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ABSTRACT

In this work, we proposed a new hybrid of Pd nanoparticles dispersed on CeO2

nanotubes (Pd NPs/CeO2 NTs) with synergistically enhanced peroxidase-like

activity for the visual detection of sulfhydryl compounds. In comparison with

individual Pd NPs and CeO2 NTs, the Pd NPs/CeO2 NTs hybrid exhibited a

synergy effect to trigger the oxidation of colorless 3,30,5,50-tetramethylbenzidine

(TMB) to its blue product TMBox mediated by H2O2. It was further demon-

strated that the improved activity observed in Pd NPs/CeO2 NTs originated

from the strong interplays between Pd NPs and CeO2 NTs, which could sig-

nificantly increase the Ce3?/Ce4? ratio. Besides, sulfhydryl compounds were

found to have the capacity to suppress the color reaction of TMB ? H2O2 cat-

alyzed by the Pd NPs/CeO2 NTs nanozyme at a low level. Based on this

principle, mercaptoacetic acid in the concentration range of 66–400 nM could be

linearly determined. Similarly, sulfhydryl-containing amino acid (cysteine) and

its derivative (glutathione) in the linear scope of 6–40 nM were also detected,

providing a detection limit down to 2.9 and 11.3 nM, respectively.

Introduction

In the past decade, nanomaterials with enzyme-like

characteristics (nanozymes) have been drawing

growing interest of scientists thanks to their merits of

easy mass production, low cost, and excellent

robustness against harsh environments [1–6]. These

advantages have endowed them with extensive

applications in chemo- and biosensing [7–21]. Nev-

ertheless, compared with natural bio-enzymes and

organic catalysts, the catalytic activities and
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efficiencies of most nanozymes developed are still

lower, which inevitably impede their wider applica-

tions. Therefore, exploiting nanozymes with desired

activities and efficiencies for chemo- and biosensing

turns to be of great importance [1].

Up to now, several strategies have been proposed

to improve the catalytic activities and efficiencies of

nanozymes, including tailoring shape [22], control-

ling size [23], optimizing composition [24], adjusting

crystal facet [25], modifying surface [26, 27], and

forming hybrids [28–32]. Among these approaches,

fabricating nanozyme hybrids is particularly

impressive, because it is able to combine the respec-

tive features of each component together and even to

achieve cooperatively enhanced properties. For

example, Zhao and co-workers [30] dispersed CeO2

particles onto TiO2 nanotubes (CeO2/NT-TiO2) and

observed a higher peroxidase-like activity in the

formed hybrid compared with the CeO2 counterpart.

Qu’s group reported a GO-AuNCs hybrid that could

exhibit excellent peroxidase-like activity at neutral

pH, whereas both GO and AuNCs showed almost no

activity under the same condition [33]. These attrac-

tive results inspire us to exploit novel nanozyme

hybrids with favorable performance for their

promising applications in biochemical analysis. As a

common rare-earth metal oxide, CeO2 is a promising

peroxidase mimic. The mixed valence of Ce in the

oxide exhibits a strong redox behavior, and the Ce4?/

Ce3? redox couple can switch to each other through

the CeO2 $ CeO2-x ? x/2O2 (Ce4? $ Ce3?) pro-

cess, which is similar to natural redox enzymes. The

noble metal Pd is widely used in various fields

because of its good catalytic activity. It has been

reported that both Pd and CeO2 nanoparticles can be

used as nanozymes. Singh et al. [34] developed a Pd-

Au bimetallic peroxidase-like nanozyme for colori-

metric sensing of malathion. CeO2 also shows

mimetic properties of multi-enzymes including per-

oxidase [35, 36]. Therefore, combining the two

nanozymes together to form a hybrid may bring

some new enzymatic properties.

In this work, we reported a new hybrid of CeO2

nanotube-supported Pd nanoparticles (Pd NPs/CeO2

NTs) with significantly enhanced peroxidase-like

activity for the colorimetric sensing of sulfhydryl

compounds. The synthesized Pd NPs/CeO2 NTs

hybrid could provide a synergy effect to catalyze the

oxidation of 3,30,5,50-tetramethylbenzidine (TMB) in

the presence of H2O2. The enzymatic properties of the

proposed Pd NPs/CeO2 NTs were systematically

investigated, and the underlying mechanism for its

improved activity was elucidated. Furthermore,

sulfhydryl compounds were found to suppress the

color reaction via reducing the catalytic activity of the

peroxidase mimic and/or competitively reacting

with generated hydroxyl radicals against TMB. With

this principle, sulfhydryl-containing species includ-

ing mercaptoacetic acid, cysteine, and glutathione

could be determined with good performance.

Materials and methods

Chemicals

Ce(NO3)3�6H2O, NH3�H2O, PdCl2, NaBH4, H2O2,

TMB, and mercaptoacetic acid were purchased from

Sinopharm Chemical Reagent Co., Ltd. Cysteine

(Cys) and glutathione (GSH) were provided by

Shanghai Aladdin Biochemical Technology Co., Ltd.

Deionized water was utilized throughout the study.

All other chemicals were of analytical grade and

directly used without further purification.

Synthesis of Pd NPs/CeO2 NTs

The preparation of Pd NPs/CeO2 NTs was per-

formed according to Scheme 1. Typically, 4.3397 g

Ce(NO3)3�6H2O was first dissolved into 100 mL

deionized water; a certain amount of NH3�H2O was

then added into the solution till pH 9 to form

Ce(OH)4; afterward, the collected Ce(OH)4 product

was calcinated in air (a heating rate of 2 �C min-1,

calcinated at 550 �C for 5 h) to generate CeO2 NTs,

and the yield of the CeO2 NTs product was 0.5819 g.

0.0430 g CeO2 NTs and 5 mL of 25 mM PdCl2 pre-

cursor solution were mixed in 20 mL deionized water

with a mild stir for 30 min; 10 mL of 50 mM NaBH4

solution was then dropped into the suspension for

reaction for another 30 min; afterward, the formed Pd

NPs/CeO2 NTs hybrid was washed with adequate

deionized water and collected by centrifugation. For

comparison, individual Pd NPs and CeO2 NTs were

also prepared with similar procedures.
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Characterization

The crystal phase of synthesized materials was ana-

lyzed by an X-ray diffractometer (XRD, 6100Lab,

Rigaku Co., Ltd.) with a Cu Ka source

(k = 0.154056 nm, 40 kV, 30 mA). Transmission elec-

tron microscopy (TEM) images were captured on a

JEM-2100 microscope (JEOL). An IRIS-1000 induc-

tively coupled plasma optical emission spectroscope

(ICP-OES, Thermo-Fisher Scientific Co., Ltd.) was

used to precisely determine the concentration of Pd

NPs/CeO2 NTs. The surface chemistry of peroxidase

mimics was studied by an X-ray photoelectron

spectrometer (XPS, ESCALAB 250Xi, Thermo-Fisher

Scientific Co., Ltd.).

Colorimetric measurements

The peroxidase-like activities of synthesized materi-

als were investigated by the catalytic oxidation of

TMB in the presence of H2O2. All the reactions were

measured by a UV-2450 ultraviolet–visible (UV–Vis)

spectrometer (Shimadzu). A 5 mM TMB stock solu-

tion was prepared with ethanol for use. H2O2 stock

solutions with various concentrations were freshly

prepared. 0.2 M NaAc–HAc solutions with different

pH values (adjusted by diluted HCl or NaOH) were

prepared as the incubation buffer. Typically, colori-

metric measurements were performed in a 5-mL

quartz cell with 3-mL NaAc–HAc buffer (0.2 M, pH

4.0) containing 1.67 lg mL-1 nanozyme, 0.327 M

H2O2, and 0.167 mM TMB. The time-dependent

absorbance changes were recorded with a 30-s

interval.

Steady-state kinetic measurements were carried

out by recording the absorbance at 652 nm at a 5-s

interval within 1.5 min. In each group, only the

concentration of H2O2 or TMB varied at a time, and

other conditions remained fixed. The apparent kinetic

parameters were calculated based on the equation

t = Vmax 9 [S]/(Km ? [S]), where t is the initial

velocity, Vmax is the maximum reaction velocity, [S] is

the substrate (H2O2 or TMB) concentration, and Km is

the Michaelis–Menten constant. In addition, the cat-

alytic constant kcat was calculated based on the

equation kcat= Vmax/[E], where [E] is the concentra-

tion of the enzyme used.

For the detection of mercaptoacetic acid, Cys, or

GSH, 2.6-mL NaAc–HAc buffer (0.2 M, pH 4.0),

0.1 mL of 50 lg mL-1 Pd NPs/CeO2 NTs, 0.1 mL of

5 mM TMB, 0.1 mL of 9.8 M H2O2, and 0.1 mL of the

target solution were mixed together for reaction for

5 min, and then the UV–Vis spectra were measured.

Scheme 1 Illustration for the

synthesis of Pd NPs/CeO2

NTs.
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Results and discussion

Characterization of Pd NPs/CeO2 NTs

First, the synthesized materials were characterized by

XRD. As shown in Figure S1 (Supporting Informa-

tion), the XRD pattern of CeO2 NTs prepared shows

remarkable characteristic peaks. The intensive

diffraction signals at 2h = 28.55�, 33.08�, 47.48�,
56.34�, and 76.70� are corresponding to the (111),

(200), (220), (311), and (331) planes of the cubic fluo-

rite CeO2 (JCPDS No. 43-1002), respectively. This

result suggests the excellent crystallinity of CeO2

NTs. With respect to the Pd NPs/CeO2 NRs hybrid,

as shown in Fig. 1a, the typical diffraction peaks of

both Pd and CeO2 are observed, while the peak

intensity of CeO2 decreases compared with that

observed in the CeO2 NTs material. This may be due

to the coverage of the CeO2 NRs surface by Pd NPs.

In addition, the peaks of 40.16�, 46.62�, and 68.22� are
assigned to the (111), (200), and (220) facets of the

face-centered cubic structure of Pd (JCPDS No.

46-1043). These remarkable diffractions indicate the

good crystallinity of the synthesized Pd NPs/CeO2

NTs, and no other signal attributed to any impurity

of Pd and Ce is found. The morphology of the as-

prepared Pd NPs/CeO2 NTs was investigated by

TEM. According to the TEM image (Fig. 1b), a small

number of Pd NPs seem not to be attached to CeO2

NTs, while most of the formed Pd NPs are dispersed

well on the surface of CeO2 NTs. The followed

experiments also indicate that these Pd NPs and

CeO2 NTs are interconnected each other to provide

the synergistically enhanced peroxidase-like activity.

This result demonstrates the successful synthesis of

the Pd NPs/CeO2 NTs hybrid. The structure of Pd

NPs/CeO2 NTs offers some advantages: On the one

hand, the high dispersion of active Pd NPs provides a

large surface area for catalysis and increases their

utilization; on the other hand, the CeO2 NTs support

can effectively reduce the aggregation of these Pd

NPs in comparison with unsupported Pd NPs.

Synergistically enhanced peroxidase-like
activity of Pd NPs/CeO2 NTs

Next, the potential peroxidase-like properties of the

synthesized Pd NPs/CeO2 NTs were studied by

employing TMB and H2O2 as substrates. As shown in

Fig. 2a, when TMB, H2O2, and Pd NPs/CeO2 NTs are

mixed together, a rapid color change is observed,

offering a maximum absorbance at approximately

652 nm. This color change should be attributed to the

oxidation of colorless TMB into its blue product

TMBox catalyzed by the Pd NPs/CeO2 NTs hybrid in

the presence of H2O2 [14, 15]. In the absence of TMB

or H2O2, no obvious color reaction is observed. It

should be stated that TMB can also be slowly oxi-

dized by H2O2 in the absence of any catalyst under

the same condition. As a result, a slight color change

of the H2O2 ? TMB system is also found. This phe-

nomenon may be explained by the slow decomposi-

tion of the H2O2 substrate into hydroxyl radicals,

which can further catalyze the oxidation of TMB.

Figure 1 a XRD pattern of the synthesized Pd NPs/CeO2 NTs. b TEM image of the Pd NPs/CeO2 NTs hybrid.
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Taken together, the results shown in Fig. 2a demon-

strate that the Pd NPs/CeO2 NTs hybrid indeed

induces the rapid oxidation of TMB mediated by

H2O2, indicative of the peroxidase-like features of the

synthesized Pd NPs/CeO2 NTs. This finding is also

verified by the time-dependent absorbance changes

of the corresponding systems. As depicted in Fig-

ure S2 (Supporting Information), the Pd NPs/CeO2

NTs peroxidase mimic triggers a fast increase in the

absorbance at 652 nm upon reaction time, while in

other systems no obvious change is obtained. In

addition, the color reaction of the TMB ? H2O2 sys-

tem catalyzed by the Pd NPs/CeO2 NTs nanozyme is

influenced by several factors. As displayed in Fig-

ure S3 (Supporting Information), the absorbance

increases along with the increasing concentrations of

the peroxidase mimic. Similar to natural horseradish

peroxidase (HRP), the peroxidase-like catalytic

activity of the Pd NPs/CeO2 NTs hybrid can be

affected by buffer pH and reaction temperature. As

presented in Figure S4(A) (Supporting Information),

a volcano-type change of the nanozyme activity is

found when the buffer pH increases from 2 to 7, with

a maximum activity at pH 4. The reason for the

absorbance decline at higher pH can be assigned to

the inhibition of H2O2 decomposition when the buf-

fer pH further increases [37]. The influence of reac-

tion temperature on the mimetic activity of the

hybrid is depicted in Figure S4(B) (Supporting

Information). Similar to other peroxidase-mimicking

nanozymes [34, 38, 39], the activity of the Pd NPs/

CeO2 NTs hybrid increases when the reaction tem-

perature increases until to an optimal value, and then

its activity measured drops when the reaction tem-

perature further increases. It is interestingly found

that the Pd NPs/CeO2 NTs hybrid provides a maxi-

mum activity at 20 �C, which is a little lower than

those observed in other nanozyme systems. The

reason for this phenomenon is still unclear, and it

needs further study.

In contrast to natural bio-enzymes, one of the most

attractive merits of nanozymes is their stronger

resistance against harsh environments. To check this

feature in our synthesized nanozyme, the Pd NPs/

CeO2 NTs hybrid was first incubated in solutions

with various pH values or at different temperatures

for 2 h, and then its activity was measured under

standard conditions. Our previous studies have

revealed that natural HRP exhibits high activity only

in neutral media [14–16]. With pH decreases or

increases, its activity is sharply reduced, and no

activity is found in strong acid solutions. With regard

to temperature, the activity of HRP rapidly decreases

when the incubation temperature exceeds 45 �C. In
contrast, as depicted in Figure S5 (Supporting Infor-

mation), the proposed Pd NPs/CeO2 NTs exhibits no

remarkable decline in activity when it is incubated in

buffers with a wide range of pH or at different tem-

peratures. These results confirm the excellent

robustness of the peroxidase mimic.

More interestingly, the Pd NPs/CeO2 NTs hybrid

can exhibit a synergy effect in activity compared with

individual Pd NPs and CeO2 NTs. As verified in

Fig. 2b, both Pd NPs and CeO2 NTs are active to

induce the color reaction of TMB in the presence of

H2O2, providing the steady increase in the

Figure 2 a UV–Vis spectra of different systems, and the inset is the corresponding photograph. b Time-dependent absorbance changes of

the TMB ? H2O2 system catalyzed by different peroxidase mimics, and the inset is the corresponding photograph.
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absorbance at 652 nm upon reaction time. In com-

parison with the Pd NPs/CeO2 NTs hybrid, the

reaction rates observed in individual Pd NPs and

CeO2 NTs are much slower, which in return suggests

the significantly improved activity of the synthesized

Pd NPs/CeO2 NTs.

To highlight the enhanced peroxidase-like activity

of the Pd NPs/CeO2 NTs hybrid, we carried out a

series of control experiments. The enzymatic activi-

ties of CeO2 NTs, Pd NPs, a simple mixture of CeO2

NTs and Pd NPs (Pd NPs ? CeO2 NTs), and Pd

NPs/CeO2 NTs were measured. As compared in

Fig. 3, the Pd NPs/CeO2 NTs hybrid leads to the

largest absorbance of the color reaction among these

mimics, suggesting the highest peroxidase-like

activity of the hybrid. What should be noted is that

the Pd NPs/CeO2 NTs hybrid can provide much

improved activity in comparison with Pd

NPs ? CeO2 NTs. This result indicates that the

enhanced activity observed in the hybrid is not due to

the simple mixing of Pd NPs and CeO2 NTs, but

originates from the interactions between the two

entities. These control experiments also suggest that

the attractive peroxidase-mimicking activity of Pd

NPs/CeO2 NTs mainly originates from the

composite.

To quantitatively assess the catalytic activity of Pd

NPs/CeO2 NTs in contrast to those of individual

CeO2 NTs and Pd NPs, steady-state kinetic mea-

surements for these peroxidase mimics were further

carried out. As depicted in Figure S6 (Supporting

Information), typical Michaelis–Menten curves are

observed for all nanozymes toward the two sub-

strates. The kinetic parameters are compared in

Table 1. The Km values obtained in the Pd NPs/CeO2

NTs hybrid are equal to those in Pd NPs, suggesting

the comparative affinities of the two nanozymes to

substrates. The kcat value of Pd NPs/CeO2 NTs

toward the H2O2 substrate is 2.3 and 3.8 times larger

than that of CeO2 NTs and Pd NPs, respectively. The

kcat value of the former toward TMB is 1.3 and 3.9

times higher than that of the Pd NPs and CeO2 NTs

counterparts, respectively. The catalytic efficiency,

defined by kcat/Km, is also the highest in the pro-

posed hybrid. These data also demonstrate the Pd

NPs/CeO2 NTs hybrid as a desirable peroxidase

mimic with improved activity and efficiency toward

TMB and H2O2.

Afterward, the underlying reason why the syn-

thesized hybrid can offer promoted enzymatic activ-

ity and efficiency compared with individual CeO2

NTs and Pd NPs was explored. Previous works have

verified that the interactions between noble meal and

ceria in numerous noble metal–ceria composites have

great influence on their catalytic activities [40–42]. In

our work, it is also speculated that the enhanced

activity observed in the Pd NPs/CeO2 NTs hybrid

may be related to the interplays between the Pd NPs

and CeO2 NTs entities. To verify this hypothesis, XPS

was employed to probe the surface chemistry of the

Pd NPs/CeO2 NTs hybrid in comparison with indi-

vidual CeO2 NTs and Pd NPs. Figure 4a presents the

high-resolution Ce 3d XPS pattern of the Pd NPs/

CeO2 NTs hybrid. The peaks at 898.43 and 917.08 eV

correspond to CeIV 3d5/2 and CeIV 3d3/2, respectively.

The signals at 883.21 and 901.33 eV are attributed to

CeIII 3d5/2 and CeIII 3d3/2, respectively. Additional

satellite lines SU1, SU2, and SD (SU and SD mean

‘shake-up’ and ‘shake-down,’ respectively [43, 44])

are shown at 902.93, 907.88, and 899.73 eV in the CeIII

3d3/2 part and at 885.03, 889.38, and 882.58 eV in the

CeIII 3d5/2 part, respectively. In comparison with the

CeO2 NTs counterpart (Figure S7, Supporting Infor-

mation), there is no significant change in peak posi-

tions, while the CeIII/CeIV ratio in the Pd NPs/CeO2

NTs hybrid has a remarkable increase, as listed in

Table 2. The increase in the CeIII/CeIV ratio should be

attributed to the interactions between CeO2 NTs and

Figure 3 Absorbance values of the TMB ? H2O2 mixture cat-

alyzed by different peroxidase mimics [the error bars represent the

corresponding standard deviation (SD) of three parallel

measurements].
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Pd NPs. To be specific, Pd causes a change of the

electronic states on the surface of CeO2 NTs and thus

contributes to a shorter distance between O and Pd.

Consequently, the oxygen atom is readily reduced,

and at the same time, CeIV is easily transferred to the

low oxidation state of CeIII, thus resulting in the

increase in the CeIII/CeIV ratio. This increase is clo-

sely related to the enhanced peroxidase-like activity

of ceria-based nanozymes [30, 45]. Figure 4b presents

the high-resolution Pd 3d XPS pattern of the Pd NPs/

CeO2 NTs hybrid. The peaks at 337.73 and 342.98 eV

should be ascribed to PdII 3d5/2 and PdII 3d3/2,

respectively. The peaks at 335.83 and 341.08 eV are

attributed to Pd0 3d5/2 and Pd0 3d3/2, respectively. In

comparison with the Pd NPs counterpart (Figure S8,

Supporting Information), the Pd0/PdII ratio in Pd

NPs/CeO2 NTs has no obvious change (Table 2). To

further uncover whether the enhanced activity of the

hybrid originates from the reduced-state CeO2 NTs

or the interactions between Pd NPs and CeO2 NTs,

we evaluated the catalytic performance of CeO2 NTs

treated by NaBH4 under the same condition. As

shown in Figure S9 (Supporting Information), the

absorbance observed in the reduced CeO2 NTs is

slightly higher than the untreated CeO2 NTs, but still

much lower than the Pd NPs/CeO2 NTs hybrid. This

comparison reveals that the enhanced activity

observed should be attributed to the synergy effect of

the two entities. In short, the interplays between the

Pd NPs and CeO2 NTs entities result in the significant

increase in the CeIII/CeIV ratio, which further pro-

motes the enzymatic activity and efficiency of the Pd

NPs/CeO2 NTs hybrid.

Table 1 Comparison of the kinetic parameters of Pd NPs/CeO2 NTs, CeO2 NTs, and Pd NPs toward H2O2 and TMB, respectively

Nanozyme Substrate Km (mM) Vmax (9 10-8 M s-1) [E] (lM) kcat (s
-1) kcat/Km (s-1 M-1)

Pd NPs H2O2 4.50 0.84 13 6.46 9 10-4 0.14

TMB 0.74 4.42 13 3.40 9 10-3 4.59

CeO2 NTs H2O2 28.63 0.50 13 3.85 9 10-4 0.01

TMB 0.45 1.54 13 1.18 9 10-3 2.62

Pd NPs/CeO2 NTs H2O2 9.43 1.91 13 1.47 9 10-3 0.15

TMB 0.39 5.94 13 4.57 9 10-3 11.71

Figure 4 a Ce 3d and b Pd 3d XPS patterns of the Pd NPs/CeO2 NTs hybrid.

Table 2 Comparison of the Pd0/PdII and CeIII/CeIV ratios in dif-

ferent nanozymes

Nanozyme Pd0/PdII CeIII/CeIV

Pd NPs 1.9 –

CeO2 NTs – 0.101

Pd NPs/CeO2 NTs 2.1 0.358
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Application of the Pd NPs/CeO2 NTs
nanozyme for sensing of sulfhydryl
compounds

With no doubt, the peroxidase-like properties of the

Pd NPs/CeO2 NTs hybrid will endow them with

extensive applications in various fields. With the

enhanced activity, the hybrid can effectively catalyze

the TMB ? H2O2 reaction at a low concentration,

which will reduce the amount of the two components

used, especially the noble metal Pd. In this work, the

excellent activity and robustness of the proposed Pd

NPs/CeO2 NTs peroxidase mimic inspire us to

explore its potential application in biochemical anal-

ysis. Similar to other peroxidase-mimicking nano-

zymes [46–48], it is interestingly found that the color

reaction of TMB ? H2O2 catalyzed by Pd NPs/CeO2

NTs is able to be suppressed by sulfhydryl com-

pounds like mercaptoacetic acid. As demonstrated in

Fig. 5a, the presence of mercaptoacetic acid leads to

the decrease in the UV–Vis spectrum. In addition, the

decreased absorbance highly depends on the level of

mercaptoacetic acid added. This suppressed color

reaction has also been confirmed by previous studies.

According to the previous report [49], the SH-con-

taining compounds (such as TGA) can suppress the

H2O2 ? TMB color reaction by competitively

inhibiting the enzymatic activity of peroxidase mim-

ics used. On the one hand, sulfhydryl compounds

like mercaptoacetic acid are easy to be adsorbed onto

the surface of Pd via the S–Pd bond [50], thus

resulting in the coverage of the active sites in Pd; on

the other hand, mercaptoacetic acid is more prone to

be oxidized to form a disulfide, which can be verified

by the lower redox potential of mercaptoacetic acid

than TMB [51]. Therefore, the inhibited activity of the

peroxidase mimic and/or the competitive reaction of

sulfhydryl-containing species against TMB with

generated hydroxyl radicals result in the suppressed

color reaction, as illustrated in Fig. 5b. With this

principle, mercaptoacetic acid in the concentration

range of 66–400 nM is linearly detected (Figure S10,

Supporting Information), and the linear equation is

Y = 0.26 - 4.86 9 10-4X (R2 = 0.958). Based on the

signal-to-noise ratio of three (S/N = 3) rule, the limit

of detection (LOD) is calculated to be 45.3 nM.

To further demonstrate the practicability of our

colorimetric method for detecting TGA, an environ-

mental water sample collected was tested. As sum-

marized in Table 3, the recoveries provided by the

fabricated sensor are in the range of 130–145%. This

means that the water sample contains some other

substances that can also suppress the color reaction.

Even so, the developed assay has great promise to be

used for the semiquantitative detection of SH-con-

taining targets.

Similarly, biothiols including cysteine and glu-

tathione can also be determined with good perfor-

mance. Figure 6a records the relationship between

the absorbance at 652 nm and the concentration of

cysteine and glutathione, respectively. The absor-

bance decreases along with the increasing concen-

trations of the two targets. Linear curves of the

absorbance upon the Cys or GHS content in the scope

range of 6–40 nM are observed (Fig. 6b), and the

linear equations are Y = 0.53 - 0.0083X (R2 = 0.985)

and Y = 0.16 - 0.0023X (R2 = 0.977), respectively.

Figure 5 a UV–Vis spectra of the TMB ? H2O2 ? Pd NPs/CeO2 NTs system with the presence of mercaptoacetic acid at various

concentrations, and the inset is the corresponding photograph. b Possible mechanism for the suppressed color reaction.
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The LOD values are further calculated to be 2.9 and

11.3 nM, respectively. Compared with previously

reported methods for Cys or/and GHS sensing, as

listed in Table 4, our assay is able to offer comparable

performance in terms of LOD. More attractively, in

comparison with electrochemical and fluorometric

measurements, the target can be visually detected

with naked eyes by using our sensor, and no other

equipment is required. Thus, the sensor can be easily

equipped with a smartphone for in-field analysis [52].

Different from most other sensors that provide linear

responses for the targets at high concentrations (from

sub-lM to lM levels), our sensor can be used to lin-

early detect the targets at the nM level. This phe-

nomenon may be related to the unique Pd NPs/CeO2

NTs mimic. Different from other peroxidase mimics

like Fe3O4 MNPs, in our system sulfhydryl com-

pounds can not only competitively react with gen-

erated hydroxyl radicals but also reduce the catalytic

activity of the peroxidase mimic by adsorption on the

surface of active Pd NPs via the Pd–S bond. The dual-

functional effect of sulfhydryl compounds can sig-

nificantly suppress the color reaction at a low con-

centration. These characteristics will endow it with

great promise for the sensing of trace biothiols.

To check whether the thiol detection can be

achieved without interferences using the Pd NPs/

CeO2 NTs hybrid, the selectivity was also

Table 3 Recovery results for the detection of TGA in an envi-

ronmental water sample

Spiked (nM) Detected (nM) Recovery (%)

– 104.0 ± 3.6 –

30 143.5 ± 4.0 131.7

60 183.2 ± 3.5 132.0

90 231.2 ± 4.7 141.3

Figure 6 a Relationship between the absorbance at 652 nm and the target (GSH or Cys) concentration. b Linear fitting of the absorbance

and the target (GSH or Cys) level.

Table 4 Comparison of Cys

and GSH sensing performance

of our assay with previously

reported methods

Material Target Method Linear range LOD References

BCNT Cys Electrochemical 0.78–200 lM 0.26 lM [53]

DNA-Au NPs Cys Colorimetric 0.05–10 lM 100 nM [54]

MWCNT-AuNR Cys Electrochemical 5–200 lM 8.25 nM [55]

MB/Hg2? Cys Fluorometric 4–200 nM 4.2 nM [56]

GSH Fluorometric 4–200 nM 4.1 nM

Fe3O4 MNPs GSH Colorimetric 3–30 lM – [57]

CNFs Cys Electrochemical 0.15–64 lM 0.1 lM [58]

PBI-Hg2? Cys Fluorometric 0.05–0.3 lM 9.6 nM [59]

PMAA-Ag? Cys Fluorometric 0.025–6.0 lM 20 nM [60]

Pd NPs/CeO2 NTs Cys Colorimetric 6–40 nM 2.9 nM Our work

GSH 6–40 nM 11.3 nM
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investigated. As shown in Fig. 7, it is found that only

Cys and GSH make a significant inhibition of the

absorbance at 652 nm, while other nineteen amino

acids, including sulfur-containing serine and

methionine, provide no remarkable change in the

absorbance. This result confirms that the Pd NPs/

CeO2 NTs hybrid can be used for the determination

of biothiols selectively.

Conclusions

In summary, we have proposed a Pd NPs/CeO2

NTs peroxidase mimic that shows synergistically

improved activity and efficiency for the colorimetric

determination of sulfhydryl compounds. In com-

parison with individual Pd NPs and CeO2 NTs, the

strong interactions between the Pd NPs and CeO2

NTs entities make the Pd NPs/CeO2 NTs hybrid

exhibit a synergy effect to trigger the color reaction

of TMB in the presence of H2O2. Based on the

suppression effect of sulfhydryl compounds toward

the color reaction, sulfhydryl-containing species

including mercaptoacetic acid, cysteine, and glu-

tathione have been successfully detected with good

performance. With the favorable enzymatic prop-

erties, the Pd NPs/CeO2 NTs mimic will find great

promise in other chemo- and biosensing

applications.
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