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ABSTRACT

Stress rupture is an important failure phenomenon in composite overwrapped

pressure vessels, which is highly unpredictable other than on a statistical basis.

Even then, there are several statistical models, with varying bases in composite

micromechanics and molecular failure mechanisms. Choosing among these

models is not trivial, even when micromechanical details of the failure process

are reasonably well appreciated, and one has available a reasonably large

database of strength and lifetime data. As a result, there is little in the way of

guidance to choose the most appropriate model. One important issue is that

accurate predictions are desired at relatively low service loads compared to the

strength, and low probabilities of failure that are far less, e.g., 10-6, than can be

directly confirmed using the data itself. In essence, one needs a robust and

accurate statistical model free of inconsistencies associated with such low stress

levels and probabilities of failure. This paper performs an in-depth comparison

of several current models, which have varying physical bases. The models

compared differ in the number of parameters to be estimated from data. The

results of this study, however, show that over a broad range of parameter values

these models give surprisingly similar failure probability predictions. While

practitioners may have a preference for one model over another, the basis for

such a choice is not easily established, given the fidelity of typical data.

Introduction

Stress rupture is a long-term, catastrophic failure

mode in unidirectional continuous fiber composites.

Stress rupture failures happen suddenly, with little to

no warning, and at present eminent failures cannot

be reliably predicted with nondestructive evaluation.

Stress rupture occurs at normal operating tempera-

tures and at load levels well below the initial failure

load, though stress rupture failures will occur sooner

with increased temperature and/or load. Examples

of unidirectional continuous fiber composites sus-

ceptible to stress rupture are composite overwrapped

pressure vessels (COPVs), composite flywheels for
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energy storage, and long tension members used in

civil engineering structures. For COPVs in particular,

stress rupture failures are of increasing concern as

COPVs are being designed with longer service lives

and higher service pressures in mind. Also, the

number of COPVs in use is rapidly growing, so even

though a stress rupture failure may be a relatively

low probability event, we can anticipate seeing such

failures in applications if stress rupture is not prop-

erly understood and accounted for.

Stress rupture failures develop from the randomly

distributed flaws that are inherent in any fiber. This

causes not only an intrinsic randomness in the fiber

strength, including a size effect, but also intrinsic

randomness in the strength of corresponding unidi-

rectional continuous fiber composites. Thus, the exact

strength of a composite specimen cannot be known in

advance. Because of this intrinsic randomness, the

exact failure time of a specimen also cannot be known

ahead of time. At best, the overall stress rupture

behavior for a population of identical specimens

must be statistically characterized. From extensive

testing as well, as theory, we know that the failure

strength is very close to Weibull distributed. The

lifetimes under a constant load are also approxi-

mately Weibull distributed. A probabilistic model

can then be used to relate lifetimes at different loads

to each other, as well as to initial strength.

The goal of this paper is to compare various

models that have arisen in the literature. In particu-

lar, this paper compares what is referred to as (1) the

1979 functional form [1], (2) the classic power-law

model [2–8], (3) the crack-growth model [9, 10], and

(4) the strength decay model [11], all of which are cast

in a power-law Weibull framework.

Motivation

A primary motivation for the study in this paper is

that the four models considered have been used

variously to forecast the reliable lifetime of composite

structures, such as composite overwrapped pressure

vessels (COPVs) used in aerospace and other trans-

portation settings [11–17]. Practitioners in industry

and at government laboratories tend to settle on one

of these simple models, and even to have a favorite,

which they believe is somehow more realistic than

another model. For instance, the model based on

Paris-law crack-growth principles in a Weibull

framework might seem preferable as having a strong

basis in mechanics.

A second motivation for this study is that even if

two models seem to have almost the same basic

behavior, the particular choice of one model over

another matters in practice. The various models have

differing numbers of parameters that also differ

subtly in their effects on the probability distributions

for failure, particularly in the extreme lower tails.

This is important since reliability requirements may

be very high, i.e., less than one failure in ten million.

Thus, it is important to understand how the models

differ in the tails, under certain types of loadings and

over practically important parameter ranges, before

committing to one model versus another. Note that

while these models do differ in the deep lower tails

for lifetime, it is unlikely that such differences would

be apparent even in the largest datasets.

In principle, having more parameters allows for

more flexibility in fitting the model to experimental

data. Unfortunately, having more parameters also

means that the uncertainty will be larger in each

parameter estimate as well as the uncertainty for any

failure probability prediction, at a given stress level

and a desired service lifetime. Furthermore, gener-

ating additional data to reduce this uncertainty may

be impractical. All other things being nearly equal,

the model with the fewest fitting parameters will

have the least uncertainty in lifetime predictions.

Experimental datasets

With respect to the behavior of the various models

when compared to experimental data on resin

impregnated strands or larger composite structures,

it would certainly be desirable to have extensive

databases on both strength and stress rupture lifetime

of such structures to inform choosing a particular

model and to make predictions. While some data-

bases do exist, on closer scrutiny the actual data in

them are often fraught with omissions (failure to

record certain data believed somehow to be illegiti-

mate), undocumented censoring issues and other

confounding factors. Running tests that take months,

or even years, is fraught with problems, such as

equipment or power failures, personnel turnover and

changes in management priorities, and even the

occurrence of earthquakes, all of which can compro-

mise the integrity of the data, particularly with
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respect to validating model behavior in the lower and

upper tails of interest in this paper.

Regarding the general features of datasets, strength

data are typically Weibull in behavior, and apparent

non-Weibull behavior can simply be the result of

having a limited sample size, or, be a reflection of

clamping or loading problems. There may also be

outliers in the data caused by such things as a tech-

nician mishandling a few specimens when mounting

them for testing. While some strength datasets may

appear to have non-Weibull features, these features

are often not repeatable, i.e., components or resin

impregnated strands made from other fiber spools

from the same lot may not exhibit the same non-

Weibull features. That said, the vast majority of

strength datasets are acceptably Weibull.

With respect to lifetime under constant load,

complete lifetime datasets that are detailed enough to

establish non-Weibull features, particularly in the

tails, are rare. At the outset, lifetime testing is costly,

and most lifetime datasets that pass scrutiny are not

large enough to definitively establish whether or not

there are significant non-Weibull features. Most

datasets are censored in their upper tails since there is

insufficient time available to run the tests to com-

pletion, particularly at lower load levels (though still

above service load). Thus, the existence of non-Wei-

bull behavior in the upper tails is difficult to establish

experimentally.

When non-Weibull features are seemingly

observed in the lower tails, one must first determine

whether such data have been subtly filtered. For

instance, in lifetime experiments under constant load

it may happen that the data in the lower tails have

been ‘trunsored,’ which refers to the inappropriate

discarding of data associated with failures that occur

when initially ramping up the load. In these cases, it

is assumed that such specimens were somehow

faulty, yet according to the strength distribution a

certain number of such failures should have been

expected. Unfortunately, such practices lead to

inconsistency in the datasets that greatly increase the

uncertainty in failure probability predictions.

Size scaling

The ability to do size scaling is also an important

issue since one would very much like to use test data

from less costly, small-scale composite specimens to

predict the strength and lifetime behavior of much

larger scale components (by orders of magnitude),

that are likely to be tested in very small numbers, at

best. For instance, in qualifying a COPV design for

service, some test standards require performing only

one burst test, or perhaps two, and obviously this

does not provide meaningful statistics. Thus, one is

left making forecasts based on using whatever data

happen to be available from smaller-scale specimens,

such as epoxy-impregnated strands (yarns or tows)

that may not even use the same epoxy. For many

material systems, there is only limited data available,

and one needs to select a model carefully and have

parameter estimation methods that will make the

best use of it.

The Weibull lifetime shape parameter, b, which is

discussed later in ‘‘Probabilistic models’’ section and

is roughly inversely proportional to the variability in

lifetime, may well increase with the size of the com-

posite structure (causing the variability to decrease).

However, experimental data with enough resolution

to demonstrate this phenomenon are sparse and often

fraught with confounding factors. For instance, one

must be careful to account for small sample bias in

maximum likelihood estimates of b, which tend to

inflate the value. This is important as the larger the

composite structure, the fewer the number of speci-

mens that tend to be tested. Based on the theory

discussed in ‘‘Micromechanics-based stochastic

models’’ section, one might expect (and practitioners

will hope for) a larger b value as the composite

structure size increases. Nonetheless, while we have

accommodated size scaling in the model, one should

still be cautious in assuming such size scaling will

apply beyond more than one or two orders of

magnitude.

Micromechanics-based stochastic models

Regarding more sophisticated, micromechanically

based, stochastic models, there has been much pro-

gress made in developing fiber bundle-based models

for composite strength and lifetime under various

idealized assumptions on stress redistribution from

broken to surviving fibers. While these models pro-

vide considerable insight into composite failure

phenomena, they are not yet used in practice as

engineers favor the much simpler versions studied in

this paper.

These more advanced models, as well as those in

this paper, do not go far enough in answering certain
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critical questions such as ‘When is a proof-test stress

level too high, to the point of doing more harm than

good later in the lifetime of the vessel?’ For instance,

the model based on Paris-law crack growth of initial,

randomly distributed flaws or cracks of various sizes

implies there is no such thing as ‘too high’ for a proof

test (other than perhaps destroying perfectly good

composite components). In this model, flaws are

assumed to grow negligibly during a proof test, and

therefore, any flaw or crack weeded out is a good

thing, since it is also assumed that no new flaws are

created. All the models we consider have this same

optimistic reliability improvement at all future times

after a proof test, particularly for carbon/epoxy

composites.

Such permanent life enhancement, however, may

not be realistic in a COPV, particularly one made of

carbon fibers proof-tested to more than three quarters

of its burst strength. The time-dependent, creep-

rupture mechanism in a composite structure stems

largely from matrix creep in shear and/or time-de-

pendent, debonding and slip around fiber breaks that

over time increases the length-scale of fiber-to-fiber

load transfer. This exposes additional fiber flaws,

which also subsequently result in fiber breaks. There

is no question—as is clear from knowledge of the

fiber strength distribution and acoustic emission

generated—that excessive proof testing results in

broken fibers that otherwise would not have occurred

at service load levels. These now become seeds for

the growth of new break clusters. This last aspect of

proof-test-induced damage was the rationale behind

a model called the fiber breakage model, originally

developed in [18]. The current authors are continuing

work on this model and calculations thus far confirm

that, after a brief ‘safe time,’ the failure probability at

longer times can quickly become worse than for the

case where a minimal proof test has been performed.

Probabilistic models

The earliest of the existing probabilistic models to

describe stress rupture failures date from the 1940s

and 1950s [2–6]. These models tend to have a more

phenomenological than micromechanics basis,

though some are well based in the molecular failure

processes for a single fiber [7, 8].

In the literature, there are currently three specific

probabilistic models, each a parametric variation of a

general functional form. The oldest and most com-

monly used is the classic power-law model in a

Weibull framework (CPL-W) [5, 19, 20]. Another

model is based on Paris-law crack growth, termed the

crack-growth model [9, 10, 21]. The most recent

model is the strength decay model [11].

1979 Functional form

Many of the currently existing models fit into the

functional form proposed by Phoenix in 1979 [1]:

FðtjrÞ ¼ sup
0� s� t

wðrðsÞ;Zðs; rðsÞÞÞf g: ð1Þ

here wðr;ZÞ is the shape function in terms of the

nonnegative stress profile, rðtÞ; t� 0, where Z pro-

vides for the introduction of degradation over time.

Equation (1) was actually proposed for single fiber

behavior as an assumption in modeling bundle

lifetime.

A useful shape function for stress rupture is:

wðr;Zðs; rðsÞÞÞ ¼ 1� exp � r
rref

� �r

þZðs; rðsÞÞ
tref

� �b
( )

;

ð2Þ

where rref is a stress scaling parameter, tref is a time

scaling parameter, b is the shape parameter, and r is a

parameter reflecting the sensitivity of the material to

instantaneous load.

A useful degradation form, reminiscent of Miner’s

rule [22], takes the integral structure

Zðs; rðsÞÞ ¼
Zs

0

jðrðsÞÞds ð3Þ

where jðrÞ is the breakdown rule. Most current

models for stress rupture use a power-law break-

down rule [23], with molecular justification in terms

of thermal activation processes in [5, 24–26]:

jðrðtÞÞ ¼ rðtÞ
rref

� �q

; rðtÞ� 0; ð4Þ

where q is the power-law exponent, controlling sen-

sitivity to variations in the applied stress. Some more

recent modeling of stress rupture in fiber systems,

using the power-law breakdown rule, is presented in

[12, 13].

An alternative is the exponential breakdown rule,

with a long history beginning with Coleman [2, 3]

and Zhurkov [27]:
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jðrðtÞÞ ¼ l exp
rðtÞ
rref

� �
; rðtÞ� 0; ð5Þ

where l is a scaling constant. In many circumstances,

(4) and (5) are equally realistic in modeling experi-

mental datasets [20], and with properly chosen

parameters both rules give qualitatively similar

results [23]. There are some circumstances where (5)

may be more accurate, such as in [28], however, (5)

has significant drawbacks mathematically [24].

Combining (1), (2), (3) and (4) gives the form of (1)

that is most applicable to stress rupture in

composites:

F1979ðtjrÞ ¼ 1� exp � sup
0� s� t

rðsÞ
rref

� �r��(

þ
Zs

0

rðsÞ
rref

� �qds

tref

#b9=
;
9=
;; t� 0

ð6Þ

This is the version of the functional form that will

be considered for the rest of the paper.

In the case of strength testing, the stress is assumed

to be linearly increasing:

rðtÞ ¼ Rt; t� 0 ð7Þ

where the constant, R[ 0, is the loading rate or stress

rate. Under this load profile, (6) simplifies to the

cumulative distribution function for failure stress in a

strength test:

F1979;sðsÞ ¼ 1

� exp � s

rref

� �r

þ s

rref

� �q s

Rtrefðqþ 1Þ

� �b( )

ð8Þ

where s ¼ R t[ 0 is the stress level at failure.

In the case of stress rupture lifetime testing, the

load is held constant:

rðtÞ ¼ �r; t[ 0 ð9Þ

Using (9), the cumulative distribution function for

time to failure simplifies from (6) to:

F1979;�rðtÞ ¼ 1� exp � �r
rref

� �r

þ �r
rref

� �q t

tref

� �b( )
ð10Þ

Thus, the functional form can be given in general

by (6), with a strength distribution given by (8) and a

lifetime distribution given by (10). The 1979 func-

tional form has five parameters: rref , r, q, b, and tref .

Changing the type of material is likely to change

the relationship between r and q. A material with a

large r, respective to q, would have an almost deter-

ministic strength distribution for extremely high

loading rates; however, at slow loading rates the

strength distribution has greatly increased variability.

This might be the case where flaws of uniform size

inherently grow at differing rates. In contrast, a

material with a small r, respective to q, would have

more variability in the strength distribution at extre-

mely high loading rates than at slow ones. This might

be the case where the flaws themselves are highly

variable, but grow in a way that ultimately masks the

initial variability. This paper will consider � 4 � r�
q � 32 in order to illustrate the differences between

models, whether or not these values correspond

specifically to a particular material.

To adapt the 1979 functional form, or indeed any of

the probabilistic models discussed, for size scaling, a

volume term can be added:

F1979ðtjrÞ ¼ 1� exp � V

Vref

sup
0� s� t

rðsÞ
rref

� �r��(

þ
Zs

0

rðsÞ
rref

� �qds

tref

3
5
b9=
;
9=
;; t� 0

ð11Þ

where V is the desired volume, and Vref is a volume

for which the other material parameters, i.e., rref , r, q,
b, and tref , are known from experimental data. [17]

Henceforth, to simplify the notation, we will omit the

volume factor, V=Vref , with the understanding that

this can always be inserted following the negative

sign in the exponential.

Classic power-law model in a Weibull
framework (CPL-W)

The CPL-W model was developed to describe the

behavior of a single fiber, but is generally applied to

the whole composite structure. CPL-W is mostly

phenomenological, though a molecular basis has

been established: it has been shown that the model is

a consequence of the Tobolsky–Eyring theory of

thermally activated bond breakage [5, 24, 25, 29]. The

CPL-W model fits strength and lifetime data well,

albeit with some small differences in comparison

with data in the tails of the distribution, in which the

CPL-W model happens to be conservative. Seeing
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these differences likely requires very large sample

sizes (in the hundreds) [29].

The probability of failure of a specimen in stress

rupture is given by the CPL-W model to be:

FCPL�WðtjrÞ ¼ 1� exp �
Z t

0

rðsÞ
rref

� �qds
tref

2
4

3
5
b

8><
>:

9>=
>; ð12Þ

where q is the power-law exponent, controlling sen-

sitivity to changes in the applied stress, rref is a stress

scaling parameter, tref is a time scaling parameter,

and b is the Weibull scale parameter, as before in (2)

and (4), and as above we have omitted reference to

the volume factor, V=Vref , with the understanding

that it can always be inserted following the negative

sign in the exponential. Note that (12) can be written

as

FCPL�WðtjrÞ ¼ 1� exp � 1

rqreftref

Z t

0

rðsÞqds

2
4

3
5
b

8><
>:

9>=
>;

ð13Þ

so that there is only one scale parameter, namely

rqreftref , albeit an unintuitive one with inconvenient

dimensions. Nonetheless, the importance of Eq. (13)

is that the four parameters shown in (12) are not

independent. Instead, there is a relationship between

rref , tref and q, such that rqref tref is a constant for a

given material.

Applying the model, (12), to the case of strength

testing, the cumulative distribution function for fail-

ure stress becomes:

FCPL�W;sðsÞ ¼ 1� exp � s

rref

� �q s

Rtrefðqþ 1Þ

� �b( )

ð14Þ

where again s ¼ R t is the stress level at failure. This

can be written as

FCPL�W;sðsÞ ¼ 1� exp � s

rref

� �bðqþ1Þ
( )

ð15Þ

by assuming

rref ¼ Rtrefðqþ 1Þ or tref ¼
rref

Rðqþ 1Þ ð16Þ

Equation (15) is a basic two-parameter Weibull

distribution with the scale parameter rref and shape

parameter bðqþ 1Þ, termed a, which is how an

experimentalist would be most likely to parameterize

the strength distribution. However, Eq. (16) is nec-

essary to provide consistency in the modeling

framework by recasting the dependent parameter tref
in terms of rref , R and q.

In the case of stress rupture lifetime testing, the

cumulative distribution function for time to failure

simplifies from (12) to:

FCPL�W;�rðtÞ ¼ 1� exp � �r
rref

� �q t

tref

� �b( )

¼ 1� exp � �r
rref

� �qRðqþ 1Þt
rref

� �b( )

ð17Þ

Thus the CPL-W model can be given in general by

(12), with a strength distribution given by (14) and a

lifetime distribution given by (17). This model has

three parameters: rref , q, and b. The CPL-W model

can be obtained from (6) by taking the limit as r ! 1
and assuming rðtÞ\rref .

Regarding the role of loading rate, if we change the

loading rate such that now s ¼ R0t, (14) becomes

FCPL�W;sðsÞ ¼ 1� exp � s

rref

� �q s

R0trefðqþ 1Þ

� �b( )

¼ 1� exp � s

rref

� �q Rs

RR0trefðqþ 1Þ

� �b( )

ð18Þ

and using (16), rref ¼ Rtrefðqþ 1Þ, then (18) becomes

FCPL�W;sðsÞ ¼ 1� exp � s

rref

R

R0

� �1=ðqþ1Þ
" #ðqþ1Þb

8<
:

9=
;

ð19Þ

In this case, we can define

r0ref ¼ rref
R0

R

� �1=ðqþ1Þ
ð20Þ

which relates the scale parameter at one loading rate

to that for another loading rate.

To establish the reference strength, rref , for resin

impregnated strands or tows, the loading rate is

chosen to generate tensile failure in say 10–30 s. All of

the lifetime data, at different stress levels, are with

respect to that reference strength value. Where cau-

tion is necessary is when data for one composite

structure are generated at a loading rate that is dif-

ferent from another composite structure of the same
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materials. For instance, in larger composite structures

like COPV’s pressurization in a burst can take 10–

30 min, or even longer. Thus, the loading rate for two

composite structures of the same material but dif-

ferent sizes may differ by up to two orders of mag-

nitude. Consequently, a stress ratio of, say,

r=rref ¼ 0:75 in the two cases will produce very dif-

ferent lifetimes. Thus, loading rate is not a parameter

to be fitted, but is an inputted parameter, chosen

carefully to establish a reference strength, and in the

discussion of the models we have kept the loading

rate effectively fixed.

The fibers used in composite structures and the

composites themselves do exhibit strengths that

increase with loading rate over practical rates. In

some cases, such as with Kevlar, the strength does

tend to level off at very high loading rates, most

likely due to a molecular mechanism change. How-

ever, the same is not seen in other polymer fibers,

such as Zylon or Vectran, at similar loading rates, nor

in S-glass fibers. Thus, the leveling off effect, if it

exists, is not really a useful concept in stress rupture.

Crack-growth model

The crack-growth model was also developed in the

1980s for a single fiber and has seen relatively little

use. It is based on the mechanics of a crack propa-

gating through a single fiber following the Paris

crack-growth law, and assumes an initial distribution

for the length of the largest crack and a fixed critical

stress intensity factor, all chosen to result in a Weibull

strength distribution. While originally derived in [9],

an alternate derivation is provided in Appendix of

[30]. The crack-growth model has been applied as a

model for general composite failure, though without

micromechanical justification in terms of cracks

physically growing through the overall composite.

This model is a special case of (6) as it can be obtained

by setting r ¼ q� 2:

FcrackðtjrÞ ¼ 1� exp � sup
0� s� t

rðsÞ
rref

� �q�2
"(

þ
Zs

0

rðsÞ
rref

� �qds

tref

3
5
b9=
;

ð21Þ

where all the variables have the same meanings as

before.

In the case of strength testing, the cumulative dis-

tribution function for failure stress is:

Fcrack;sðsÞ ¼ 1� exp � s

rref

� �q�2

þ s

rref

� �q s

Rtrefðqþ 1Þ

" #b8<
:

9=
;

¼ 1� exp � s

rref

� �q s

rref

� ��2

þ s

Rtrefðqþ 1Þ

 !" #b8<
:

9=
;

ð22Þ

where again the stress level at failure is s ¼ R t.
If the constraint (18), only required for the CPL-W

model, is applied to (22), the resulting strength dis-

tribution is:

Fcrack;sðsÞ ¼ 1� exp � s

rref

� �q�2

1þ s

rref

� �3
 !" #b8<

:
9=
;:

ð23Þ

In the case of stress rupture lifetime testing, and

ignoring the constraint (18), the cumulative distri-

bution function for time to failure simplifies from (21)

to:

Fcrack;�rðtÞ ¼ 1� exp � �r
rref

� �q�2

þ �r
rref

� �q t

tref

" #b8<
:

9=
;

¼ 1� exp � �r
rref

� �q �r
rref

� ��2

þ t

tref

 !" #b8<
:

9=
;

ð24Þ

In general, the strength decay model is given by

(21), with a strength distribution given by (22) and a

lifetime distribution given by (24). Thus, in general

this model has four parameters: rref , q, b, and tref .

Strength decay model

The most recently proposed model for stress rupture

is the strength decay model [11, 31]. This model is

purely a phenomenological model. There has been no

statistical analysis to show whether it fits experi-

mental data any better or worse than CPL-W. The

strength decay model is also of the form (6) (as shown

in Appendix of [30]), which is for a single fiber, and

as with the previous models there is no compelling

rationale as to why it should be applicable to a gen-

eral composite structure. The strength decay model is

obtained from (6) by setting r ¼ q:
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FdecayðtjrÞ ¼ 1� exp � sup
0� s� t

rðsÞ
rref

� �q��(

þ
Zs

0

rðsÞ
rref

� �qds

tref

3
5
b)) ð25Þ

where all the variables have the same meanings as

before.

In the case of strength testing, the cumulative dis-

tribution function for failure stress is:

Fdecay;sðsÞ ¼ 1

� exp � s

rref

� �q

1þ s

Rtrefðqþ 1Þ

� �� �b( )
:

ð26Þ

where again s ¼ R t is the stress level at failure.

If the constraint (18), only required for the CPL-W

model, is applied to (26), the resulting three-param-

eter strength distribution is:

Fdecay;sðsÞ ¼ 1� exp � s

rref

� �q

1þ s

rref

� �� �b( )
: ð27Þ

In the case of stress rupture lifetime testing, and

ignoring the constraint (18), the cumulative distri-

bution function for time to failure simplifies from (25)

to:

Fdecay;�rðtÞ ¼ 1� exp � �r
rref

� �q

1þ t

tref

� �� �b( )
: ð28Þ

In general, the strength decay model is given by

(25), with a strength distribution given by (26) and a

lifetime distribution given by (28). Thus, in general

this model has four parameters: rref , q, b, and tref .

Note that the constraint, (18), applied in (23) and

(27), naturally arose in the special case of the CPL-W

model and is not required by the 1979 functional

form in general or any instances of it. Applying the

constraint, however, does reduce by one the number

of independent parameters to be estimated. In some

circumstances, particularly when data are sparse, this

may help in estimating failure probabilities.

Comparing basic model behavior

The current state of probabilistic models, particularly

those of the type considered here, is that there are

three vying models, plus the overall functional form.

These models all give either exactly or approximately

a Weibull distributed strength distribution as well as

Weibull distributed lifetime distributions. This is key

as actual experimental data for strength and life are

typically Weibull distributed [15, 17].

As discussed in the introduction, some strength

datasets and some lifetime datasets do have non-

Weibull features, but most are well described by a

standard two-parameter Weibull. According to [17], a

lower tail that curves downwards from the straight

Weibull prediction is frequently the result of trun-

soring, in which weak specimens are not reported for

a variety of reasons. One reason is that there can be a

selection bias such that only strong(er) specimens are

tested. Sometimes there is a kink in the strength

distribution, such as in [17]. This kink may be caused

by a truncation in the strength distribution at higher

stress levels and/or faster loading rates, due to a

change in the molecular mechanism. In lifetime dis-

tributions, occasionally there is a compressed upper

tail, which has been known to happen when speci-

mens originate from two sources and the weak ones

fail early and dominate the short term portion of the

distribution, while the stronger ones dominate the

long-term tail of the lifetime distribution [17].

As it turns out, the main point of difference in the

models compared is how the strength distribution

relates to the lifetime distribution as is explored

below.

Comparing lifetime distributions

The lifetime distributions for the 1979 functional

form, the CPL-W model, the crack-growth model and

the strength decay model are given by (10), (17), (24)

and (28), respectively, and can be framed as:

F�rðtÞ ¼ 1� exp � �r
rref

� �q

Uþ t

tref

� �� �b( )
ð29Þ

where

Uð�rÞ ¼
�r=rrefð Þr�q; 1979 functional form
0; CPL - W model
�r=rrefð Þ�2; crack - growth model
1; strength decay model

8>><
>>:

: ð30Þ

In applications for moderate �r=rref , the factor Uþ
t=tref is dominated by the ratio t=tref at all but the

shortest times. If the stress ratio, �r=rref , is small (say

less than 0.3), and if the exponent arising in two of the

versions of U, namely r� q and - 2, is negative, and

when tref happens to be large, then it may take some
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time before the t=tref term dominates, though in the

meantime no failures will happen at such low stress

ratios. Because t=tref is generally significantly greater

than U when the failure probability is significant, the

lifetime distributions are effectively the same for

these four models. Testing strategies for distin-

guishing among the models will not be discussed

here, but nonetheless distinguishing features among

the various models are presented below.

To simplify the notation when exploring the

behavior of Eq. (29), the stress ratio �r=rref is called

SR, such that U ¼ SR-, where - is an exponent

ranging across the real number line, but typically

-� � 2. In practice, the stress ratio ranges from zero

to one. For all positive values of -, U is less than or

equal one. Even for negative values, such as - ¼ �2

as in the crack-growth model, the term U ¼ SR-

remains under 10 for SR� 0:32, meaning that the

normalized time T ¼ t=tref will start to dominate U
once t� 10 tref . On the other hand, if when SR \0:32

and -� � 2, thus causing larger values of U, t must

be much larger than tref for T to dominate U. The key

observation, once again, is that with such a low load

level there are unlikely to be early failures observed

experimentally. Thus, experimentally observable

differences between the models are very unlikely to

occur.

A comparison of the numerical values for U ¼ SR-

and T ¼ t=tref shows that in most cases SR- is domi-

nated by T, and thus the lifetime distributions are

effectively the same. This comparison is done in

Fig. 1, which plots the key part of (29), ðUþ TÞSRq,

for scaled time T ¼ t=tref . This interior part is plotted

instead of plotting the full CDF so as to avoid a

specific choice of b. In the case where b ¼ 1, a plot of

the cumulative distribution function (CDF) of the

failure probability is approximately the same figure,

since 10�n � 1� expf� 10�ng; n� 2. Thus, for Fig. 1

the top two rows of plots can be viewed as failure

probabilities with b ¼ 1. In cases where b 6¼ 1, then

the axis label is related to the failure probability by

10�bn � 1� expf� 10�bng; n� 2, such that the failure

probability can be calculated by multiplying the

exponent by b in each axis label. For instance, in the

uppermost left panel of Fig. 1, if b ¼ 1=3, then 10-15

becomes 10-5, 10-16 becomes 10-5.33, and 10-17

becomes 10-5.66, and these values are then seen as

failure probabilities.

Figure 1 shows that, in all plotted cases, the models

converge by the time T ¼ 104. This convergence

happens sooner for larger stress ratios (at the bottom

of the figure), yet as the stress ratio increases the

numerical value of ðUþ TÞSRq increases. Thus,

assuming b is held constant, it is more likely for

failures to occur at lower times with higher stress

ratios. This is also true as q decreases, since smaller

values of q result in larger values of ðUþ TÞSRq.

In carbon fiber composites, where the design stress

ratio is typically 0.5, tref is typically less than one,

generally between 10-2 and 10-5. In these cases, the

models mostly converge by the time T ¼ 102, corre-

sponding to times between 10-3 and 1 h. Thus, for

carbon, under a stress ratio of interest, the models

predict the same life behavior for lifetimes of interest,

unless b is particularly low. A ðUþ TÞSRq value of

10-7, when b ¼ 1 corresponds to a failure probability

of 10-7, i.e., almost certain survival. For carbon fiber

composites however, b is typically less than 0.3, and

for T1000 carbon/epoxy tows can be as low as 0.07,

though coupled with a much larger value of q, cor-
responding to the right column in Fig. 1. Assuming q
is fixed and small, for low b values the failure prob-

ability is higher, e.g., � 0:01 when b ¼ 0:3 and

ðUþ TÞSRq ¼ 10�7, and likely unacceptable from a

design point of view. However, to obtain ðUþ
TÞSRq ¼ 10�7 the stress ratio has to be high and the

value of q has to be low, i.e., corresponding to the

bottom of the left-hand column in Fig. 1. From the

point of view of running experiments, however, the

models will remain indistinguishable because the

probability of getting failures in such short times is so

small, even in a relatively large sample.

For Kevlar, there is more difference, as tref for

Kevlar may be between 1 and 10 h, and the stress

ratio may be lower; however, conversely b for Kevlar

is typically greater than 1. Even for a stress ratio of

0.25 though, all models for which r� q� � 2 agree

fairly well after T ¼ 100, and fully by T ¼ 1000,

where for Kevlar T ¼ 1000 corresponds to times

between 1000 and 10000 h.

In [11], the lifetime distribution of the strength

decay and CPL-W models are compared, with the

results being identical after the first half hour in the

case of an IM6 carbon fiber/epoxy composite system.

Some model differences are reported when the

parameters for each model are calculated
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independently; however, this could be attributed to

estimation error for the parameters.

Comparing strength distributions

The strength distributions for the 1979 functional

form, the CPL-W model, the crack-growth model and

the strength decay model are given by (8), (14), (22)

and (26), respectively, and can be framed as:

FsðsÞ ¼ 1� exp � s

rref

� �q

Uþ s

Rtrefðqþ 1Þ

� �� �b( )

ð31Þ

where the term U, defined in (30), is here a function of

s.

One simplification is to assume the constraint on

tref as given in (18), namely rref ¼ Rtrefðqþ 1Þ, which

eliminates tref as an independent parameter. How-

ever, the artificiality of this is that the effect of
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Figure 1 Plot of ðUþ TÞSRq, where T ¼ t=tref and SR ¼ �r=rref , for values of r including r ¼ q� 2, the crack-growth model, and r ¼ q,
the strength decay model. The term SRqT is also plotted, to correspond with the CPL-W model, wherein U � 0.
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increasing the loading rate is to change the other

parameter values. Equation (31) simplifies to:

FsðsÞ ¼ 1� exp � s

rref

� �q

Uþ s

rref

� �� �b( )
: ð32Þ

However, strictly speaking, the constraint is not a

consequence of the structure of the 1979 functional

form and only naturally arises in the CPL-W model.

To help visualize (32), with the constraint, Fig. 2

plots the interior quantity

s

rref

� �q

Uþ s

rref

� �
; ð33Þ

as a function of the stress ratio, s=rref , for several

values of q. As before, the interior part is plotted

instead of plotting the entirety of Eq. (33) so as to

avoid a specific choice of b. To remind the reader, the

axis label is related to the failure probability for a

given value of b, via 10�bn � 1� expf� 10�bng; n� 2,

such that the failure probability can be calculated by

multiplying the exponent by b in each axis label. For

an example, see the discussion of Fig. 1.

From Fig. 2, it is clear that the quantity in Eq. (33)

varies considerably across the different models, par-

ticularly for low q values. Also, for all models except

the CPL-W model, the lines are not straight but rather

have a kink around a stress ratio of one, which is

typically a bit higher than the mean strength.

The CPL-W model provides a lower bound to the

various instances of the 1979 functional form. For

stress ratios less than 1, instances of the 1979 func-

tional form where r� q is more negative correspond

to the uppermost lines, and all models for which r�
q[ 0 are approximately equal to the CPL-W model.

In contrast, for stress ratios above 1, instances of the

1979 functional form where r� q is larger correspond

to the uppermost lines.

The constraint (18) is applied in Fig. 2 and Eqs. (32)

and (33). If that constraint is removed, however, (31)

can be restored to

FsðsÞ ¼ 1� exp � s

rref

� �q

Uþ s

rrefK

� �� �b( )( )
ð34Þ

where
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Figure 2 Plot of (33) for q
values of a 10, b 30, c 60 and

d 120, comparing the CPL-W

model against various

instances of the 1979

functional form, including the

crack-growth model

(r� q ¼ �2) and the strength

decay model (r ¼ q).
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K ¼ Rtrefðqþ 1Þ
rref

ð35Þ

is now allowed to vary, including in the CPL-W

model. Now, the key interior part becomes

s

rref

� �q

Uþ s

rrefK

� �
: ð36Þ

Note that K is proportional to the loading rate, R.

Experimentally, the strength distribution is known to

depend on the loading rate, with faster loading gen-

erally resulting in a higher experimental value for

rref .
Figure 3 plots (36) for various values of K, showing

that by allowing K to vary the models become more

different when K[ 1 and more similar when K� 1.

As before, the CPL-W model provides a lower bound

on models from the 1979 functional form. It is inter-

esting to note that all the models collapse to the same

line for small K. The largest difference between the

models corresponds to large values of K, i.e., fast

loading rates.

For all values of K, the CPL-W model retains the

same slope and simply shifts down as K increases.

The same is not true for the instances of the 1979

functional form, because while they do shift as K

increases, the slope of their central straight regions

varies as well. The slope has the most variation for

large values of K, but once K\1 the slope has con-

verged, for all instances of the 1979 functional form,

to the CPL-W model’s slope. If varying K is viewed as

varying the loading rate, this implies that for the

CPL-W model changing the loading rate results

purely in a different value of the scale parameter. In

contrast, for the 1979 models, a change in loading rate

can result in both a change of the scale parameter and

the shape parameter. These are general observations

from Fig. 3.

Focusing on the cases K = 10 and K = 100, in the

upper straight regions where test data are most likely

to occur, a scaling can be chosen to collapse the

various instances of the 1979 functional form onto

one common line, which happens to be the line for

the CPL-W model. If we consider modifying (36) to
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Figure 3 Plot of (36) for K

values of a 100, b 10, c 1, and

d 0.1, comparing the CPL-W

model against various

instances of the 1979

functional form, including the

crack-growth model

(r� q ¼ �2) and the strength

decay model (r ¼ q), where
q ¼ 30.
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1

K

s

rref

� �q

Uþ s

rrefK

� �� �qþ1
r

; ð37Þ

which amounts to a subtle redefinition of several of

the parameters, then the lines collapse to the CPL-W

model (without the constraint), as desired above, at

least for values of (37) where data are likely to be

easily collected. This is shown in Fig. 4a.

The rationale for (37) is that for K[ 1 the term

s=ðrrefKÞ becomes small as compared to U. Thus, (37)
can be approximated by:

1

K

s

rref

� �q

Uþ s

rrefK

� �� �qþ1
r

� 1

K

s

rref

� �q

U

� �qþ1
r

1þ 1

r

s

URtref

� �� �
:

ð38Þ

Recalling in the 1979 model that according to (30)

U ¼ s=rrefð Þr�q, and by (35) K ¼ Rtrefðqþ 1Þ=rref , (38)
becomes

1

K

s

rref

� �q

U

� �qþ1
r

1þ s

UrRtref

� �

¼ rref
Rtrefðqþ 1Þ

s

rref

� �qþ1

1þ s

rref

� �qþ1�r rref
rRtref

" #

� rref
Rtrefðqþ 1Þ

s

rref

� �qþ1

:

ð39Þ

which is the CPL-W model’s interior term. This

approximation works well so long as r� q\30, as

can be seen in Fig. 4a. Whether or not r� q\30

corresponds to a physical material is unknown.

A different scaling can be done to instead scale

the lower straight regions in Fig. 3, as can be
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(a) (b)Figure 4 Plot of (37) for K

values of 100, and 10,

comparing the CPL-W model

against various instances of the

1979 functional form,

including the crack-growth

model (r� q ¼ �2) and the

strength decay model (r ¼ q),
where q ¼ 30. In a, the upper

portions are collapsed,

whereas in b the lower

portions are collapsed.
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seen in Fig. 4b. This scaling was done by trial and

error.

The implication of Fig. 4 for K[ 1, along with

Fig. 3 for K\1, is that all of the models can still be

said to have Weibull distributed strength as far as is

likely to be discriminated from even a large practical

dataset.

If one fits a Weibull distribution to experimental

data, the Weibull shape and scale parameter values

estimated are the same irrespective of any model

subtleties. How the values of these estimated

parameters will relate to the various model

parameters rref , r, q, b, and tref , will differ among the

models. In particular, for the CPL-W model rref
is the inherent Weibull scale parameter, yet for

the 1979 functional form rref varies as a function

of K.

Proof testing

In applications, all COPVs typically undergo some

form of proof testing (which may be combined with

autofrettage), and thus model behavior under proof

testing is of interest.

In idealized proof testing, the load profile is

assumed to be:

rðtÞ ¼ rp; 0� t\tp

rðtÞ ¼ �r; tp � t
ð40Þ

where tp [ 0 is the proof hold time, rp [ 0 is the

proof load level, and rp [ �r. [In reality, there are

ramp up and down times; however, these have a

small effect compared to the proof hold time, largely

because of the division by qþ 1, as appears in the

derivation of Eq. (8)].

The general cumulative distribution function for

failure probability of the 1979 functional form is

given in (6). In the case involving a proof test, sub-

stituting (40) into (6) gives the key quantity in the

exponential as:

sup
0� s� t

rðtÞ
rref

� �r

þ
Z t

0

rðsÞ
rref

� �qds
tref

2
4

3
5
b

¼

rp
rref

� �r

þ
rp
rref

� �q t

tref
; 0� t� tp

rp
rref

� �r

þ
rp
rref

� �q tp
tref

; tp � t� ts

�r
rref

� �r

þ
rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

; t� ts

8>>>>>>><
>>>>>>>:

;

ð41Þ

where ts is called a ‘safe time’ as will be described

below. The existence of this safe time leads to three

distinct time regimes in (41), despite there being only

two load levels. When the load drops from rp to �r at

time tp, the first term on the left side in (41),

ðrðtÞ=rrefÞr, decreases in value, but the accumulated

value of the left side cannot decrease since the

cumulative probability of failure cannot decrease.

This requirement is mathematically accounted for by

using the ‘supremum’ operator, which essentially

means the maximum value achieved up to the given

time. It takes some additional time for the left-hand

side to increase beyond the value it had at time tp, i.e.,

the integral term must accumulate enough to com-

pensate for the decrease in the first term due to the

reduction of rðtÞ. This amount of time can be found

by equating the middle and last quantities in (41) and

letting t ¼ ts, giving

rp
rref

� �r

þ
rp
rref

� �q tp
tref

¼ �r
rref

� �r

þ
rp
rref

� �q tp
tref

þ �r
rref

� �qts � tp
tref

: ð42Þ

Solving for ts yields

ts ¼ tref
�r

rref

� ��q rp
rref

� �r

� �r
rref

� �r� �
þ tp

¼ tref
�r

rref

� �r�q rp
�r

� 	r
�1

h i
þ tp

ð43Þ

Thus, in the 1979 functional form the cumulative

distribution function for time to failure, under the

loading given by (40), is:
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where ts is given in (43).

The time ts is frequently termed the ‘safe time,’ as

the cumulative failure probability does not increase

for tp\t� ts, and thus the probability that a specimen

that has survived to time tp fails inside this range is

zero, i.e., the specimens are safe from failures. The

length of ts � tp increases as the ratio of proof load to

sustained load, rp=�r, increases, and as q increases, yet

it decreases as r increases. The magnitude of this safe

time can be extremely large in some cases. For

instance, for q ¼ 100, a proof ratio of rp=�r ¼ 1:5, a

lifetime stress ratio of �r=rref ¼ 0:5, and r� q� 40,

then the scaled safe time, ts=tref , is predicted to be at

least 100,000. However, for q ¼ 100 and r� q� 60 the

scaled safe time becomes negligible.

In contrast to the general 1979 functional form and

instances thereof, the CPL-W model [with or without

the constraint on tref as given in (18)] has the cumu-

lative distribution function for time to failure, with

loading given by (40), of:

FCPL�WpðtÞ

¼
1� exp �

rp
rref

� �q t

tref

� �b( )
; 0\t� tp

1� exp �
rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

� �b( )
; t[ tp

8>>>>><
>>>>>:

ð45Þ

which has no safe time, but does have a decreased

rate of failure for some time after the proof test. Note

that for rðtÞ\rref , relevant to stress rupture, the CPL-

W model can be obtained from the 1979 functional

form by letting r� q ! 1.

Comparing model behavior in the case
of proof testing

The biggest difference between the models, in the

case of proof testing, is the behavior of the safe time

ts. Shortly after ts, all instances of the 1979 functional

form, created by varying the value of r� q, converge
to the CPL-W model. Furthermore, the CPL-W model

provides a lower bound on the cumulative failure

probability, as can be seen in Fig. 5.

Figure 5 plots (41), the key interior part of (44),

instead of plotting the entirety (44), so as to avoid a

specific choice of b. Once again, the axis label is

related to the failure probability for a given value of

b, via 10�bn � 1� expf�10�bng; n� 2, such that the

failure probability can be calculated by multiplying

the exponent by b in each axis label. For an example,

see the discussion of Fig. 1.

In Fig. 5, the 1979 functional form instances remain

flat until T[Ts ¼ ts=tref , at which point they sharply

increase, and quickly converge to the CPL-W model.

As q increases, the value of Ts also increases. For

instance, when rp=�r ¼ 1:5 and q ¼ 90, we find that

Ts [ 1010, which corresponds to a time between 105

and 1011 h, depending on the particular value of tref .

The sensitivity of Ts to the parameters rp=�r, q, and r

can be seen from Fig. 5. Intuitively, what Fig. 5 is

illustrating is that once Ts is known, one can sketch

the behavior of each of the models by first drawing

the line for the CPL-W model, calculating Ts, and

then drawing a horizontal line that intersects the

CPL-W line at exactly Ts.

Conditional reliability

The reliability, RðtÞ, for a specimen is defined as one

minus the failure probability, FðtÞ, and conditional

reliability following a proof test, RpðtjrpÞ, is defined

F1979pðtÞ ¼

1� exp �
rp
rref

� �r

þ
rp
rref

� �q t

tref

� �b( )
0\t� tp

1� exp �
rp
rref

� �r

þ
rp
rref

� �q tp
tref

� �b( )
tp\t� ts

1� exp � �r
rref

� �r

þ
rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

� �b( )
t[ ts

8>>>>>>>>><
>>>>>>>>>:

ð44Þ
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as the reliability given that this specimen has sur-

vived a proof test. This is, practically, a very useful

concept as only COPVs that survive their proof tests

can be used. Symbolically, the conditional probability

can be calculated using Bayes theorem as:

RpðtjrpÞ ¼
RðtÞ
RðtpÞ

¼ 1� FðtÞ
1� FðtpÞ

ð46Þ

For the 1979 functional form, and thus the crack-

growth and strength decay models, the reliability at

t[ tp given survival of the proof test is:

R1979pðtÞ

¼

1; tp\t� ts

exp � �r
rref

� �r

þ
rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

� �b( )

exp �
rp
rref

� �r

þ
rp
rref

� �q tp
tref

� �b( ) ; t[ ts

8>>>>>>><
>>>>>>>:

ð47Þ
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Figure 5 Plots of the key interior quantities in (44) and (45) for varying values of q and rp=�r , where �r=rref ¼ 0:5 and Tp ¼ tp=tref ¼ 1,

for scaled time T ¼ t=tref .
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Figure 6 Plot of conditional

reliabilities (47) and (49) for

varying values of q and rp=�r,

where �r=rref ¼ 0:5,

Tp ¼ tp=tref ¼ 1, and b ¼ 0:1,

for scaled time T ¼ t=tref .

R1979pðtÞ ¼
1; tp\t� ts

exp
rp
rref

� �r

þ
rp
rref

� �q tp
tref

� �b
� �r

rref

� �r

þ
rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

� �b( )
; t\ts

8><
>: ð48Þ
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For the CPL-W model, the conditional reliability

for times, t, greater than tp is given by:

Plots of these conditional reliabilities are given in

Figs. 6 and 7, for values of rp=�r of 1.5, 1.25 and 1. In

the last case, a proof test equivalent to the lifetime

loading is the same as the reliability conditional on

the vessel surviving loading to the lifetime load. This

is the reliability of practical interest, as no vessel in

service will be used if it does not survive its initial

loading.

10
0

10
3

10
6

0.95

0.975

0.99

1

ρ = 30, σ
p
/ σ = 1.5, β = 0.3

C
on

di
tio

na
l r

el
ia

bi
lit

y,
 R

p(t
)

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
6

10
12

0.95

0.975

0.99

1

ρ = 60, σ
p
/ σ = 1.5, β = 0.15

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
12

10
24

0.975

0.99

1

ρ = 120, σ
p
/ σ = 1.5, β = 0.075

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
3

10
6

0.9

0.95

0.99
1

ρ = 30, σ
p
/ σ = 1.25, β = 0.3

C
on

di
tio

na
l r

el
ia

bi
lit

y,
 R

p(t
)

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
6

10
12

0.9

0.95

0.99
1

ρ = 60, σ
p
/ σ = 1.25, β = 0.15

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
12

10
24

0.9

0.95

0.975

0.99
1

ρ = 120, σ
p
/ σ = 1.25, β = 0.075

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
3

10
6

0.9

0.95

0.99
1

ρ = 30, σ
p
/ σ = 1, β = 0.3

Scaled time, t/t
ref

C
on

di
tio

na
l r

el
ia

bi
lit

y,
 R

p(t
)

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
6

10
12

0.9

0.95

0.99
1

ρ = 60, σ
p
/ σ = 1, β = 0.15

Scaled time, t/t
ref

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

10
0

10
12

10
24

0.9

0.95

0.975

0.99
1

ρ = 120, σ
p
/ σ = 1, β = 0.075

Scaled time, t/t
ref

r − ρ = −4
r − ρ = −2
r − ρ = 0
r − ρ = 8
r − ρ = 32
CPL−W

Figure 7 Plot of conditional

reliabilities (47) and (49) for

varying values of q, b, and
rp=�r, where qb ¼ 9,

�r=rref ¼ 0:5, and

Tp ¼ tp=tref ¼ 1, for scaled

time T ¼ t=tref .

RCPL�WpðtÞ ¼ exp
rp
rref

� �q tp
tref

� �b
�

rp
rref

� �q tp
tref

þ �r
rref

� �qt� tp
tref

� �b( )

¼ exp
rp
rref

� �q tp
tref

� �b
1� 1þ �r

rp

� �qt� tp
tp

� �� �b
( )

; t[ tp

ð49Þ
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In Fig. 6, b is set at 0.1, and q varies. In contrast, in

Fig. 7 the product qb is considered to be a constant,

specifically qb ¼ 9, in keeping with an approximately

constant Weibull shape parameter for strength. The

value for b is then calculated based on the varying q
value. This study focuses on the case b� 1.

Figure 6 shows that the models give remarkably

similar results for large q values, with the differences

between models becoming greater as q decreases.

Increasing the proof ratio, rp=�r, increases the condi-

tional reliability in these models, assuming that b� 1.

The CPL-W always provides a lower bound on

instances of the 1979 functional form, and thus the

CPL-W is the most conservative, of the models con-

sidered, in its conditional reliability predictions.

Figure 7 is very similar to Fig. 6, but shows that for

a constant strength distribution, and thus a constant

value of qb, as the value of b increases, the differences

between the models increase. In contrast, if qb is

allowed to vary, then as the value of b increases the

differences between the models decrease as then the

variability inherent in the material is being reduced.

As before in Fig. 6, increasing the proof ratio increa-

ses the amount of difference between models.

To fully see how the conditional reliabilities relate

across values of rp=�r as well as to the original lifetime

reliability, Fig. 8 plots reliabilities for the CPL-W

model. In Fig. 8, the unconditional lifetime reliability

is lowest, followed by the conditional reliabilities for

increasing values of rp=�r. These conditional reliabil-

ities are also shown in Fig. 6, on separate axes.

The difference between the reliability without a

proof test vs. when rp=�r ¼ 1 is that the second case is

conditional on surviving the service load level, �r, that
might have been applied to a COPV before placement

in a system, even if it was not a true proof test with

rp [ �r.

In comparing the plots for long-term reliability, the

conditional reliabilities are larger than or equal to the

reliabilities for a constant lifetime load of �r=rref ¼ 0:5

(without a proof test). This can be seen in Fig. 8 in the

particular case of the CPL-W model. This is further

shown in Fig. 9 for b values of 0.1, 0.05 and 0.01,

where the conditional reliability is shown with the

solid lines and the reliability for a simple sustained

load is shown in dashed lines.

For larger values of b, all of the models predict

indistinguishable conditional reliabilities, as well as

indistinguishable reliabilities under sustained loads

(without proof testing). In the case where b[ 1, as in

composites using polymer fibers such as Kevlar,

Vectran and Zylon, the conditional reliabilities and

unconditional reliability for a simple sustained load

may actually switch places, such that the conditional

reliability is less than the sustained load reliability.

However, carbon fibers are currently more widely

used, due to their higher strength, and in carbon

b � 1. In this case, the conditional reliabilities fol-

lowing a proof test are always higher than the sus-

tained load reliabilities.

Figure 9 shows how the difference between the

conditional reliability and the reliability for a sus-

tained load increases as b decreases and as q increa-

ses, as seen before in Figs. 8 and 9. The effect of

holding qb fixed and varying q can be seen by com-

paring the first two figures in the first row with the

second two of the second row: the models become

more similar as q is increased, holding qb fixed, the

difference between the conditional reliabilities and

the sustained lifetime reliabilities is similar, but the

time scale over which the plots take place is doubled.

Figure 9 also shows that the difference between the

conditional reliability and the reliability for a sus-

tained load also increases as rp=�r increases, as

expected.
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Figure 8 Unconditional lifetime reliability and conditional reli-

abilities for the CPL-W model with q ¼ 30 and b ¼ 0:1, for rp=�r

values of 1.5, 1.25 and 1, and where �r=rref ¼ 0:5, and

tp=tref ¼ Tp ¼ 1, for scaled time T ¼ t=tref .
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Discussion

The 1979 functional form, its two particular instances,

the crack-growth model and the strength decay

model, and the CPL-W model (a limiting case of the

1979 functional form) are more similar than different.

The differences between the models focus on the

relationship between the strength distribution and

the lifetime distribution, and the concept of a ‘safe

time’ after a proof test.

Assuming the models, all have similar lifetime

distributions, and thus the parameters rref , q, b, and
tref are consistent across the models, the strength

distributions will differ slightly unless the parameter

q happens to be quite high, [ 100. These strength

distributions can be collapsed onto one another by

choosing different values of the parameters depend-

ing on the model.

As mentioned earlier, experimental evidence

shows that the observed strength increases with the

loading rate. In some cases at extremely high loading

rates, the loading rate effect diminishes, but this is

not of practical interest for stress rupture since the

transition stress level is always much higher than the

stresses used in stress rupture experiments, not to

mention in service.

The CPL-W model always shows this sensitivity.

For the 1979 functional form models, in the case

where tref � rref=ðRqÞ, all of the models show this

sensitivity. Otherwise in Eq. (31), the last term will

become dominated by the first term, which eventu-

ally eliminates the sensitivity to the loading rate.
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Figure 9 Plot of conditional

reliabilities (47) and (49), in

solid lines, and sustained

lifetime reliabilities (17) and

(29), in dashed lines, for

varying values of q and b,
where �r=rref ¼ 0:5,

tp=tref ¼ Tp ¼ 1, and

rp=�r ¼ 1:25, for scaled time

T ¼ t=tref .
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Under a simple sustained load, the CPL-W model

gives the most optimistic reliability, relative to the

other models. In contrast, the CPL-W model gives the

most conservative conditional reliability following a

proof test. Furthermore, under a sustained load,

instances of the 1979 functional form where the

quantity r� q is more negative give the most con-

servative reliability, relative to the other models. In

contrast, these instances of the 1979 functional form

give the most optimistic conditional reliability fol-

lowing a proof test.

All instances of the 1979 functional form have a

‘safe time’ after a proof test—a time for which the

conditional reliability is one. The CPL-W model,

being the limit of the 1979 functional form, does not

have a true ‘safe time,’ though it does have a

decreased rate of failure. According to these models,

the safe time can account for the entire desired ser-

vice life of a specimen.

There is anecdotal evidence suggesting that for

materials where b � 1, the conditional reliability

after a proof test can quickly become lower than the

reliability at a sustained load. While there is no lit-

erature experimentally determining the reliability

after a proof test, there is enough concern about the

possible damaging effects of proof testing to motivate

new modeling approaches [11, 32]. Proof testing is

known to do damage to the composite, through

acoustic emission. After a proof test, there will be

clusters of broken fibers that are larger than the

clusters that would have been formed by loading just

to the service load. These larger clusters create larger

stress concentrations in the composite and act as

possible sites for future failure. The damage done in a

proof test may thus cancel out any benefits from

weeding out weak vessels.

The concept that proof testing could reduce the

reliability has great practical importance, yet it is not

predicted by any of the models considered in this

paper when b � 1, despite there being as many as

five parameters. On the other hand, none of these

models have a strong physical basis in the

micromechanics of a composite structure. It is quite

possible that all of the current models have short-

comings in predicting composite behavior for load

profiles more complex than a sustained or linearly

increasing load, or when an excessively high proof

load is used.

Determining the conditional reliability after a proof

test is an important question. Current models predict

only benefits from proof testing, yet they disagree on

how much of a benefit. In reality, a proof testing at a

high stress level runs the risk of breaking a lot of

fibers, which ultimately cannot be good. For the

models discussed however, either there is no safe

time, or the safe time may encompass the entirety of

service life. Either prediction may not be consistent

with the experimental evidence.

Conclusions

The models compared in this paper exhibit many

similar characteristics. The only distinguishing dif-

ferences between the models tend to be for unrealistic

materials or in portions of the distribution where

failure is unlikely for typical experimental sample

sizes. While these models have a lot of flexibility,

none of them allow for the possibility that a proof test

may damage the composite through excessive fiber

failure to the point where the conditional reliability

decreases comparatively rapidly to values below that

for a non-proof-tested specimen.

The current experimental data are not sufficient to

determine which of these models may be most

accurate. Furthermore, there is reason to believe that

none of the models accurately predict composite

reliability under complex load profiles such as proof

tests. None of the models compared here are based in

the micromechanics of a composite structure, and

thus there is a need for a micromechanics inspired

model to deal with the question of proof testing and,

in the process, unintended fiber breakage.
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