphene/PP compos-
ite (1 S/m) with relatively a low percolation thresh-
old (1.2%). They also noticed that hot pressing may
improve the electrical property by re-orienting
nanofillers in the matrix. Li et al. [122] found that by
treating GNPs with UV and ozone before mixing
with polymer matrices could eliminate the highly
resistant interfacial voids and gaps, which led to
notably increase in conductivity and modulus of the
nanocomposite. In other reported studies, surfac-
tants, such as PVP [123], Triton [129], APTES [141],
and dioxolane [142], were used to cover graphene
fillers in order to improve the dispersion and distri-
bution states, resulting in very good conductivity and
mechanical properties.

Graphene oxide (GO)-based polymer
composites

The poor dispersion of graphene or GNPs is largely
due to their insolubility in most of the commonly
used solvents. Since graphene oxide (GO) derived
from oxidation of pristine graphene nanofillers con-
tains various hydrophilic groups such as epoxide,
hydroxyl and carboxyl, it can be easily dissolved in
water and various water-soluble polymers. As such,
many researchers used GO as a modified graphene
nanofiller to fabricate polymer nanocomposites. Ryu
and Shanmugharaj [137] grafted long chain alky-
lamines on GO through amidation and nucleophilic
reactions to covalently strengthen the interfacial
bonding of the PP-based composite. However, the
disadvantage of GO is that, unlike graphite or gra-
phene, GO is interior in electrical conductivity, which
must be reduced to RGO to restore electrical con-
ductivity. The most frequently used reduction agents
are hydrazine and DMF [130-133, 138], which have
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strong reduction effect and low cost. However, these
chemicals are highly toxic and harmful to human
beings and environments. Due to these reasons, some
researchers studied green reduction agents like vita-
min C [134, 212], saccharide [213], hydrogen iodide
[135] and thermal treatment methods (imidization)
[139, 140] to replace hydrazine. For example, Long
et al. [134] adopted vitamin C to reduce GO and
fabricate RGO/PS nanocomposites with impressive
conductive (20.5 S/m). They noticed that hot-press-
ing step could also convert GO to RGO, which can be
a supplementary way to reducing graphene fillers.
However, some research results showed that these
RGO re-agglomerated into large bundles again by n—
7 interactions and decreased the properties of the
composites. To solve the problem, non-covalent
treatment [133] and in situ polymerization [139, 140]
were utilized to improve dispersion of RGO after
chemical reduction. Pham et al. [130] designed a
modified latex method to obtain a highly conductive
RGO/PMMA nanocomposite by electrostatic inter-
actions (Fig. 15). Wu et al. [135] applied the same
fabrication method using a green reduction agent
(hydrogen iodide) and successfully produced a 3D
foam-like graphene structural polymer composite
with a surprisingly high electrical conductivity
(1083.3 S/m).

Three-dimensional carbon nano-foam-
reinforced polymer composites

Fabricating three-dimensional (3D) nano-foam struc-
tures is a novel route to achieving highly conductive
nanofiller-reinforced composites. The widely used
protocol was to disperse nanofillers, such as carbon
nanotube [145, 146, 149, 150, 155, 157, 158], graphene
[69, 136, 144, 147, 148, 151, 156], carbon black [152],
carbon nanofiber [214] or their combinations [215] in
the solution and mix with proper polymer matrices
uniformly. Then, foaming agents, such as NH; [144],
CO, [145, 147, 215], H,O [148, 149], AIBN [214],
pentane [155] and expandable microspheres
[152, 157] were added into the mixture to allow gas
bubbles to be initiated, grown and broken to form
“sponge”-like 3D form structure, as shown in Fig. 16.
It can be seen that during the foaming process the
nanofillers are forcefully squeezed into multiple
interconnected narrow pathways by the bulge of gas
bubbles, thus avoiding the problem of agglomeration
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Figure 15 Fabrication method of RGO/PMMA nanocomposite by electrostatic interactions. Reproduced with permission from [130].
Copyright: 2012 American Chemical Society.
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Figure 16 Typical foaming process to fabricate 3D nano-foam structure. Reproduced with permission from [148]. Copyright: 2013
American Chemical Society.

happening from direct mixing of nanofillers in the  pathways could significantly decrease the loading of
polymer matrices. The highly efficient conductive  nanomaterials and increased the conductivity and

@ Springer



J Mater Sci (2019) 54:1036-1076

mechanical properties of the composite. However,
these properties were highly influenced by the types
of filler materials, polymer matrices, foaming agent
contents and temperature as well as fabrication
methods [136, 156, 157]. For instance, Jun et al. [136]
found that larger sized graphene sheets could greatly
improve the electrical conductivity of the composite
than the smaller sized ones due to the fewer defects
and contact resistance. On the other hand, some
researchers proposed a template-induced CVD
approach to produce 3D-foam (Fig. 17) [69, 153, 154]
or 3D-sponge [158, 216] composites with remarkably
high conductivity. First, nanomaterials, such as gra-
phene, was coated on the Ni template by CVD
method followed by impregnation or coating of
polymeric matrices (epoxy, PMMA, PDMS). The use
of polymers was to support and strengthen the nano-
structure from collapsing. Then, the original template
material was removed by solvents such as acetone or
HCl. By controlling the flow rate of the input gas
(CH4) during the CVD, composites with different
nanofiller concentrations were obtained. Jia et al.
[154] showed that the precise construction of con-
ductive networks on the template could reach up to
1000 S/m with only 0.5 wt% loading in addition to its
significant improvement in flexural and fracture
properties. In the meanwhile, Cui et al. [158] syn-
thesized a novel CNT sponge via CVD process using
ferrocene and dichlorobenzene as precursors. The
epoxy-based composite with the proposed CNT

. |1
o é /
CH/HJAr /7

= {7

Ni template 1000 °C/10 min

=T
GF/epoxy
composites I

. Epoxy
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sponge structure also demonstrated remarkably high
electrical conductivity (145 S/m) and tensile strength
(64%) under a low concentration (0.66 wt%). Due to
the high electrical conductivity and tremendously
increased surface areas, a unique application of 3D
carbon nano-foam composite is EMI-shielding
[145, 147, 148, 151, 158, 214]. The multiple foams
reflected and scatter electromagnetic microwaves
between the cell walls and nanofillers to present
absorption or reflection type of shielding mechanism,
which showed potential applications in electronic
and aerospace areas.

Hybrid carbon nanofiller-reinforced
polymer composites

Hybridization of diverse dimensional carbon nano-
fillers, such as CB, CNT and graphene, is recently a
popular approach for attaining polymeric nanocom-
posites with good electrical and mechanical proper-
ties. A synergistic effect can be achieved when
nanofillers with different geometrical shapes are
mixed together, resulting in unique 3D intercon-
nected structures, improved dispersion and behavior
change of the crystallinity of the polymer matrices
[162, 163, 168]. The zero-dimensional geometry and
low surface energy enable CB to be used as a cost-
effective filler for reducing the amount of expensive
carbon nanotubes and graphene while construct

Acetone vacuum

—> |

® ® [RT|
T WaVavavw,
80°c/05h |8 Mold |

G/Ni/epoxy
composites

! Mold !

Hot pressure

Figure 17 Template-directed CVD approach to fabricate 3D nano-foam structure. Reproduced with permission from [154]. Copyright:

2013 American Chemical Society.
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Figure 18 Schematic illustration of the GNP-CB and GNP-CNT hybrid system. Reproduced with permission from [161]. Copyright:

2017 Elsevier.
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Figure 19 Representation of the size-controlled GO surfactant treated MWCNT/PVA nanocomposite [169]. Copyright Published.

segregated [160] or interlaminar linked hybrid con-
ducted networks [159, 161, 217]. For instance, Mondal
and Khastgir [161] found that by partially replacing
GNPs with CB one order of magnitude electrical
conductivity and 40% increase in tensile strength
were achieved compared to that of the pure GNP-
reinforced composite. They believed that the reason
was that CB could perform as delaminating agent for
aiding in the exfoliation of GNPs and meantime
strengthened the graphene interlayers (Fig. 18).
Excellent material properties and similar molecular
structures make CNTs and GNPs the mostly studied
combinations of carbon nanofiller in polymer com-
posites. Research showed that only by simply phys-
ically mixing the two nanofillers (untreated),
synergistic effect could occur through the non-cova-
lent 7n—rn interaction, which helped disintegrate
agglomerates and establish efficient 3D network of

@ Springer

conduction paths [162, 163, 166-168, 170, 171]. The
specific synergistic mechanism was that, in the
hybrid systems, carbon nanotubes can both embed
graphene nanofillers and bridge the independent
graphene layers into an interconnected entire struc-
ture. However, this mechanism was not always true
for considering the dispersion quality of the two
materials. In other words, no synergistic effect was
shown if CNTs could not disentangle into an extent
to guarantee its embedding in the interlayers of gra-
phene, which is the case demonstrated in Fig. 18.
This finding pointed out the necessity of the pre-
treatment of the individual nanofillers before mixing
them together [165, 168]. In addition, the size of the
nanofiller can also significantly change the interaction
behavior of the two hybrid components. An inter-
esting study discovered that by ultrasonication GOs
into a small size (170 nm), GOs could perform as an
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Figure 20 Synthesis process of cross-linked GO-CNT structure by amide bonding. Reproduced with permission from [164]. Copyright:

2017 Elsevier.

effective surfactant to coat CNTs (0.025:1) for fabri-
cating a highly conductive nanocomposite with fas-
cinatingly increased mechanical properties (Fig. 19)
[169]. Covalently bonding CNTs and GNPs is another
way to obtain well performed multifunctional hybrid
nanocomposites [164, 218-220]. The prevalent
approach was oxidization of CNTs and GNPs first
and then covalently connected by a small interme-
diate molecular, which was usually the monomer of
the polymer matrix to trigger the subsequent in situ
polymerization process (Fig. 20). Reported studies
showed that octadecylamine (ODA) [164, 220], p-
phenylenediamine (PPD) [218], ethylenediamine
(EDA) and aspartic aid [219], etc., could efficiently
link the two carbon nanofillers by amide and
hydrogen bonds to produce well-dispersed and

strong interfacial interacted

nanocomposites.

polymer

Outlook and conclusions

This paper briefly reviewed the recent advances of
the various carbon nanofiller-reinforced polymer
composites with a focus on the electrical and
mechanical properties. From the above review, it is
shown that the nanofiller types, contents, fabrication
methods and polymer matrices all greatly influence
the performance of the nanocomposites, which are
summarized in Tables 1, 2, 3, 4 and 5. Analyzing the
maximum values in these tables, we can make a
general comparison and comments on the polymeric
composites with diverse dimensional carbon
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Figure 21 Summary of the

electrical, mechanical,

percolation content and

maximum content of various

dimensional carbon nanofiller-

reinforced polymer

composites.

Percolation (wt%)
10

1000

Modulus Increase (%)

nanofiller in terms of five key parameters as plotted
in Fig. 21.

1.

For CB-reinforced composites, the maximum
electrical conductivity and mechanical properties
increase only attain ~ 10' S/m and less than
100%, respectively, even under a big amount of
filler content and high percolation threshold. This
is largely due to the zero-dimensional shape of
the filler, which is hard to construct highly
efficient conductive and strong networks.

In comparison, incorporation of the one-dimen-
sional CNTs and CNFs can lead to highly
conductive polymer composites with over
10*S/m and significantly increased modulus
(950%) due to the superb essential conductivity
and stiffness of CNTs. However, the agglomera-
tion issues of the nanofillers should be carefully
tackled to prevent the relatively high percolation
values in certain cases. It is noted that by
applying unique fabrication method [38, 120]
the maximum usage of CNT and CNF could go
over 40% despite their tremendously increased
viscosity.

Metal decorated CNTs further can increase the
electrical conductivity, resulting in the best elec-
trical conductivity (10°S/m) among all the
nanocomposites. In addition, the metal particles
on the tube surfaces can also help to reduce
agglomeration, leading to significantly decreased
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percolation threshold and loading level. How-
ever, the mechanical properties, especially the
modulus increase is not significant as compared
to that of pristine CNTs-reinforced composites,
which may be due to the relatively low filler
loading.

Graphene-based polymer composites, including
not only graphene, but also graphite and reduced
graphene oxide cases demonstrate good electrical
conductivity at around 10° S/m while the perco-
lation content and mechanical properties are not
satisfied as expected. The detachment of gra-
phene layers from graphite and efficient
approaches to prevent aggregates are key issues
to realize the potential of graphene
nanocomposites.

3D carbon nano-foam-reinforced nanocomposites
present a rather balanced and impressive
improvements in both electrical and mechanical
properties along with decreased percolation and
loading level. The in situ designed conductive
networks enable high conductivity regardless of
dispersion situation. At the same time, these
networks can also become strong skeletons via
manipulating the type, amount and manufactur-
ing of blowing agents and/or from 3D template
structures through CVD method.

Hybrid carbon nanofiller-reinforced nanocom-
posites show the best material properties with
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10 S/m conductivity and over 600% increase for
both modulus and strength compared to other
nanocomposites. The percolation threshold is also
the smallest, i.e., less than 1 wt%. The advantage
of this hybrid material is that it can combine the
advantages of each individual component while
their drawbacks are largely avoided, thus, pro-
viding researchers with broad freedom to design
various configured structures. It is shows that the
hybridization of various nanofillers for achieving
high-performance multifunctional composites is
a very promising route to broadening the appli-
cation of polymeric nanocomposites in more
diverse fields.
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