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ABSTRACT

Fe3O4/NiFe2O4 nanosheets as anode materials for lithium-ion batteries have been

successfully prepared by a facile one-step dealloying method of Al–Fe–Ni alloy

precursor. Herein, the XRD results and XPS spectra indicated that the product

consists of cubic NiFe2O4 and Fe3O4. Scanning electronic microscopy and trans-

mission electron microscopy images showed the homogenous distribution of

Fe3O4/NiFe2O4 in the quasi-hexagonal nanosheets rather than irregular clusters.

Besides nanostructures, their electrochemical performances were also enhanced

due to the doping of nickel when comparing with the Fe3O4 obtained by deal-

loying Al–Fe precursor. Cycling and rate tests elicited the DAFN has the Fe3O4/

NiFe2O4 product exhibit a higher initial capacity of * 1437 mAh g-1 at

200 mA g-1 and modified rate performances, especially they hold a doubled

reversible capacity over 500 mAh g-1 after 750 times cycling at 200 mA g-1.

Cyclic voltammetry, charge–discharge tests and electrochemical impedance

spectra measurements further demonstrated the reinforced initial capacity and

cycling stability of the DAFN could be associated with the shortened diffusion

pathways and synergistic effect of Fe3O4 and NiFe2O4. The facile and low-cost

processing method accompanied with the well-performed product exhibit a

promising prospect in the application of lithium-ion storage.

Introduction

Compared with conventional forms of power sup-

plies, rechargeable Li-ion batteries (LIBs) have been

more widely employed in communication, electric

vehicles and other most advanced fields due to their

sustainable high capacity, energy density, cycling

stability and peerless portability [1–3]. With a low

theoretical capacity of 372 mAh g-1, conventional

graphite has occupied the majority component of the
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anode materials in commercial LIBs for decades,

which can hardly meet the ever-growing demands

for high power sources [4]. In terms of exploring

candidates for replacement, profuse efforts have

made to reinforce the performance by numerous

attempts [5].

Among a variety of modification, introducing

metal oxides [4, 6], especially inorganic transition

metal oxides (TMOs) as anode materials have trig-

gered intensive attention owing to high theoretical

capacity and long lifespan compared with graphite

[7–10]. It is noteworthy that iron oxides are of great

advantage such as natural abundance, eco-compati-

bility and low price [11, 12] so that they have strongly

attracted much attention for further research and

mass production [13]. However, the limits of iron

oxides inherent on poor lithiation activity, low elec-

trical conductivity, large volume change and severe

agglomeration [14–17] during the conversion reaction

have severely impeded the practical application,

especially the strong impact on rate performance and

capacity retention [14, 18]. To address these short-

comings, a series of attempts to enhance the electrical

conductivity, shorten the Li? diffusion distances,

alleviate the pulverization and agglomeration have

utilized [14, 19–24]. Several effective methods have

pointed out that the nanostructured binary transition

oxides have the synergistic effects through reinforc-

ing or modifying each other to generate the enhanced

electrochemical activity [25–28]. Inspired by our

previous work [9] and references reported [22, 29],

we noticed that the nickel-incorporated nanostruc-

tured oxides can contribute to the better lithium

activity and storage capability [26, 30]. Thus, we

intended to obtain a Fe-based oxide material with Ni-

incorporated versus unsophisticated Fe-based oxides.

Hoping that the product could combine the advan-

tages of nanostructured Ni and Fe metal oxides with

superior performances as anode material by our

rationally designed preparation processes.

In view of considerable incorporation methods

including hydrothermal [7, 29, 31, 32], co-precipita-

tion [11], physical/chemical deposition [33, 34], and

mechanical-milling [14, 35] were carried out with

disadvantages such as complex controlling condi-

tions, high synthesis costs and low output unsolved.

Herein, to tackle this problem, we introduced a novel

one-step chemical dealloying method that can be

interpreted as a reaction–diffusion process, where the

less noble metal in alloy is selectively dissolved into

an acid or alkaline solution at the solid/liquid inter-

face, thus generating a porous structure accompanied

with the spontaneous oxidation and regroup of the

remaining parts [36, 37]. This facile and straightfor-

ward approach is easy to realize the controllable

component and uniform distribution in the product

which has proved to be efficient in our previous

works [9, 37, 38]. In addition, the versatile and prac-

tical method has successfully used in many applied

fields such as gas sensors [39], catalysts [40], and

structural materials [41] for years.

Inspired by the aforementioned statement, our

focus is to explore high-performance anode by

introducing Ni oxide as well as tailoring the nanos-

tructure. Bearing this in mind, our work selected and

compared Al–Fe–Ni (AFN) ternary alloy and Al–Fe

(AF) binary alloy as precursors under the same

dealloying process in NaOH solution. Results

showed during the removal of Al, neither the

remained Ni nor Fe formed metallic phase but oxi-

dized and self-assembled to a certain morphology

eventually. Particularly, the as-made AFN sample

showed quasi-hexagonal nanosheets with intercon-

nected voids which can effectively accommodates

volume change and decrease the diffusion distance

during conversion processes. Electrochemical exam-

inations also confirmed that it possesses enhanced

capacity, rate performance, fast ion diffusion and

electronic transfer. Taken advantage of simple

preparation and excellent electrochemical perfor-

mance mentioned above, the as-made Fe3O4/NiFe2O4

nanocomposite showed promising application as

anode material for LIBs. Also, considering that nei-

ther environmental hazards participated nor pro-

duced, the dealloying method could be competent to

our following researches and upcoming industrial

manufacture.

Experimental section

Sample preparation

The Al–Fe–Ni (Al86Fe12Ni2 namely, marked as AFN)

ternary alloy ingots were obtained by refining high

purity (99.9%) of Al, Fe and Ni in arc-furnace, while

the Al86Fe14 (AF) binary alloy refinement were almost

coincident except for Ni element’s absence. Later on,

we adapted a melt-spinning procedure under the

argon atmosphere and obtained numerous alloy
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ribbons as dealloying precursors with the thickness

around 50 lm. Next, the precursors underwent a

selective etching by 2 M NaOH solution under the air

condition at room temperature for 48 h to ensure no

obvious bubbles emerged. The resultant were

washed three times with ultra-pure water (18.2 MX
cm) and ethanol by turns then preserved in a drying

box at 60 �C overnight to have the dealloyed AFN

and AF products (DAFN and DAF, respectively)

obtained eventually.

Material characterization

The crystal structure of the products were further

analyzed by a powder X-ray diffractometer (XRD,

Tongda TD-3000) using Cu Ka radiation at the scan

rate of 0.02� s-1 with 2-theta degrees ranges from 10� to

90�. The microstructure and chemical composition of

the specimens were observed through field emission

scanning electron microscopy (SEM, JEOL JSM-7610F)

equipped with an X-sight energy-dispersive X-ray

spectrometer (EDS, Oxford, X-Max). Low-magnifica-

tion and high-resolution transmission electron micro-

scopy (TEM and HRTEM) images were captured at the

working voltage of 20 kV by using JEM-2100. Surface

structural properties analysis of the as-made products

were performed on an X-ray photoelectron spec-

troscopy (XPS, ESCALab 250), using monochroma-

tized Mg Ka X-ray as the excitation source, choosing C

1s (284.6 eV) as the reference line.

Electrochemical tests

The electrochemical behavior was evaluated by

assembling coin-type cell (size: CR2032) in an argon-

filled humidity-free glove box with lithium foils as

the counter and reference electrodes versus the

dealloyed products as the working electrodes. To

prepare the working electrodes, the active material

(AF and AFN, respectively), acetylene black,

polyvinylidene difluoride (PVDF) were mixed at a

weight ratio of 8:1:1 in N-methyl-2-pyrrolidone

(NMP). After the mixed slurry was milled uniformly,

it was blade coated onto a Cu foil and dried under

vacuum at 80 �C for 12 h. The mass loading of each

product on the electrode was weighted about

1.0–1.2 mg per unit area. The working electrode and

lithium foil electrode were electronically separated by

a Celgard 2320 microporous membrane and

immersed in the electrolyte composed of 1 M LiPF6

dissolved in dimethyl carbonate (DMC) –ethylene

carbonate (EC) mixture at the volume ratio of 1:1. For

electrochemical test, the charge/discharge perfor-

mances, Columbic efficiencies, cycling and rate

capacities were carried out galvanostatically between

0.01 and 3.0 V in a NEWARE BTS 5 V–10 mA com-

puter-controlled testers (Shenzhen, China) with var-

ious current densities. Cyclic voltammetry (CV) test

at the scan rate of 0.1 mV s-1 and the electrochemical

impedance spectroscopy (EIS) measurement over the

frequency range between 0.01 Hz and 100 kHz were

carried out through an electrochemical workstation

(CHI-760D, Shanghai, China).

Results and discussion

The phase information of different samples was

characterized by XRD measurement to ascertain the

crystalline structure. It could be observed from the

XRD patterns in Figure S1 that the AF and AFN alloy

ribbons can be well assigned to cubic Al (JCPDS No.

04-0787) and monoclinic Al76.8Fe24 (JCPDS No.

38-1147), while the AFN alloy has the extra compo-

nent of cubic kamacite (Fe, Ni JCPDS No. 04-0787)

detected. In the meantime, as is conveyed from the

two broaden peaks in Fig. 1a, the dealloyed product

DAF and DAFN possess cubic Fe3O4 (JCPDS No.

75-0449) phase at the first identification, which is a

convincing proof of the total removal of metallic Al.

To facilitate our recognition, a heat treatment was

carried out through annealing at 600 �C for 2 h in Ar

protected atmosphere. As shown in Figure S2, it

could be expounded that besides cubic Fe3O4 (JCPDS

No. 75-0449), the DAFN product has the cubic

NiFe2O4 (JCPDS No. 10-0325) well indexed. When

comparing with the calculated lattice parameters in

Table S1, it is noteworthy that the interplanar spacing

of the DAFN (8.336 Å) is larger than the DAF

(8.321 Å) and Fe3O4 (8.320 Å), smaller than but closer

to NiFe2O4 (8.339 Å). Thus, we can conclude that the

incorporation of Ni could enlarge the lattice space of

the dealloyed product. As described above, we

deduced that the main constitute of the DAF and

DAFN are nearly the same but for DAFN contains

additional Nickel ferrite.

In the two samples, the valence state of each ele-

ment was checked out by XPS analyzing the surface

of the dealloyed products. As acquainted in Fig. 1b

and Figure S3(b), both of the DAFN and DAF
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samples possess the Fe 2p3/2 and Fe 2p1/2 peaks of the

Fe3O4 at 712.3 [42] and 723.6 eV [43]. In the mean-

time, the DAFN sample has the additional Fe 2p3/2

peaks addressed at 710.6 eV [44] and the Fe 2p1/2

peaks at 725.0 eV [45] which is belonged to NiFe2O4.

The DAF has the Fe 2p3/2 characteristic peaks of

Fe3O4 at 710.2 [42] and 711.0 eV [43]. It can also be

observed from Fig. 1d and Figure S3(c) that the O

1s peaks at 529.7 [46], 530.9 [42], 531.6 and 533.1 eV

[47] can be indexed to Fe3O4, and peaks at 529.8,

531.8 eV are indexed to NiFe2O4, respectively [42].

From the peaks indicated in Fig. 1c, in the recorded

binding energies spectra Ni 2p3/2 at 854.9 [48], 856.0

[42] and 861.4 eV [42] along with Ni 2p1/2 peak at

872.6 eV [44] are respond to NiFe2O4 as previously

reported [45]. Based on the observation, the chemical

states of Ni and Fe in the DAF and DAFN are sum-

marized as Ni2?, Fe2? and Fe3?, respectively. In a

word, the XPS results can be consistent with the XRD

patterns.

To obtain an intuitive description, digital images

were taken to give a better understanding of the

product. Observed from Figure S4, the melt-spun

alloy ribbon precursors of AF and AFN exhibited a

mean size distribution as measured in Table S2

without distinct differences of mechanical strength

and ductility before the etching process. Hence, an in-

depth research on the microstructure and morphol-

ogy of the NaOH solution eroded products was

probed by high magnification SEM images shown in

Fig. 2. From the detailed structure in Fig. 2b, the DAF

was evidenced to own an inhomogeneous cluster

dispersion with irregular shapes (sheet-like or octa-

hedrons) accompanied with numerous smaller par-

ticles and slices attached. Regardless of morphology,

the remaining pieces after dealloying with sizes range

from 100 nm to over 1 lm. As the state-of-the-art

literatures have mentioned about the dealloying

procedures, this natural phenomenon is due to the Al

removal along with the gradual island aggregation of

the partly dissolved Fe component [36, 49]. Mean-

while, these rough aggregates underwent an oxida-

tion under the O containing condition and formed

Fe3O4 eventually [38]. It is interesting to note that in

contrast with DAF sample, most of the DAFN

nanosheets in Fig. 2c have at least one straight edge

or a corner of around 120�. The magnified image in

the inset directly witnessed the smooth arrayed reg-

ular hexagon morphology of the nanosheets in the

DAFN. The side lengths distribution of each edge is

Figure 1 a XRD patterns of

the DAF and DAFN products

etched by 2 M NaOH for 48 h

in air. XPS survey of the as-

dealloyed DAFN sample: b Fe

2p, c Ni 2p and d O 1s,

respectively.
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50–500 nm, thus can be deduced that the scale of the

complete breadth ranges from 100 nm to 1 lm, close

to but more homogeneous than that of DAF. Besides,

the thickness of these sheets in Fig. 2c is so slim that

some of the parts are semi-transparent. As described

[50], any divalent metal ions with radii close to each

other (Ni and Fe have the close atom radii) can con-

stitute the two-dimensional (2D) layered double

hydroxides [Ni1-x
2? Fex

3?(OH)2]x?(An-)x/n�mH2O in

theory. Therefore, the morphology of interlaced

quasi-hexagonal morphology and the existence of

H2O and NiO at the surface was finally confirmed

based on these testimonies, and the morphology

evolution is resumed in Fig. 2a. Thus, we can assume

that the existence of Ni does affect the formation of

morphology in the light of the same external condi-

tions. To further confirm the assumption, EDS ele-

mental mapping was carried out to elaborate their

elements distribution. Recognized from the elemental

distribution of Fe, O and Al shown in Figure S5, a

conclusion was drawn that Ni, Fe and O have a

uniform dispersion and all the Al species in the AFN

sample was completely removed. In the meantime,

Figure S6 reveals the DAF sample possessing

homogenous Fe and O dispersion. These results

hinted the Fe3O4 and NiFe2O4 can be co-exist and

well interlaced with each other in the sample without

adulterate aluminiferous ingredient.

Low-magnification and high-resolution TEM mea-

surements were conducted to confirm the texture and

crystalline orientation of the two nanostructures. As

shown in Fig. 3a, a detailed view shows that the DAF

structure consists of several irregular slices and

nanoparticles with different thicknesses and width,

which is similar to its SEM images. Figure 3c displays

its corresponding HRTEM images with the interpla-

nar spacings of 0.186, 0.230 and 0.257 nm are align

with the (331), (400) and (311) reflection of cubic

Fe3O4 which is well in accordance with the XRD

peaks as pointed in Fig. 1a. More than the existence

of Fe3O4 in DAF sample, high-resolution TEM image

in Fig. 3d points out the DAFN sample has the lattice

spacing 0.187 and 0.214 nm could well be indexed to

the (311) and (400) in-plane structural parameter of

the cubic NiFe2O4. Moreover, in view of Fig. 3b, there

is a broken quasi-hexagonal nanosheet in the DAFN

sample as the dash line marked out. The TEM and

HRTEM results further approved our assumption

that Ni doping is in favor of forming hexagonal

sheets and uniform distributing of Fe3O4 and NiFe2-

O4 during the DAFN products dealloying process.

The Li-ion storage ability of the DAF and DAFN

for anode materials were testified by various elec-

trochemical tests. The initial 3 cycles of the charge/

discharge profiles of the DAF product (Fig. 4a) and

DAFN product (Fig. 4b) composites were obtained at

a current rate of 200 mA g-1 within a voltage win-

dow ranges from 0.01 to 3.0 V. From the first dis-

charge and charge curves in Fig. 4b, a discharge flat

stage at around 0.7 V and a charge extended slope

from 1.0 to 2.0 V can be observed for the DAFN

composite, similar to the literature results for

Figure 2 a Brief illustration

on the structure evolution of

DAFN from alloy precursor to

dealloyed product, SEM image

showing the microstructure of

the two products etched by

2 M NaOH for 48 h in air:

b DAF sample, (c and inset)

DAFN sample, respectively.
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Figure 3 TEM images of DAF sample (a), DAFN sample (b) and HRTEM images of DAF sample (c), DAFN sample (d) from the fresh

dealloyed products by 2 M NaOH etching for 48 h in air.

Figure 4 Galvanostatic

charge/discharge profiles:

a DAF and b DAFN at the

current of 200 mA g-1 and

voltage range from 0.01 to 3 V

versus Li. Cyclic voltammetry

(CV) curves of c DAF and

d DAFN anodes at a scan rate

of 0.1 mV s-1 from 0.01 to

3 V.
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NiFe2O4 [51] and Fe3O4 [28, 52]. Compared with the

DAF, the charge/discharge profiles are the same but

for a bit higher than it, which is attributed to the

higher potential of Ni-containing [51]. During the

processes, the main electrochemical reaction formu-

las are summarized as:

NiFe2O4 þ 8e� þ 8Liþ ! Ni0 þ 2Fe0 þ 4Li2O ð1Þ

Fe3O4 þ 8e� þ 8Liþ ! 3Fe0 þ 4Li2O ð2Þ

2Fe0 þ 3Li2O $ Fe2O3 þ 6Liþ þ 6e� ð3Þ

Ni0 þ Li2O $ NiO þ 2Liþ þ 2e� ð4Þ

According to formulas (1) and (2), if 8 mol Li? were

embedded, 912 and 926 mAh g-1 discharge capaci-

ties would be obtained in 1 mol of NiFe2O4 or Fe3O4

[53], respectively. It is interesting to note that both

DAF and DAFN discharge capacities in the first cycle

are 1163.9 and 1364.7 mAh g-1, which evidently

exceeded their theoretical capacity by uptaking

dozen mols of Li. The formation of solid electrolyte

interface (SEI) layers on the electrode surface [54] and

amorphous Li2O [55] before stabilizing, the decom-

position of the electrolyte [56] in the first cycle,

combining with formulas (3) and (4), could rationally

explain the exceeded lithium storage in the initial

cycling and the capacity fading phenomenon in the

following cycles as well [57].

Figure 4c and d convey the initial cyclic voltam-

metry curves of the DAF and DAFN electrode over

the voltage range of 0.01–3.0 V at a scanning rate of

0.1 mV s-1, respectively. In the first DAFN cathodic

process, the broad peaks at 0.68 and 1.26 V are

attributed to the reduction of NiFe2O4 and Fe3O4 to

metallic Ni and Fe, along with the irreversible for-

mation of SEI and Li2O. During the anode scan, two

broad oxidation peaks at 1.21 and 1.85 V are ascribed

to the oxidation of Fe and Ni to Fe3? and Ni2?, and

the decomposition of the SEI and Li2O, respectively,

which is in well accordance with the charge/dis-

charge profiles. As shown in Fig. 4c, the DAF sample

has the similar but lower cathode peaks at 0.68 and

1.22 V associated with anode peaks at 1.15 and 1.83 V

[54, 55]. In the following cycles, compared with the

first cycle, two anode and cathode peaks of DAF and

DAFN slightly shift due to the electrochemical reac-

tion generated Fe2O3 instead of Fe3O4 and then

caused the potential change [26]. This phenomenon

can also illustrate the irreversible electrochemical

reactions and capacity fading in the initial several

cycles, which is well consistent with the charge/dis-

charge profiles and formulas (3) and (4).

The cycling performance and the capacity retention

of the DAF and DAFN anode material were con-

ducted at the current density of 200 mA g-1. It can be

seen from Fig. 5a that the DAFN sample owns a

higher capacity (* 1437 mAh g-1) than that of DAF

(* 1164 mAh g-1) in the first cycling, which can be

attributed to the residual Ni2? in the ferrite can pro-

vide capacity effectively, but the remaining Fe2?

cannot due to its instability and a tendency to be

in situ oxidized to Fe3? in the reaction system. As is

confirmed in the charge/discharge profiles, the

practical capacities far beyond their theoretical

capacities in the first discharge of the two com-

pounds, which is commonly happened in lithium

battery anode materials due to massive irreversible

reactions happened in the first cycle. In other words,

multitudinous defects such as vacancies, distortions

and dislocations in their nanostructures are able to

provide active sites for efficient intercalation of

lithium ions. Upon cycling, even though the capacity

quickly faded in the initial 150 cycles, the DAFN

composite upturned steadily from the 150th cycle,

earlier and stronger than DAF sample. This perfor-

mance made the DAFN product quickly recovered to

the doubled capacity afterward, held the doubled

reversible capacity over 500 mAh g-1 than the DAF

sample after 750 cycles. This appearance could be

well documented as the gradually settled compli-

cated processes, the self-reconstructed structure of

the electrode materials [58–60], and the reversible

growth of a polymeric gel-like film resulting from

kinetically activated electrolyte degradation in the

literature [61, 62]. Particularly, from 500 to 700 cycles,

the cycled DAFN composite held a higher Coulombic

efficiency reached to more than 99% with a nearly

double reversible discharge capacity than the DAF.

The above results indicate the enhanced cycling sta-

bility of the DAFN can be ascribed to the interlaced

nanosheets enable to hold sufficient space for volume

expansion upon conversion reactions, limiting the

detachment of active materials effectively and favors

fast electron and ion transport during cycling.

The rate capability of the tested samples was cycled

at a current density of 100 mA g-1 for the first 30

cycles and then increased the rate from 200 to

2000 mA g-1 step by step. As shown in Fig. 5b, the

DAFN composite pronounces a much better perfor-

mance at lower current density (B 500 mA g-1) with
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double the restored capacities of the DAF composite.

These results clearly show that the morphology with

interlaced nanosheets plays an important role in

improving the electrochemical performance. The

improved reversible stable capacity and rate perfor-

mance can retrospect to the interlaced two-

dimensional nanostructure which is able to accelerate

Li-ion transport, alleviate the internal stress, and

avoid pulverization of the active material. In the

meantime, the synergistic effect [26] of the furnished

Fe3O4/NiFe2O4 interconnected nanosheets could

establish fast channels for electron transfer upon

Figure 5 a Cyclic performance of DAF and DAFN product and

Columbic efficiency of DAFN in the voltage between 0.01 and

3.0 V 200 mA g-1, b Rate performance of the DAF and DAFN at

the current density ranges from 100 to 2000 mA g-1,

c Electrochemical impedance spectra of the DAF and DAFN

samples, the plotting resistance and imaginary resistance versus

inverse square root of the angular frequency of the samples:

d DAF, e DAFN.
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cycling, which is further improved by EIS

measurements.

To understand the superior electrochemical per-

formance of the fast ion diffusion and electron

transfer of the DAFN sample, electrochemical impe-

dance spectra (EIS) and Warburg factor calculation

were carried out after battery activation. From

Fig. 5c, we could see that each Nyquist plot consists

of an intercept in the high frequency at the Zreal axis,

a semicircle in the middle frequency and an inclined

line in the low frequency region, which could corre-

spond to the electrolyte resistance (Re), the charge

transfer resistance (Rct) and the Warburg factor (r),

respectively. By comparison, it is clear that the DAFN

sample has a shorter intercept, indicating the lower

Re than the DAF sample. For a quantitative analysis

of the parameters, the impedance spectra were fitted

by ZSIMPWIN software, the simulating plots with

fitting circuits are shown in Figure S7 and calculation

results are listed in Table 1. Results illustrate that

DAFN has a lower Re ? Rct of 59.339 X than DAF of

56.872 X, which could well explain that DAFN owns

an enhanced electronic conductivity. In a word, the

doping of Ni is in favor of electron transfer.

Based on the EIS measurements, the product

information of lithium ion diffusion can be repre-

sented by Warburg factors (r), its formula is shown

as follows:

r ¼ Ar þ Ai

2
ð5Þ

Z0j j ¼ Arð2pfÞ�1=2 ð6Þ

Z00j j ¼ Aið2pfÞ�1=2 ð7Þ

where f is the frequency, Z0j j and Z00j j are the real and

imaginary resistance, and the corresponding War-

burg factor (r) could be obtained by figuring out the

mean value of Ar and Ai, the two parameters which

means the slope of Z0j j versus f-1/2 and Z00j j versus

f-1/2, respectively [63]. In view of the lower Warburg

factor in Fig. 5d and e, it is favorable to demonstrate

that the DAFN sample has the faster ion diffusion. In

general, with the help of the synergistic effect of

Fe3O4/NiFe2O4, the DAFN sample performs well in

both electron transfer and ion diffusion and thus can

lead to a lower resistance and an enhanced rate per-

formance before cycling.

Conclusion

In summary, we successfully fabricated two-dimen-

sional nanosheets with homogenous distribution of

Fe3O4/NiFe2O4 by a facile chemical dealloying of the

AFN sample. The as-prepared interlaced nanosheets

and interconnected voids exhibited excellent volume

change tolerance, fast ion and electron transportation.

The DAFN also expressed doubled cycling capacities

over 500 mAh g-1 after long-term cycles and modi-

fied rate performances than DAF products at a low

cost. The well-behaved product and concise synthesis

illuminate a promising prospect as a novel anode

material manufacturing for next-generation high-

performance LIBs.
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(2010) Structure and high-temperature oxidation behaviour

of Cu–Ni–Fe alloys prepared by high-energy ball milling for

application as inert anodes in aluminium electrolysis. Corros

Sci 52:3348–3355. https://doi.org/10.1016/j.corsci.2010.06.

011

[36] Xu CX, Wang RY, Zhang Y, Ding Y (2010) A general

corrosion route to nanostructured metal oxides. Nanoscale

2:906–909. https://doi.org/10.1039/b9nr00351g

[37] Liu H, Wang XL, Wang JX, Xu H, Yu WS, Dong XT, Zhang

HB, Wang LM (2017) Hierarchical porous CoNi/CoO/NiO

composites derived from dealloyed quasicrystals as

advanced anodes for lithium-ion batteries. Scripta Mater

139:30–33. https://doi.org/10.1016/j.scriptamat.2017.06.011

[38] Liu H, Wang XL, Wang JX, Xu H, Yu WS, Dong XT, Zhang

HB, Wang LM (2017) High electrochemical performance of

nanoporous Fe3O4/CuO/Cu composites synthesized by

dealloying Al–Cu–Fe quasicrystal. J Alloys Compd

729:360–369. https://doi.org/10.1016/j.jallcom.2017.09.111

[39] Zhang J, Ling YH, Gao WB, Wang S, Li JT (2013)

Enhanced photoelectrochemical water splitting on novel

nanoflake WO3 electrodes by dealloying of amorphous Fe–

W alloys. J Mater Chem A 1:10677–10685. https://doi.org/

10.1039/c3ta12273e

[40] Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni-Sn

catalyst for H2 production from biomass-derived hydrocar-

bons. Science 300:2075–2077. https://doi.org/10.1126/sci

ence.1085597

[41] Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010)
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