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ABSTRACT

Grain growth is one of the most fundamental phenomena affecting the

microstructure of polycrystalline materials. In experimental studies, three-dimen-

sional (3D) grain growth is usually investigated by examining two-dimensional

(2D) cross sections. However, the extent to which the 3D microstructural charac-

teristics can be obtained from cross-sectional observations remains unclear. Addi-

tionally, there is somedisagreement as towhether a cross-sectional viewof 3Dgrain

growth can be fully approximated by 2D growth. In this study, by employing the

multi-phase-field method and parallel graphics processing unit computing on a

supercomputer, we perform large-scale simulations of 3D and 2D ideal grain

growth with approximately three million initial grains. This computational scale

supports the detailed comparison of 3D, cross-sectional, and 2D grain structures

with good statistical reliability. Our simulations reveal that grain growth behavior

in a cross section is very different from those in 3D and fully 2D spaces, in terms of

the average and distribution of the grain sizes, as well as the growth kinetics of

individualgrains.On theotherhand,wefind that the averagegrain size in 3Dcanbe

estimatedasbeingaround1.2 times thatobserved ina cross section,which is ingood

agreement with classical theory in the stereology. Furthermore, based on the Sal-

tykov–Schwartz method, we propose a predictive model that can estimate the 3D

grain size distribution from the cross-sectional size distribution.
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Introduction

During the heat treatment of a polycrystalline mate-

rial, microstructural evolution takes place through

the competitive growth of grains due to the curva-

ture-driven boundary migrations. This metallurgical

phenomenon, i.e., grain growth, is of great impor-

tance to the development of superior materials, since

the physical properties of polycrystals largely depend

on the average and distribution of their grain sizes

[1–3]. Thus, intensive studies have been undertaken

to better understand and predict grain growth.

To experimentally observe grain growth, three-di-

mensional (3D) samples are usually investigated by

examining their two-dimensional (2D) cross sections.

However, the extent to which the 3D microstructural

characteristics can be obtained from the cross sections

is not clear. In the area of stereology [4], many efforts

have been devoted to the analytical extraction of 3D

microstructural information from cross-sectional

observations. Meanwhile, some experimental studies

have undertaken direct measurements of 3D grain

growth using 3D characterization techniques, such as

grain separating [5–7], serial sectioning [8–11], and

X-ray microtomography [12, 13]. One of the most

detailed investigations in this area was reported by

Rhines et al. [8], who undertook very laborious

experiments to measure and compare the temporal

variations in 3D and cross-sectional grain structures.

Significant discrepancies between the results for each

dimension led them to conclude that 3D microstruc-

tures and their evolution kinetics cannot be inferred

from cross sections, and instead must be determined

in 3D space. On the validity or universality of this

conclusion, several researchers have raised questions

[1, 2, 14–16], suggesting that the annealing time used

by Rhines et al. [8] may not have been long enough to

remove the initial anisotropy present in the

mechanically processed specimens. Currently, how-

ever, the theory remains controversial due to issues

with the associated experiments, specifically the

enormous amounts of labor required for the temporal

observation of 3D microstructures, the challenges

associated with maintaining the desired specimen

conditions, and the issue of sampling bias arising

from the limited analysis volume and spatial resolu-

tion [17].

Numerical simulation provides a helpful means of

addressing the above issues, because it enables us to

easily compare grain growth in 3D and its cross

sections for arbitrarily controlled systems. In this

regard, several numerical studies have been con-

ducted using continuum-based grain growth models,

such as the Monte Carlo model [18–20], vertex or

front-tracking model [21–24], surface-evolver model

[25], and phase-field model [26]. However, even for

the simplest (or ‘ideal’) grain growth with isotropic

grain boundary properties, a conclusive consensus

has yet to be established. For instance, grain size

distributions during the steady-state regime, in

which the normalized size distribution is time-in-

variant, appearing in the literature exhibit large dis-

crepancies; this is true for both 3D and cross-sectional

size distributions. Moreover, while the Monte Carlo

study by Anderson et al. [18] reported that cross

sections through an evolving 3D grain structure can

be well approximated by a fully 2D simulation, the

vertex simulations conducted by Weygand et al. [23]

showed clear dissimilarities between the cross-sec-

tional and 2D grain growth. These discrepancies

could be attributed to the limitations of the previous

simulations [27], namely large noise and lattice ani-

sotropy in the Monte Carlo simulations, grain coa-

lescence caused by a limited number of grain

orientations, and a statistically insufficient number of

grains in the computational system, all of which

prevent reliable grain growth statistics from being

obtained.

In recent years, there has been great progress in

grain growth simulation using the phase-field model:

the multi-phase-field (MPF) models developed in

several works [28–33] and the active parameter

tracking (APT) algorithm adopted by three research

groups [27, 34, 35] allowed for the accurate and

effective computation of grain growth while avoiding

the artificial coalescence of grains. In particular, the

MPF model reported by Steinbach et al. [28, 31]

exhibits quite a high degree of computational effi-

ciency, since the grain boundary region is clearly

defined by using the double-obstacle potential and,

thus, the governing equation does not have to be

solved outside of the boundary region. Furthermore,

rapid developments in high-performance computing

have been such that it is now easy to perform large-

scale phase-field simulations. Some groups con-

ducted phase-field grain growth simulations with

several tens of thousands of grains by employing

parallel-computing techniques [36–39]. Graphics

processing units (GPUs), which were originally
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developed to effectively handle graphical output,

have also proven to be extremely useful for handling

computations on a greatly enlarged scale and have

been successfully applied to computational materials

science [40–45]. In our previous studies, by enabling

massive parallel GPU computing on the GPU-rich

supercomputer TSUBAME at the Tokyo Institute of

Technology, it proved possible to achieve large-scale

phase-field simulations of various solidification pro-

cesses [46–51]. Recently, we applied a parallel GPU

computing scheme to the MPF model of Steinbach

and Pezzolla [31] and succeeded in simulating 3D

ideal grain growth for large-scale polycrystalline

systems with 25603 grid points and more than three

million initial grains [52]. This computational scale

enabled us to observe true steady-state growth with a

statistically sufficient number of grains and to eluci-

date the statistical behaviors of the phenomenon.

In the present study, by focusing on ideal grain

growth, we set out to elucidate the correlation

between 3D and cross-sectional microstructures via

large-scale phase-field simulations. We also wanted

to address the question of whether the cross-sectional

view of 3D grain growth can be fully approximated

by 2D growth. The remainder of this paper is laid out

as follows: first, ‘‘Simulation methodology’’ section

describes the methodology of the grain growth sim-

ulations. Next, based on the simulated data, ‘‘Results

and discussion’’ section examines grain growth in the

3D, cross-sectional, and 2D domains. The behaviors

of the systems and individual grains with different

dimensionalities are compared in detail from both

morphological and kinetic viewpoints. Finally, in the

same section, we discuss an analytical means of

estimating the 3D grain structures from cross-sec-

tional observations.

Simulation methodology

Multi-phase-field model

The MPF model proposed by Steinbach and Pezzolla

[31] is employed for simulating the ideal grain

growth. This model represents a polycrystalline sys-

tem including N grains through N phase-field vari-

ables /i (i = 1, 2,…, N), which take a value of 1 in the

ith grain and 0 in the other grains, smoothly changing

from 1 to 0 at the grain boundaries. The sum of the

phase fields at any spatial point in the system must be

conserved as:

XN

i¼1

/i ¼ 1: ð1Þ

For ideal grain growth without additional driving

forces other than the grain boundary energy, the total

free energy of the system, F, can be expressed as:

F ¼
Z

V

XN

i¼1

XN

j¼iþ1

�
a2ij
2
r/i � r/j þWij/i/j

 !
dV;

ð2Þ

where aij and Wij are the gradient coefficient and

barrier height of the boundary between the ith and jth

grains, respectively. The time-evolution equation of

the phase field /i satisfying Eq. (1) is given for each

spatial point by:

o/i

ot
¼ � 2

n

XN

j¼1

sisjM
/
ij

dF
d/i

� dF
d/j

 !
; ð3Þ

where n is the number of nonzero phase fields at the

point; si is a step function that takes a value of 1 if

/i[ 0 and otherwise vanishes; and M/
ij is the phase-

field mobility of the boundary between the ith and jth

grains. The functional derivative of F [Eq. (2)] can be

calculated as:

dF
d/i

¼
XN

k¼1

a2ik
2
r2/k þWik/k

� �
: ð4Þ

Finally, the time-evolution equation reduces to:

o/i

ot
¼ � 2

n

XN

j¼1

sisjM
/
ij

�
XN

k¼1

1

2
a2ik � a2jk

� �
r2/k þ Wik �Wjk

� �
/k

� 	
:

ð5Þ

M/
ij , aij, and Wij are related to the width (d), energy

(rij), and mobility (Mij) of the grain boundary

according to the following equations:

M/
ij ¼

p2

8 d
Mij; aij ¼

2

p

ffiffiffiffiffiffiffiffiffiffi
2drij

q
; Wij ¼

4rij
d

: ð6Þ

Note that, for accurately performing phase-field

simulations, a sufficient number of grid points must

be contained within the boundary width d to resolve

the boundary regions. If necessary, d can be set so as

to reproduce a realistic grain boundary width
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(* nm) by using fine numerical grids [53]. In the

current simulations, however, d is treated as an arti-

ficial quantity and used only to implicitly track the

grain boundary positions by the regions where non-

zero phase fields coexist. Here, we set d to six times

the grid spacing, which has been reported to be a

good compromise between computational accuracy

and cost [27].

Computational conditions

To elucidate the similarities or dissimilarities

between 3D, cross-sectional, and 2D ideal grain

growth, we performed both 3D and 2D simulations.

Figure 1a, c shows the computational systems

employed for simulating 3D and 2D ideal grain

growth, which consist of 3125000 and 3000000 initial

grains, respectively, under periodic boundary con-

ditions. Here, the grains are distinguished according

to their colors. The cross sections perpendicular to

each axis of the 3D system contain an average of

approximately 26000 grains per section. An example

of the sections (at the center of the z axis) is shown in

Fig. 1b. Using square or cubic regular grids, the

domains were divided into 2560 9 2560 9 2560 grid

points for the 3D system and into 32000 9 32000 grid

points for the 2D system. The time increments (Dt3D
for the 3D system and Dt2D for the 2D system), grid

spacing (Dx), grain boundary energy (r), and mobil-

ity (M) were set as follows, being non-dimensional-

ized with typical scales of 1 s, 10-6 m, 1 J m-2, and

10-12 m4 J-1 s-1, respectively: Dt3D = 0.075, Dt2D
= 0.1125, Dx = 1, r = 1, and M = 1. To guarantee the

statistical reliability of the results, three replicated

simulations with different initial structures were

performed for both the 3D and 2D cases. For each

simulation run, the initial grain structures, of a ran-

dom shape, were created by growing randomly dis-

tributed nuclei using a constant driving force. Here,

note that the numerical accuracy of phase-field grain

growth simulation is generally determined by the

relative grain size compared to the grain boundary

width d, in addition to the grid resolution of grain

boundaries (i.e., the number of grids contained

within d) [27]. In the current MPF simulations, d was

set to 6Dx for both the 2D and 3D systems; further,

the ratio of the initial average grain radius, hR(0)i, to d
was almost same (hR(0)i/d & 1.7) in both the cases.

Therefore, the comparison of the 2D and 3D simula-

tions is fair. We also note that although the above

computational conditions for the 3D system were

basically same as those used in our previous study

[52], some new simulations were performed as part

of the present study to analyze the cross-sectional

microstructures in detail. The initial structures for the

present simulations differ from those used in the

previous study [52].

To perform the large-scale simulations, we utilized

our own CUDA C code [52] that was specifically

developed for parallel GPU computation. The code

decomposes an entire computational domain into

small subdomains, each of which is assigned to one

GPU. The connection of the boundary data of the

GPUs is performed via their host CPUs [46], while

the internode communication is implemented using

the message-passing interface (MPI). To reduce the

memory requirements, the APT algorithm [27, 34, 35]

Figure 1 Polycrystalline systems used for simulating 3D and 2D

ideal grain growth. a 3D system with 2560 9 2560 9 2560 grid

points and 3125000 initial grains. b Cross-sectional plane of (a) at

the center of the z axis. c 2D system with 32000 9 32000 grid

points and 3000000 initial grains. The light panel in (c) shows the

overall computational domain, while the right one displays part

(2560 9 2560 points) of the overall domain indicated by the blue

frame. In all the panels, grains are distinguished by different

colors.
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proposed by Kim et al. [27] is used, storing only

nonzero phase-field variables; the maximum number

of stored variables at each grid point is set to seven.

All computations were carried out on the GPU-rich

supercomputer TSUBAME at the Tokyo Institute of

Technology, using 200 GPUs (NVIDIA Tesla P100)

for the 3D simulations and 64 GPUs (NVIDIA Tesla

K20X) for the 2D simulations.

Results and discussion

Using the above-mentioned computational condi-

tions, we performed 3D simulations for a period of

75000Dt3D (i.e., 5625 in dimensionless time), after

which around 20000 grains remained in each system.

The required computation time per simulation was

about 1 day. The 2D simulations were performed

over a longer duration of 200000Dt2D = 22500, since

the progress of the 2D grain growth is much slower

than that of the 3D growth. After the simulations,

roughly 40000 grains remained in each system.

Figure 2 depicts the evolved microstructures

obtained for the 3D, cross-sectional, and 2D domains

after the simulations, starting from the initial struc-

tures shown in Fig. 1. For reference, movies of the

evolution processes are provided in the Supplemen-

tary Material. In all the panels of Fig. 2, we can see

that the grains generally exhibit equi-axed shapes, as

would be expected for microstructures formed

through ideal grain growth. Below, we present a

detailed analysis and discussion of the grain growth

with different dimensionalities based on the simu-

lated data. Note that, hereafter, the radius R of a 3D

grain, R3D, is defined as its volume (V)-equivalent

radius,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=ð4pÞ3

p
; those of a cross-sectional grain,

R3DX, and 2D grain, R2D, are determined from their

area (A)-equivalent radius,
ffiffiffiffiffiffiffiffiffi
A=p

p
.

Determining the grain characteristics

To analyze the microstructures obtained from phase-

field simulations, two different methods have been

used, namely simple summation [27] and cluster

enumeration [54]. In the simple summation, the vol-

ume Vi (or area Ai for 2D) of a given grain i is cal-

culated by simply integrating the corresponding

phase field /i:

Vi ¼
Z

V

/i dV: ð7Þ

On the other hand, the cluster enumeration eval-

uates the Vi value based on the binarization

processing:

Vi ¼
Z

V

Oi dV; ð8Þ

where Oi (r) is an operator that takes a value of 1 if /i

has the largest value of all the phase fields at a spatial

point r. Otherwise, it vanishes.

Herein, to test the applicability of the above

methods to the analysis of 3D, cross-sectional, and 2D

grain structures, we calculated the grain size distri-

butions of the simulated microstructures shown in

Fig. 2 using both methods. The results are shown in

Fig. 3, as normalized grain size histograms (R/hRi,
where hRi denotes the average grain radius) which

were built using a typical bin width (0.1). In the

analysis of the cross-sectional grain structure, we

took 20 evenly spaced planes along each coordinate

axis (i.e., 60 planes in total) and sampled all the

grains appearing on those planes. The same is

Figure 2 Evolved microstructures in 3D and 2D ideal grain growth simulations starting from the initial structures shown in Fig. 1. a 3D

microstructure at t = 75000Dt3D. b Cross-sectional plane at the center of the z axis. c 2D microstructure at t = 200000Dt2D.
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assumed in the remainder of this paper. Figure 3a

shows that the simple summation and cluster enu-

meration give almost the same results for the evalu-

ation of the 3D grain size distribution. Therefore, both

methods are regarded as being valid for this appli-

cation. In Fig. 3c, we can see slight differences

between the analyzed 2D size distributions, in terms

of their broadness and peak height. However, the

shapes of the distributions are similar, with the dif-

ference in the peak heights being minimal (around

5%). In contrast, as shown in Fig. 3b, the results

obtained for the cross sections exhibit significant

differences: while the grain size distribution obtained

from the cluster enumeration produces a smooth

curve, that from the simple summation suddenly

jumps at the smallest grain size class. This sudden

jump is probably a result of the diffuse nature of the

phase-field model. That is, when the binarization

processing is not applied, a large amount of very

small grains, cut near the edges of the diffuse inter-

faces, can appear in the cross sections. Indeed, a jump

in the cross-sectional grain size distribution is not

observed in the results obtained with the sharp

interface models, including the vertex and front-

tracking models [22–24].

Based on these results, for the analysis of cross-

sectional microstructures described below, we mainly

used cluster enumeration; simple summation was

used only to calculate the time derivative of the

individual grain sizes (dR/dt) in Figs. 7 and 8. On the

other hand, the 3D and 2D microstructures were

analyzed by simple summation, in the same way as

in our previous studies [52, 55].

Statistical aspects of grain growth

This section investigates the statistical behaviors of

ideal grain growth with different dimensionalities.

First, Fig. 4 shows the temporal variations in the

grain size distribution for the 3D, cross-sectional, and

2D domains. The numerical data points are given as

the average of three replicated simulations with error

bars representing the standard deviation, which is

the same in the following figures. Most of the error

bars are smaller than the symbols, confirming a high

degree of statistical reliability of the results. In Fig. 4,

we can see that all the grain size distributions rapidly

become broader in the early stages of grain growth.

During the later stages, however, the changes in the

grain size distribution are rather small. In particular,

in the period of t C 35000Dt3D for 3D and the cross

sections and that of t C 100000Dt2D for 2D, almost no

changes are observed, while the statistical errors are

very small, indicating that the systems have reached

their steady states. If, in Fig. 4, we compare (a) and

(c), we find that the 3D and 2D steady-state size

distributions exhibit a similar tendency in terms of

their peak height and position, as well as their sym-

metry. A visible difference between the 2D steady-

state size distribution and that of the 3D is the exis-

tence of a plateau around the peak in the 2D case,

which is consistent with previously reported results

[23, 24, 27]. In Fig. 4b, the steady-state shape of the

cross-sectional grain size distribution exhibits char-

acteristics that are quite different from those of the 3D

and full 2D size distributions, in that it has a lower

peak height and right-skewed shape.

Here, we should note the Monte Carlo study of

ideal grain growth performed by Song et al. [19]; they

reported that the transient time required to reach the

Figure 3 Grain size distributions obtained for microstructures

shown in Fig. 2 using simple summation and cluster enumeration.

a 3D grains. b Cross sections of 3D grains. c 2D grains. In the

analysis of the cross-sectional grain size distributions, a total of 60

evenly spaced planes are taken and all grains appearing on the

planes are sampled.
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steady state is much longer in 3D than in the cross

sections and, thus, the achievement of the steady

state in 3D cannot be inferred from cross-sectional

observations. In our simulations, however, there is no

significant difference in the duration of the transient

time in the 3D and cross-sectional growth (around

35000Dt3D in both cases). This discrepancy is proba-

bly a consequence of the computational scale that we

employed (a grain number that is 750 times greater

than that used by Song et al. [19]), as well as the large

amount of noise in the Monte Carlo simulation.

Provided the initial grain structure is fully homoge-

neous, and the analyzed data are free of statistical

bias, we believe that the achievement of the steady

state in 3D ideal grain growth can be judged from the

cross sections.

Further, it is worth mentioning that the symmetric

grain size distribution obtained from our 2D MPF

simulations, though consistent with other contin-

uum-based simulation results [23, 24, 27], is largely

different from the lognormal-like distribution

observed in 2D atomistic simulations [56] and

experiments for thin metal films [57]. One of the

possible sources of this deviation is miscounting of

the grains in atomistic simulations and experiments,

which is inevitable due to the difficulty in detecting

low-angle grain boundaries [58–60]. Another possible

source is some grain growth-related factor not con-

sidered in the current simulations for the ideal grain

growth. For example, previous grain growth simu-

lations [54, 55, 61–63] demonstrated that grain rota-

tion [61, 62], anisotropic boundary properties

[54, 55, 62], and triple junction drag [63] can cause the

asymmetry in grain size distribution. In addition,

although the conventional MPF models including

that employed here can accurately handle the ideal

grain growth [27, 30, 64], Tóth et al. [65] pointed out

that these models do not fully satisfy the criteria for

mathematical and physical consistency. They also

simulated 2D grain growth using a fully consistent

MPF model [65] and observed more asymmetric

grain size distributions compared to those predicted

by other MPF models. Further investigation of the

origins of the contradictory results will be addressed

elsewhere.

Next, we examined the kinetics of the systems.

Figure 5 shows the temporal variations in the

squared average grain size (hRi2) for each dimension,

with all error bars being smaller than 0.2% of the

mean. Fitted curves for the plots were calculated and

are depicted in the figure using the well-known

parabolic law of steady-state grain growth [66, 67]:

hRðtÞi2 � hRðt0Þi2 ¼ KMr t� t0ð Þ; ð9Þ

where t0 is an initial time and K is the kinetic coeffi-

cient. The K values are obtained as 0.478, 0.334, and

0.282 for 3D, the cross sections, and 2D, respectively,

by applying the least-square fitting to the steady-state

regimes (t C 35000Dt3D in 3D and the cross sections;

t C 100000Dt2D in 2D). Figure 5 reveals that hRi2
increases linearly with time in accordance with the

parabolic law in all cases. However, the obtained

values of K differ greatly in each case, showing that

the grain growth in 3D proceeds most rapidly with

K = 0.478, followed by those in the cross sections

(K = 0.334) and 2D (K = 0.282).

The above results allow us to conclude that the size

distribution and evolution kinetics of the cross-sec-

tional grains are clearly different from those of fully

2D grains. Furthermore, compared to the 3D space, a

higher fraction of relatively small grains and a

Figure 4 Temporal variations in grain size distribution for a 3D

grains, b cross sections of 3D grains, and c 2D grains. Numeric

data points are given as the average of three replicated simulations,

with error bars representing the standard deviation. Most of the

error bars are smaller than the symbols.
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smaller average size are observed for the cross sec-

tions. This difference between the 3D and cross-sec-

tional microstructures probably arises from the fact

that the 3D grains can be cut such that they are

apparently smaller than their true 3D sizes (i.e.,

stereological effect [4]). This can be confirmed in

Fig. 6, in which we plot the relationship between the

cross-sectional and 3D grain sizes in the steady-state

regime (at t = 75000Dt3D). The black diamonds indi-

cate the average 3D grain sizes for each cross-sec-

tional size class obtained by averaging three

replicated simulations. The light-gray circles indicate

the data for individual grains, with 5000 randomly

sampled grains from the three simulations being

plotted to better visualize the density of the data

points. In Fig. 6, we can see that most of the grains

have 3D sizes that are larger than their cross-sec-

tionally measured sizes, clearly confirming that the

stereological effect described above applies in the

case of ideal grain growth.

Individual grain behaviors

An essential component of the analytical models of

grain growth is a description of the growth kinetics of

individual grains [2, 3, 67–69]. However, for the cross

sections of 3D microstructures, the behavior of the

individual grains has not been investigated to date.

Herein, focusing mainly on the cross-sectional grains,

we examine the individual grain behaviors and test

the applicability of the classical grain growth models.

Hillert [67] proposed a mean-field approximation

for both the 3D and 2D grain growth, describing the

growth rate of a given grain as a function of its size:

R
dR

dt
¼ gMr q

R

hRi � 1

� �
; ð10Þ

where g is a geometrical factor that takes a value of 1

for 3D and 0.5 for 2D; q is the mean-field parameter

given as hRi2/hR2i for 3D and 1 for 2D, where hR2i
denotes the average squared grain radius. For fully

2D systems, the von Neumann–Mullins law [68, 69] is

well known as a mathematically rigorous formula for

individual grain behaviors, which describes the

growth rate of a given grain as a function of its

topology (number of edges per grain, ne):

R
dR

dt
¼ 1

6
Mr ne � 6ð Þ: ð11Þ

Figure 5 Temporal variations in average grain size for a 3D and cross-sectional grains and b 2D grains. In both panels, numeric data

points are given as the average of three replicated simulations. Error bars (standard deviations) are all smaller than the symbols.

Figure 6 Relationship between cross-sectional and 3D grain

sizes at t = 75000Dt3D. Black diamonds indicate the average 3D

grain sizes for each cross-sectional size class obtained by

averaging three replicated simulations. The error bars (standard

deviations) are all smaller than the symbols. The light-gray circles

indicate the data for individual grains, with only 5000 grains

randomly sampled from the three simulations plotted to better

visualize the density of the data points.
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We tested the applicability of Eqs. (10) and (11) to

cross-sectional grain growth by comparing them with

the simulated data in the steady-state regime (at

t = 75000Dt3D); the obtained results are given in Figs. 7

and 8, respectively. For comparison, the results for the

steady-state 3D and 2D growth are also shown in the

figures. Here, since a direct comparison of 3D grain

growth behaviors to Eq. (11) is not straightforward, the

simulateddata for the3Dgrainsareplottedonly inFig. 7.

As can be seen in Fig. 7a, b, in 3D space there is an

almost linear relationship between the growth rate of

individual grains and their sizes following themean-field

approximation [Eq. (10)]. Meanwhile, the rate-size rela-

tionship in the cross sections of the 3D space is not

monotonic, with the growth rate values exhibiting a large

dispersion for grains of the same size. This differencemay

be attributable to the stereological effect that was dis-

cussed above (‘‘Statistical aspects of grain growth’’ section

and Fig. 6), as a result of which the cross-sectional grains

appear to have radii that are different from their true 3D

values. Since the kinetics of grains in a 3D system are

essentially determined by their 3Dquantities, the lack of a

one-to-one relationship between the 3D and cross-sec-

tional grain sizes can lead to a high degree of randomness

in the individual grain behaviors in the cross sections.

In Figs. 7c and 8b, the growth kinetics of the fully

2D grains are observed to conform to both the mean-

field approximation [Eq. (10)] and the von Neu-

mann–Mullins law [Eq. (11)]; in particular, as can be

confirmed from Fig. 8b, the correlation between the

growth rate and grain topology in a 2D system is

Figure 7 Growth rates of individual grains as functions of their

sizes. a 3D grains. b Their cross sections at t = 75000Dt3D. c 2D

grains at t = 200000Dt2D. The dark-colored diamonds indicate the

average for each size class obtained by averaging three replicated

simulations, with the error bars representing the standard deviation.

Most of the error bars are smaller than the symbols. The light-colored

circles indicate the data for individual grains. To better visualize the

density of the data points, only 5000 grains, randomly sampled from

the simulations, are plotted in each panel.

Figure 8 Growth rates of individual grains as functions of their

topologies. a Cross-sectional grains in 3D system at

t = 75000Dt3D. b 2D grains at t = 200000Dt2D. The dark-colored
diamonds indicate the average for each topological class obtained

by averaging three replicated simulations, with the error bars

representing the standard deviation. Most of the error bars are

smaller than the symbols. The light-colored circles indicate the

data for individual grains. To better visualize the density of the

data points, only 5000 grains, randomly sampled from the

simulations, are plotted in each panel.
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quite strong, exhibiting excellent agreement with the

von Neumann–Mullins law. A band-like distribution

of the data points observed in the RdR/dt versus

R2D/hR2Di plane (Fig. 7c) can be understood as a

consequence of the von Neumann–Mullins law. For

instance, most of the grains located along a horizontal

line RdR/dt = 0 in Fig. 7c belong to the same topo-

logical class, ne = 6. In contrast to the case of fully 2D

grains, the relationship between the growth rate and

topology for cross-sectional grains, shown in Fig. 8a,

exhibits a large scatter for those grains belonging to

the same topological class. In addition, the curve of

the average growth rates for each topological class

cannot be described well using the von Neumann–

Mullins law. It is clear, therefore, that there is a fun-

damental difference between full 2D grain growth

and the cross-sectional view of 3D growth.

Estimating the 3D grain structure
from cross-sectional observations

As demonstrated above, the microstructural character-

istics observed in the cross sections are apparently dif-

ferent from those in 3D space due to the stereological

effect. In addition, the cross-sectional grain growth can-

not be approximated by full 2D growth, in terms of both

statistical and individual grain behaviors. Hereafter,

based on the simulated results and the stereology, we

discuss the estimation of the 3D microstructural charac-

teristics from cross-sectional observations.

First, we focus on the average grain size. From

stereological considerations, Fullman [70] showed

that if 3D grains are approximated by spheres of a

uniform size, the relationship between the 3D aver-

age grain size, hR3Di, and cross-sectional average size,

hR3DXi, can be expressed as:

hR3Di ¼
ffiffiffi
3

2

r
hR3DXi � 1:225hR3DXi: ð12Þ

We tested the applicability of this relationship to ideal

grain growth by calculating the average size ratio,

hR3Di/hR3DXi, using the simulated data shown in

Fig. 5a. The results are shown in Fig. 9.We can see that

the hR3Di/hR3DXi value suddenly declines over a short

duration. Subsequently, the variation in hR3Di/hR3DXi
occurs very slowly and takes an almost constant value

of around 1.2 in the steady state (t C 35000Dt3D),
exhibiting good agreement with the estimation given

by Eq. (12). Given that the attainment of the steady

state in a 3D space can be judged from the cross

sections (see ‘‘Statistical aspects of grain growth’’ sec-

tion), we can say that the 3D average grain size can be

easily estimated with considerable accuracy based

only on cross-sectional observations.

Next, we discuss the prediction of the 3D grain size

distribution. In the field of stereology, the Saltykov–

Schwartz method [71, 72] is frequently employed to

convert cross-sectional and 3D grain size distributions

fromone to the other [4, 73–76].Here,we brieflydescribe

thismethodandpropose somemodifications. First, let us

consider the histograms for 3D and cross-sectional grain

sizedistributions,discretizedbymbins.The frequencyof

the ith size class (within an interval ofR3D,i-1–R3D,i) in 3D

is denoted asFi; that in the cross sections (withinR3DX,i-1–

R3DX,i) is denoted as fi. Considering that a cross section of

a given size can arise from 3D grains of various sizes, as

demonstrated in Fig. 6, fi (i = 1, 2,…,m) can be expressed

by a weighed sum of the series of Fi, that is, as:

f1 ¼ a11F1 þ a12F2 þ � � � þ a1mFm;
f2 ¼ a21F1 þ a22F2 þ � � � þ a2mFm;

..

.

fm ¼ am1F1 þ am2F2 þ � � � þ ammFm;

8
>>><

>>>:
ð13Þ

where aij is the transformation matrix defined by:

aij ¼
ZR3DX; i

R3DX; i�1

ZR3DX; i

R3DX; i�1

c
R3D

R3D;m
� p ðR3D; R3DXÞ dR3DdR3DX;

ð14Þ

where cR3D/R3D,m indicates the relative probability of

cutting a 3D grain of size R3D by a plane, with c being

a normalizing constant determined later; p(R3D, R3DX)

indicates the probability with which a cross section of

size R3DX appears as a result of cutting a 3D grain of

Figure 9 Temporal variations in the ratio of the average grain

sizes in 3D and cross sections, as calculated from the data shown

in Fig. 5a.
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size R3D. Using the aij matrix, 3D and cross-sectional

grain size distribution histograms can be converted to

one another:

fi ¼ aijFj ði; j ¼ 1; 2; . . .; mÞ; ð15Þ

Fj ¼ a�1
ij fi ði; j ¼ 1; 2; . . .; mÞ: ð16Þ

After conversion, the normalizing constant c in

Eq. (14) is determined such that the total of the cal-

culated frequencies is equal to 1 (or 100%).

The original Saltykov–Schwartz method models a

3D grain as a sphere. In this case, p(R3D, R3DX) in

Eq. (14) is rigorously derived, as follows:

p ðR3D; R3DXÞ ¼
R3DX

R3D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3D � R2

3DX

q : ð17Þ

The spherical model gives a relatively simple for-

mula. However, it has been reported that this model

is likely to incorrectly estimate the frequency of rel-

atively small grains [77]. Therefore, we propose a

modified model which approximates a grain as a

Kelvin tetrakaidecahedron, which is well known as a

space-filling polyhedron with a minimal surface area

and is therefore often employed as a grain model

[78–82]. Although a mathematically rigorous expres-

sion of p(R3D, R3DX) for the tetrakaidecahedron has

not yet been established, Matsuura and Itoh [7]

evaluated the size distribution of the cross sections of

this polyhedron by cutting it with 5000 arbitrary

planes via numerical calculations. We depict their

results in Fig. 10, comparing them with the analytical

curve for a sphere [Eq. (17)], from which we can see

that the cutting of the tetrakaidecahedron generates

small cross sections with a higher probability than

that for a sphere. We created an approximate formula

for the tetrakaidecahedron as a weighted sum of the

spherical-model function and uniform distribution

function:

p ðR3D; R3DXÞ ¼ w
R3DX

R3D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
3D � R2

3DX

q þ 1� wð Þ 1

R3D
;

ð18Þ

where w is a weighting parameter, being obtained as

w = 0.79 by least-square fitting to the data reported

by Matsuura and Itoh (Fig. 10).

When a sufficiently large number of grains are

sampled, the maxima of the 3D and cross-sectional

grain sizes are almost the same value [4]. By setting

the maximum sizes in each dimensional grain size

histogram to the same value, the transformation

matrix aij [Eq. (14)] with the spherical model

[Eq. (17)] can be easily calculated by Cruz-Olive

numerical integration [83–85]:

aij ¼

c

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 1

2

� �2

� i� 1ð Þ2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 1

2

� �2

�i2

s8
<

:

9
=

; for i\j;

c

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 1

2

� �2

� i� 1ð Þ2
s

¼ c

m

ffiffiffiffiffiffiffiffiffiffi
i� 3

4

r
for i ¼ j;

0 for i[ j:

8
>>>>>>><

>>>>>>>:

ð19Þ

Similarly, with the tetrakaidecahedral model

[Eq. (18)] aij is obtained as:

Figure 10 Size distributions of cross sections of 3D objects. The

data points for the tetrakaidecahedron indicate the numerical

calculation results reported by Matsuura and Itoh [7].

aij ¼

c

m
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 1

2

� �2

� i� 1ð Þ2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 1

2

� �2

�i2

s8
<

:

9
=

;þ 1� wð Þ

2

4

3

5 for i\j;

c

m
w

ffiffiffiffiffiffiffiffiffiffi
i� 3

4

r
þ 1

2
1� wð Þ

( )
for i ¼ j;

0 for i[ j:

8
>>>>>>><

>>>>>>>:

ð20Þ
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By applying the above stereological method to the

simulated data, we tested the possibility of the

interconversion of the 3D and cross-sectional grain

size distributions in ideal grain growth. Here, the 3D

and cross-sectional grain size histograms were built

from the simulations during the steady state (at

t = 75000Dt3D) using a typical bin number of 15; the

maximum grain size in the histograms was set to

120Dx, which corresponds to the maximum size of

cross-sectional grains at the above time. The results

are given in Fig. 11. The colored bars show the sim-

ulated results as the average of three replicated sim-

ulations. The open circles indicate the 3D/cross-

sectional size distributions estimated from the cross-

sectional/3D simulated data using the spherical-

model-based transformation matrix [Eq. (19)]. The

filled diamonds denote those using our proposed

tetrakaidecahedral-model-based matrix [Eq. (20)

with w = 0.79]. As shown in Fig. 11, the spherical

model incorrectly estimates the frequency of the rel-

atively small grains, especially regarding the predic-

tion of the 3D grain size distribution from the cross

sections. In contrast, the tetrakaidecahedral model

gives rather smooth curves for both the 3D and cross

sections, closely matching the simulated data.

The results presented above allow us to conclude

that the average size of the 3D grains in the case of

ideal grain growth can be inferred from their cross

sections, in line with the classical Fullman theory.

Moreover, for the stereological prediction of 3D grain

size distribution, although the original Saltykov–

Schwartz method based on the spherical grain model

exhibits an apparent inaccuracy, its modification

using our proposed tetrakaidecahedral model allows

for accurately interconverting the 3D and cross-sec-

tional size distributions. Since the average and dis-

tribution of 3D grain sizes are dominant factors

affecting the physical properties of materials, our

findings will be helpful to the application of cross-

sectionally observed data to materials design.

Conclusions

The present study was conducted to elucidate the

correlations between 3D and cross-sectional

microstructures during ideal grain growth. We also

attempted to reveal whether the cross-sectional view

of 3D grain growth can be modeled by fully 2D grain

growth. To this end, 3D and 2D large-scale MPF

simulations with approximately three million initial

Figure 11 Estimation of a 3D and b cross-sectional grain size

distributions from the measured data in the other dimension. The

colored bars show the measured results for the steady-state grain

growth (at t = 75000Dt3D) as the average of three replicated

simulations. The open circles indicate the 3D/cross-sectional size

distributions, estimated from the cross-sectional/3D measured data

using the spherical-model-based transformation matrix [Eq. (19)]

that is based on the original Saltykov–Schwartz method [71, 72];

the filled diamonds denote those using the tetrakaidecahedral-

model-based matrix [Eq. (20) with w = 0.79] proposed in the

present study.
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grains were performed using multiple GPUs on a

supercomputer. This computational scale allowed us

to evaluate 3D, cross-sectional, and 2D grain growth

with a reasonably high statistical reliability. Based on

the simulated results, we discussed how to estimate

the microstructural characteristics of 3D grains from

those observed in the cross sections. The main find-

ings are summarized as follows:

1. While the steady-state grain size distributions in

3D and 2D show similar symmetrical shapes, that

in cross sections exhibits unique characteristics in

terms of its right-skewed shape and lower peak

height.

2. The temporal variations in the average grain size

follow the well-known parabolic law for all of the

3D, cross-sectional, and 2D cases. However, the

coefficient of the parabolic law is closely related

to the dimensionality.

3. For the 3D and 2D cases, the growth kinetics of

individual grains can be described by the mean-

field approximation or the von Neumann–Mul-

lins law. In contrast, the individual grain kinetics

in the cross sections exhibit a high level of

randomness and are not a good match for the

above classical grain growth models.

4. The average grain size in the 3D case during

steady-state growth can be estimated as being

approximately 1.2 times that observed in cross

sections, in line with Fullman’s stereological

prediction.

5. The steady-state 3D and cross-sectional grain size

distributions can be interconverted by using our

modified Saltykov–Schwartz method that is

based on the tetrakaidecahedral grain model.

This study examined the fundamental aspects of

cross-sectional grain behaviors by focusing on ideal

grain growth. However, it should be emphasized that

real materials often contain a considerable amount of

structural anisotropy arising from deformation,

chemical driving forces, and anisotropic grain

boundary properties. This anisotropy may affect the

relationship between the microstructural character-

istics in 3D and cross sections and could be required

to be considered for the practical application of the

present stereological predictions. Thus, our future

work will study 3D and cross-sectional grain growth

in more realistic systems, while quantifying the

degree to which they are affected by the anisotropy.
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