
CHEMICAL ROUTES TO MATERIALS

Syntheses and ultra-deep desulfurization performance

of sandwich-type polyoxometalate-based TiO2

nanofibres

Jiawei Fu1 , Yu Guo1 , Wenwen Ma1,2,* , Chen Fu1 , Li Li1 , Haiyu Wang1 , and Hong Zhang1,*

1 Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s

Republic of China
2College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, People’s Republic of

China

Received: 15 May 2018

Accepted: 23 July 2018

Published online:

2 August 2018

� Springer Science+Business

Media, LLC, part of Springer

Nature 2018

ABSTRACT

The sandwich-type polyoxometalate-based TiO2 nanofibres were prepared

successfully by electrospinning combining with chemical reaction and

employed in ultra-deep desulfurization. OTA–CoVW–TiO2 nanofibres

(OTA = CH3(CH2)17(CH3)3N, CoVW = [Co4(H2O)2(VW9O34)2]
10-) confirmed

the excellent desulfurization performance in extraction catalytic oxidative

desulfurization system (ECODS). At 323 K, the 500 ppm DBT (dibenzothio-

phene) model oil was entirely removed within 20 min using 0.010 g 45 wt%

OTA–CoVW–TiO2 nanofibres as catalyst when O/S molar ratio was 4:1 and the

dosage of model oil was 5 mL. The catalysts could be recycled and reused at

least five times without remarkable decrease in catalytic activity. The desulfu-

rization efficiencies for different substrates were shown as following order:

DBT[ 4,6-DMDBT (4,6-dimethyl-dibenzothiophene)[BT (benzothiophene).

Moreover, the possible mechanism was also elucidated.

Introduction

SOx emissions not only result in environmental pol-

lution, but also do harm to human health during the

combustion of sulfur compounds in fuels [1, 2].

Consequently, it is attractive to address the practical

challenge of reducing sulfur content in fuels to ultra-

low levels according to the stringent regulations

imposed by governments [3]. Hydrodesulphuriza-

tion (HDS) is deemed as a kind of current

desulfurization technology in refineries [4]. How-

ever, trace amounts of sulfur compounds make ultra-

deep desulfurization extremely tough at the expense

because of some harsh operational conditions, for

instance, the higher temperature (300–400 �C) and

pressure (20–100 atm of H2), more efficient catalysts

or longer residence times [5]. Especially, it is less

effective for that of heterocyclic sulfur compounds in

HDS [6, 30]. Hence, different desulfurization meth-

ods have been extensively investigated including
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oxidative desulfurization (ODS), bio-desulfurization

(BDS) and extractive desulfurization (EDS)

[7, 9, 13, 15]. Combining extractive desulfurization

and oxidative desulfurization makes contribution to

the development of ECODS, a one-pot environmental

benignity desulfurization technology, which can

remove refractory sulfur-containing compounds

effectively under mild conditions [8, 9]. The effec-

tiveness of ECODS process crucially depends on the

choice of appropriate oxidant, extractant and cata-

lyst. The desulfurization process was carried out

using various oxidants such as H2O2 [10], molecular

oxygen [11] and organic peroxide [12]. H2O2 is con-

sidered as the most economical and effective oxidant

among all oxidants [13]. In addition, ionic liquids

(ILs) have been verified as environmental friendly

extractant instead of conventional organic solvents

and play a role in stabilizing active centers in ECODS

[3, 14]. Consequently, exploring and preparing a kind

of efficient catalyst for ECODS is the particular task

for obtaining the little-to-no sulfur concentration

fuels.

Polyoxometalates (POMs) are a series of transition

metal oxygen clusters, the remarkable advantages of

which are unique properties, rich structural versatil-

ity and widespread application value [15–17]. Sand-

wich-type POMs are comprised of fragments

[XW9O34]
n- (X = transition metal), which have been

employed in many aspects [13, 18, 20] so far,

including water oxidation [19], photocatalysis [20]

and desulfurization . [13, 21, 22]. The desulfurization

systems of pure POMs as catalysts are not undesir-

able for practical industrial applications due to poor

reusability; thus, heterogeneous catalysts are regar-

ded as an advanced quest in this regard to solve these

problems. More attention has been paid to immobi-

lize POMs on various supports, such as SiO2 [23, 24],

TiO2 [25, 26, 30] and active carbon [27]. The evident

advantages of TiO2 as support have been verified and

employed in various fields [20, 28], and the desulfu-

rization application is of particular interest. On the

one hand, the active sites on the surface of TiO2 are

capable to absorb the atom with lone pair electrons,

which is conducive to desulfurization process since

there are lone pair electrons on sulfur [26, 29, 30]. On

the other hand, the utilization efficiency of H2O2 can

benefit from the hydrophilic feature of TiO2 [30]. In

addition, the phase structure of TiO2 is a fatal

parameter that affects the desulfurization efficiency

according to the report that the desulfurization

performance enhanced with the POMs combining

with anatase TiO2 [31]. Moreover, 18.2% desulfur-

ization efficiency of anatase–rutile phase TiO2 was

obtained in photocatalytic oxidation [32]. Up to now,

there are few reports about the sandwich-type poly-

oxometalate-based TiO2 nanofibres with the mixed-

phase of anatase–rutile phase as catalysts and

employed in ultra-deep desulfurization.

In this work, OTA–CoVW–TiO2 nanofibres

(OTA = CH3(CH2)17(CH3)3N, CoVW = [Co4(H2O)2
(VW9O34)2]

10-) were synthesized via electrospinning

combining with chemical reaction and presented the

excellent desulfurization performance. The mor-

phology and structure of catalysts were characterized

by field emission scanning electron microscopy (FE-

SEM), energy dispersion spectroscopy (EDS) and

X-ray diffractometry (XRD) etc. Meanwhile, the

influence factors of desulfurization were systemati-

cally investigated and optimal conditions were

obtained. The reusability for catalysts was resear-

ched, and the mechanism of ECODS was also

studied.

Materials and methods

Chemicals

Vanadate(V)-centered polyoxometalate Na10[Co4(H2

O)2(VW9O34)2]�35H2O and (OTA)10[Co4(H2O)2(VW9

O34)2] were prepared and the fabrication process was

shown in ‘‘Supplementary Material.’’ 1-Butyl-3-

methyl imidazolium hexafluorophosphate

([Bmim]PF6) was synthesized according to the liter-

ature [33]. N,N-dimethylformamide (DMF, AR,

Tianjin Tiantai Chemical Co. Ltd.), acetic acid (AR,

Beijing Chemical Works), Tetrabutyl titanate

(Ti(OC4H9)4, TBOT, 99%, Tianjin GuangFu Fine

Chemical Research Institute), acetylacetone (99%,

Xilong Chemical Co. Ltd.), polyvinyl pyrrolidone

(PVP, MW = 1300000, Aladdin), dodecyltrimethy-

lammonium bromide (DTA�Br, 99%, Energy Chemi-

cal), hexadecyltrimethylammonium bromide

(HTA�Br, 99%, Energy Chemical), octade-

cyltrimethylammonium chloride (OTA�Cl, 99%,

Energy Chemical), dioctadecyldimethylammonium

chloride (DDA�Cl, 99%, Energy Chemical), hydrogen

peroxide (H2O2, 30 wt%, Beijing Chemical Works),

benzothiophene (BT, 99%, China Pingmei Shenma

Energy & Chemical Group Co., Ltd.),
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dibenzothiophene (DBT, 99%, China Pingmei

Shenma Energy & Chemical Group Co., Ltd.), 4,6-

dimethyl-dibenzothiophene (4,6-DMDBT, 99%,

China Pingmei Shenma Energy & Chemical Group

Co., Ltd.), dichloromethane (Tianjin GuangFu Fine

Chemical Research Institute) and n-octane (Tianjin

GuangFu Fine Chemical Research Institute), and

biphenyl (Sinopharm Chemical Reagent Co., Ltd.)

were directly used as received without further

purification.

Preparation of catalysts

The synthetic process of TiO2 nanofibres was pre-

sented in ‘‘Supplementary Material.’’ In the typical

procedure of preparing representative 45 wt% OTA–

CoVW–TiO2 nanofibres, 0.100 g TiO2 nanofibres was

dispersed in 50.000 mL ethanol and stirred magneti-

cally for 30 min before 0.040 g OTA�Cl was added,

which was marked solution A. 0.064 g Na10[Co4(H2

O)2(VW9O34)2]�35H2O was dissolved in 20.000 mL

H2O and marked as solution B. Then solution B was

drop-wise added into solution A with stirring rapidly

and continuously for 24 h. Finally the precipitations

were filtered and washed with water and ethanol

before drying at 80 �C. The sample was obtained and

denoted as 45-OTA–CoVW–TiO2 NF (45 wt% OTA–

CoVW–TiO2 nanofibres). All catalysts were synthe-

sized with similar process. 45-DDA–CoVW–TiO2 NF:

45 wt% DDA–CoVW–TiO2 nanofibres; 45-DTA–

CoVW–TiO2 NF: 45 wt% DTA–CoVW–TiO2 nanofi-

bres; 45-HTA–CoVW–TiO2 NF: 45 wt% HTA–

CoVW–TiO2 nanofibres; 25-OTA–CoVW–TiO2 NF:

25 wt% OTA–CoVW–TiO2 nanofibres; 35-OTA–

CoVW–TiO2 NF: 35 wt% OTA–CoVW–TiO2 nanofi-

bres; 55-OTA–CoVW–TiO2 NF: 55 wt% OTA–CoVW–

TiO2 nanofibres.

Desulfurization experiments

Model oils with a corresponding sulfur content of

500 ppm were prepared by dissolving BT, DBT and

4,6-DMDBT in n-octane, respectively, and biphenyl

was standard substance. 5 mL model oil was put in a

50-mL round bottom flask, which was immerged in

temperature-controlling water bath and stirred

15 min constantly at a certain temperature. And then

1 mL IL ([Bmim]PF6), definitive amount of H2O2 and

catalysts were added in turn. The upper layer of oil

was analyzed on gas chromatography (GC). The

temperature was fixed at 303, 313, 323 and 343 K. The

dosage of catalyst was 0.005, 0.010, 0.015 and 0.020 g.

And the O/S molar ratio was 2:1, 3:1, 4:1 and 6:1.

Characteristics

The infrared (FT-IR) absorption spectra were exam-

ined with KBr Pelles on a Mattson Alpha-Centauri

Fourier transform infrared spectrometer, and the

range was fixed in 4000–400 cm-1 with the number of

scan 64 and the resolution 4 cm-1. X-ray photoelec-

tron spectroscopy (XPS) measurements were per-

formed with a ThermoFisher ESCALAB250 X-ray

photoelectron spectrometer (powered at 150 W)

using Al Ka radiation. Thermogravimetric analysis

(TG) was implemented on a Perkin-Elmer Thermal

Analyzer under nitrogen atmosphere at a heating rate

of 10 �C min-1, and the temperature was raised from

15 to 600 �C. XRD analysis was investigated using a

Rigaku D/Max-RA X-ray diffractometer in the 2h
range from 5� to 80� with Cu Ka radiation. The

morphology of the catalyst was measured by Hitachi

SU8010 field emission scanning electron microscope

(FE-SEM). Under a working voltage of 200 kV,

transmission electron microscope (TEM) analysis was

employed using a JEM-2010 transmission electron

microscope, images were obtained digitally on Gatan

multiople CCD camera. The elemental analysis and

mapping of product were carried out using OXFORD

ISIS-300 energy-dispersive spectrometer. The Bru-

nauer–Emmett–Teller (BET) specific surface areas

and pore structures were performed by a

Micromeritics V-Sorb 2800P. The loading amount of

OTA–CoVW was supported on TiO2 nanofibres,

which was resolved by a Leeman Prodigy Spec

inductively coupled plasma atomic emission spec-

trometer (ICP-AES). The Agilent 7820A-GC System

using DB-5 chromatographic column with

30 m 9 0.32 mm 9 0.25 lm was employed to GC

analysis, and the measurements were adjusted as

follows: injection port temperature was 200 �C,
detector temperature was 250 �C, and 150 �C was

immobilized as oven temperature. Ultra-pure nitro-

gen was fixed as carrier gas. The injection volume of

sample was 1 lL. The desulfurization efficiency was

calculated by internal standard method.
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Results and discussion

Catalysts characterization

The FT-IR spectra of OTA�Cl, Na10[Co4(H2O)2(VW9

O34)2]�35H2O and 45-OTA–CoVW–TiO2 NF are

shown in Fig. 1. The bands at 2850 and 2915 cm-1 are

attributed to OTA? in OTA�Cl (Fig. 1a). The repre-

sentative peaks in 2700–3000 cm-1 are identified as

C–H stretching modes for the cations of carbon chain

quaternary ammonium salt [34]. From Fig. 1b, we can

see that Na10[Co4(H2O)2(VW9O34)2]�35H2O shows

characteristic peaks at 955 and 861 cm-1, which are

assigned to the asymmetric vibrations of V–O and

W=O, respectively. The peaks of 812 and 667 cm-1

are caused by corner-/edge-sharing W–O–W bend-

ing [35]. Figure 1c displays that these similar char-

acteristic peaks of [Co4(H2O)2(VW9O34)2]
10- in

45-OTA–CoVW–TiO2 NF. However, their vibrational

frequencies change to 960, 867, 817 and 673 cm-1. The

result is attributed by the strong interaction between

the [Co4(H2O)2(VW9O34)2]
10- and TiO2 support at the

interface of the two components [3]. Moreover, there

are no obvious new vibrational signal other than that

of OTA�Cl and [Co4(H2O)2(VW9O34)2]
10- in the FT-IR

spectra of 25-OTA–CoVW–TiO2 NF, 35-OTA–CoVW–

TiO2 NF and 55-OTA–CoVW–TiO2 NF (Fig. S1),

meaning that the intact structure of sandwich-type

POMs for these catalysts is still retained.

As shown in Fig. 2, 25-OTA–CoVW–TiO2 NF,

35-OTA–CoVW–TiO2 NF, 45-OTA–CoVW–TiO2 NF

and 55-OTA–CoVW–TiO2 NF not only emerge rep-

resentative diffraction peaks of rutile TiO2 (PDF#75-

1749), but also present the peaks of anatase TiO2

(PDF#71-1166) in the scope of 2h from 5� to 80�,
reflecting the phase structure of these catalysts is the

mixed-phase of rutile and anatase. Notably, the same

structure of bare TiO2 nanofibres, 45-DDA–CoVW–

TiO2 NF, 45-DTA–CoVW–TiO2 NF, 45-HTA–CoVW–

TiO2 NF and 45-OTA–CoVW–TiO2 NF is observed in

Fig. S2, implying the structure of catalysts is

unchanged with various loading amounts of OTA–

CoVW and cations containing various carbon chain

lengths. The successful preparation of these catalysts

is verified adequately combining FT-IR and XRD

analysis. Moreover, it is mentioned that Co, V, W, C,

O and Ti elements are included in EDS spectrum of

45-OTA–CoVW–TiO2 NF (Fig. S3).

The XPS analysis is used to further study the

chemical composition and oxidation state in 45-OTA–

CoVW–TiO2 NF. The curve fitting of Co 2p is

resolved into four peaks (Fig. 3a), the binding ener-

gies of about 779.4 and 784.3 eV are assigned to Co

2p3/2, and the XPS signals of 795.7 and 802 eV are

contributed by Co 2p1/2, respectively. Co in 45-OTA–

CoVW–TiO2 NF is established to be Co(III) [36]. The

peak of 528.8 eV is associated with V 2p3/2 (Fig. 3b).

V(III) is in the catalyst [37]. Furthermore, the spec-

trum of Fig. 3c presents the binding energies at 34.2

and 36.3 eV, which are attributed to W f7/2 and W f5/

2, respectively. The result confirms the presence of

W(VI) [38]. Two peaks of 457.5 and 463.3 eV are

observed in Fig. 3d, which are caused by Ti 2p3/2 and

Ti 2p1/2, respectively. Ti(IV) is in the catalyst [39]. TheFigure 1 The FT-IR spectra of (a) OTA�Cl, (b) Na10[Co4(H2O)2
(VW9O34)2]�35H2O, (c) 45-OTA–CoVW–TiO2 NF.

Figure 2 XRD patterns of (a) 25-OTA–CoVW–TiO2 NF,

(b) 35-OTA–CoVW–TiO2 NF, (c) 45-OTA–CoVW–TiO2 NF

and (d) 55-OTA–CoVW–TiO2 NF with the standard cards of

anatase and rutile phase TiO2.
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results of XPS agree well with the EDS analysis and

further prove that OTA–CoVW is indeed supported

on TiO2 nanofibres in 45-OTA–CoVW–TiO2 NF.

To identify the morphology of the supported cat-

alyst, FE-SEM is taken on 45-OTA–CoVW–TiO2 NF.

The uniform fiber-like is scattered evenly in the

ambient environment (Fig. 4a). From Fig. 4b, we can

catch sight of the large areas of TiO2 nanofibres are

occupied by many evident black spots, revealing that

the active species are uniformly distributed on the

surface of TiO2 nanofibres, which may be beneficial to

accelerate the desulfurization efficiency [40]. The

OTA–CoVW and TiO2 nanofibres are distinguished

immediately by HR-TEM (Fig. 4c). As can be

observed in Fig. 5, the excellent dispersity of OTA–

CoVW on TiO2 nanofibres is approved by elemental

mapping. The result illustrates that Co, V, W, C, O

and Ti are contained in 45-OTA–CoVW–TiO2 NF,

which is good accordance with the TEM analysis.

Furthermore, the decompositions of 45-OTA–CoVW–

TiO2 NF at different temperatures are investigated by

TGA analysis (Fig. S4) and the corresponding

demonstrations are shown in ‘‘Supplementary Mate-

rial,’’ which provides the evidence for the excellent

stability.

Figure 3 XPS spectra of

45-OTA–CoVW–TiO2 NF,

a Co 2p, b V 2p, c W 4f and

d Ti 2p.

Figure 4 a FE-SEM image of 45-OTA–CoVW–TiO2 NF, b TEM image of 45-OTA–CoVW–TiO2 NF, c HR-TEM image of 45-OTA–

CoVW–TiO2 NF.
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The impact on desulfurization efficiency
of various desulfurization systems
and catalysts

It is instructive to compare the desulfurization effi-

ciency for different desulfurization systems. As

shown in Entry 1–5 of Table 1, DBT removal effi-

ciency for ODS (Entry 1), EDS (Entry 2), oxidative

catalytic desulfurization system (OCDS, Entry 3),

extractive catalytic desulfurization system (ECDS,

Entry 4) and ECODS (Entry 5) were 4, 14, 14, 33 and

100%, respectively. The higher desulfurization effi-

ciency of ECODS was owed to the coordination effect

among H2O2, IL ([Bmim]PF6) and catalysts.

The impact on desulfurization efficiency of various

catalysts was investigated, and the results are listed

in Entry 6–8 of Table 1. A total of 31, 66 and 0.7%

desulfurization efficiency was obtained in 20 min

using CoVW, OTA–CoVW and TiO2 nanofibres as

catalyst, respectively. DBT removal efficiency of 0.7%

was ascribed to the poor adsorptive capacity of TiO2

nanofibres [41]. It was noteworthy that 45-OTA–

CoVW–TiO2 NF could efficiently decrease the DBT

concentration under mild conditions comparing to

previous reports (Table S1). Thus, 45-OTA–CoVW–

TiO2 NF was the most appropriate catalyst in ECODS

for investigating other influential factors during the

whole desulfurization process.

The influence of POMs with different
cations in catalysts on desulfurization
efficiency

As could be observed in Fig. 6, it took 90, 60, 40 and

20 min to achieve 100% desulfurization efficiency

using 45-DDA–CoVW–TiO2 NF, 45-DTA–CoVW–TiO2

NF, 45-HTA–CoVW–TiO2 NF and 45-OTA–CoVW–

TiO2 NF as catalyst, respectively. The poorer catalytic

activity of 45-DDA–CoVW–TiO2 NF with double-car-

bon chain was assigned to the relatively strong stereo-

effect, which made the active species hard to approach

H2O2 [9, 42, 43]. Additionally, the desulfurization

efficiency was also influenced by the length of the

carbon chain for the catalyst with single-alkyl chain

[44]. The desulfurization performance of 45-OTA–

CoVW–TiO2 NF was superior to that of 45-DTA–

CoVW–TiO2 NF and 45-HTA–CoVW–TiO2 NF obvi-

ously, since a dual trap for both DBT and H2O2 was

provided by the catalyst with long single-alkyl chain

[45]. It is favorable to affirm the optimum catalyst for

removing DBT was 45-OTA–CoVW–TiO2 NF.

Figure 5 The TEM image of signal nanofiber of 45-OTA–

CoVW–TiO2 NF and corresponding elemental mapping of Ti

(cyan), C (green), W (orange), Co (purple), V (yellow) and O (red)

on 45-OTA–CoVW–TiO2 NF.

Table 1 Desulfurization

efficiency of various

desulfurization systems and

catalysts

Entry Catalysts Oxidant Extractant Desulfurization efficiency (%)

1 No H2O2 No 4

2 No No [Bmim]PF6 14

3 45-OTA–CoVW–TiO2 NF H2O2 No 14

4 45-OTA–CoVW–TiO2 NF No [Bmim]PF6 33

5 45-OTA–CoVW–TiO2 NF H2O2 [Bmim]PF6 100

6 aCoVW H2O2 [Bmim]PF6 31

7 bOTA–CoVW H2O2 [Bmim]PF6 66

8 cTiO2 nanofibres H2O2 [Bmim]PF6 0.7

Reaction conditions: T = 323 K, mcat = 0.010 g, O/S = 4:1, t = 20 min
aCoVW: Na10[Co4(H2O)2(VW9O34)2]�35H2O,

bOTA–CoVW: (OTA)10[Co4(H2O)2(VW9O34)2] and
cTiO2 nanofibres: the preparation process was presented in ‘‘Supplementary Material’’
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The impact of loading amount of OTA–
CoVW and catalyst dosage
on desulfurization efficiency

The catalytic activity of catalysts mainly depended on

the amount of active species, which was limited by the

loading amount of OTA–CoVW and the dosage of

catalysts. Figure 7a displayed that 97% desulfuriza-

tion efficiency was obtained with 25-OTA–CoVW–

TiO2 NF in 90 min, while 60, 20 and 80 min were

consumed to achieve 100% DBT removal efficiency

using 35-OTA–CoVW–TiO2NF, 45-OTA–CoVW–TiO2

NF and 55-OTA–CoVW–TiO2 NF as catalyst, respec-

tively. The real loading amounts of OTA–CoVW on

TiO2 nanofibres were measured by ICP, and the cal-

culated results are shown in Table S2, which indicated

that the loading amounts of OTA–CoVW in 45-OTA–

CoVW–TiO2 NF were approximate equal to the origi-

nal added amounts, which contributed a large amount

of available active sites (peroxo-POMs) for polyox-

ometalate-based catalysts [29]. Below 45 wt% of OTA–

CoVW concentration, the low amounts of active cen-

ters were not enough to catalysis sulfur compound

entirely. Meanwhile, the distribution of active species

also had a vital impact on desulfurization efficiency

[46, 47]. Hence, the BET surface area and pore volume

of 45-OTA–CoVW–TiO2 NF were researched and the

results are listed in Table S3, the higher DBT conver-

sion efficiency of 45-OTA–CoVW–TiO2 NF was

attributed by the possibility that many pores were

occupied bymore POMs, which not only reduced BET

surface area and exposed more active sites, the inter-

ference was obtained by the TEM analysis of 45-OTA–

CoVW–TiO2 NF.

45-OTA–CoVW–TiO2 NF with superior desulfur-

ization performance was the suitable catalyst to

investigate the impact of catalyst dosage on desul-

furization efficiency. Figure 7b highlighted that the

desulfurization efficiency was 79% using 0.005 g

catalyst within 90 min, while 100% DBT removal

efficiency was obtained during 20, 40 and 70 min

when the dosage of catalyst was 0.010, 0.015 and

0.020 g, respectively. The excess catalysts possibly led

to the aggregation of nanofibres, which covered on

the surface of the catalyst and decreased the amounts

of defective sites available. According to above

analysis, we concluded that the desulfurization per-

formance of 45-OTA–CoVW–TiO2 NF was the most

outstanding when the dosage of catalyst was 0.010 g.

The influence of reaction temperature
on desulfurization efficiency

As could be seen in Fig. 8, 79% desulfurization effi-

ciency was reached in 90 min at 303 K, the required

operational time for complete removal of DBT

reduced from 60 to 20 min when the temperature

increased from 313 to 323 K, respectively, implying

Figure 6 The influence of POMs with different cations in

catalysts on desulfurization efficiency, reaction conditions:

T = 323 K, mcat = 0.010 g, O/S = 4:1.

Figure 7 a The impact of

loading amount of OTA–

CoVW on desulfurization

efficiency, reaction conditions:

O/S = 4:1, mcat = 0.010 g,

T = 323 K; b the impact of

45-OTA–CoVW–TiO2 NF

catalyst dosage on

desulfurization efficiency,

reaction conditions:

O/S = 4:1, T = 323 K.
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the desulfurization performance enhanced with the

increasing of temperature. However, when the tem-

perature was elevated to 343 K, the reaction time for

86% DBT removal efficiency could be prolonged to

90 min. This was probably due to more H2O2 self-

decomposition under higher temperature [48, 49].

Therefore, 323 K was the optimum temperature for

the requirement of deep desulfurization.

The effect of O/S molar ratio on DBT
removal efficiency

The H2O2/DBT molar ratio (O/S) has a vital effect on

DBT removal efficiency and economy of the desulfu-

rization system; thus, various O/S molar ratios were

examined in ECODS and the results are shown in

Fig. 9. The required time to achieve 100% DBT

removal efficiency could be shorten from 80 to 20 min

when the O/S molar ratio decreased from 6:1 to 4:1,

respectively. Below 4:1 of O/S molar ratio, 100%

desulfurization efficiency was achieved more than

20 min. Stoichiometrically, 1 mol sulfur compound is

oxidized to corresponding sulfone with 2 mol H2O2

[50, 51]. In this work, 4:1 was the optimal O/S molar

ratio, which was higher than the stoichiometric value.

The result was assigned to the competing reaction of

the oxidation that nonproductive decomposition of

H2O2 itself [52]. Consequently, more H2O2 was needed

to generate peroxo-POMs for the oxidation of DBT.

Nevertheless, further increasing O/S molar ratio from

4:1 to 6:1 led to more aqueous solution in the system,

which was responsible for decreasing the concentra-

tion of active species and reducing DBT removal

efficiency. Accordingly, 4:1 was the most appropriate

O/S molar ratio and applied in the current desulfur-

ization process.

Desulfurization efficiencies on different
substrates

Considering the potential industrial application value

and the compatibility of 45-OTA–CoVW–TiO2 NF, BT

and 4,6-DMDBT were also inflexible to be trans-

formed into corresponding sulfones and necessary to

be evaluated. Figure 10 displayed that the desulfur-

ization efficiency of BT, 4,6-DMDBT and DBT was 79,

92 and 100% in 90, 90 and 20 min, respectively. The

removal efficiency of various substrates was mainly

affected by electron density of S-atom and steric

Figure 8 The influence of reaction temperature on desulfuriza-

tion efficiency for 45-OTA–CoVW–TiO2 NF, reaction conditions:

O/S = 4:1, mcat = 0.010 g.

Figure 9 The effect of O/S molar ratio on DBT removal

efficiency for 45-OTA–CoVW–TiO2 NF, reaction conditions:

T = 323 K, mcat = 0.010 g.

Figure 10 Desulfurization efficiencies on different substrates

with 45-OTA–CoVW–TiO2 NF, reaction conditions: T = 323 K,

mcat = 0.010 g, O/S = 4:1.
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hindrance. The desulfurization efficiency of BT

(5.568) was lower than DBT (5.758), which was

attributed to electron density, steric hindrance was

caused by methyl without consideration [9, 48]. The

electron densities of 4,6-DMDBT (5.760) and DBT

were approximate, but the desulfurization efficiency

of DBT far exceed that of 4,6-DMDBT corresponding

to the negative approaching S-atom from the two

methyl groups on the benzene ring of 4,6-DMDBT.

Recycling

The reusability of catalyst is a significant respect to

industrial application, and the recyclable perfor-

mance of 45-OTA–CoVW–TiO2 NF was

experimented under the optimum conditions.

Decantation was employed to separate oil from IL

phase since they were immiscible. The oil was poured

out carefully after the first run, and remnants were

washed with appropriate dichloromethane and then

dried at 80 �C in an oven. Afterward, H2O2 and fresh

model oil were added for the next run. As shown in

Fig. 11, the desulfurization efficiency only decreased

from 100 to 97% after recycling for five times. The

accumulation of DBTO2 formed an obstacle between

active sites and sulfur compounds, which was con-

sidered as the main parameter for the slight decrease

in DBT conversion efficiency [48, 53]. Above all,

45-OTA–CoVW–TiO2 NF could be recycling at least

five times for deeply desulfurization.

Mechanism

To acquire a better understanding of the excellent

desulfurization performance, the proposed desul-

furization mechanism of 45-OTA–CoVW–TiO2 NF

in ECODS was studied. The ECODS was consisted

of three phases: DBT was included in the oil phase

and lived in the upper layer, the middle phase

contained oxidative agent (H2O2) and IL phase with

dispersive catalysts was the lowest layer. Three

phases could fully contact with each other under

the magnetic stirring. More and more peroxo-POMs

[W(O2)] were obtained by reacting with H2O2

because of the hydrophilic characteristic of POMs,

and the hydrophobic property of carbon chain

Figure 11 Recycle performance of 45-OTA–CoVW–TiO2 NF,

reaction conditions: T = 323 K, mcat = 0.010 g, O/S = 4:1.

Figure 12 Proposed

desulfurization mechanism of

45-OTA–CoVW–TiO2 NF in

ECODS with three liquid-

phase systems.
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made it easy to approach DBT [13, 42, 44]. Hence,

the amphiphilic heterogeneous catalysts with the

higher catalytic activity were recycled and reused

conveniently. As shown in Fig. 12, [Bmim]PF6
extracted DBT to IL phase firstly [3], the active

peroxo species W (O2) were formed via reacting

between W=O and H2O2 simultaneously. W(O2)

provided [O] to the oxidation of DBT, and the

preliminary production DBTO was further oxidized

to DBTO2. Finally, the higher polar DBTO2 was

retained in the IL phase [8, 27] resulting in a con-

tinuous decrease in DBT concentration in the oil. It

was noteworthy that the active peroxo species

W(O2) returned back to W=O continuously, which

was forced to stop until H2O2 exhausted fully [30].

Conclusions

In this work, various catalysts were prepared suc-

cessfully by electrospinning combining with chemical

reaction and employed in desulfurization process.

500 ppm DBT model oil could be entirely removed

using 0.010 g 45-OTA–CoVW–TiO2 NF as catalyst

and [Bmim]PF6 as extractant at 323 K in 20 min,

when the dosage of model oil was 5 mL and O/S

molar ratio was 4:1. Moreover, the desulfurization

efficiencies for different substrates decreased in the

order of DBT[ 4,6-DMDBT[BT. The last but not

least, the catalysts could be easily regenerated and

reused for five consecutive cycles with unnoticeable

decrease in catalytic activity indicating the excellent

practical industrial application prospect.
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