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ABSTRACT

The solid/liquid interfacial energies of pure metals and metallic alloys are

modelled in this paper. A simple model is offered for pure metals, showing that

their solid/liquid interfacial energy (sigma) slightly increases with temperature.

Sigma for metallic alloys is considered for the interface between solid and liquid

solutions being in thermodynamic equilibrium, calculated by the CALPHAD

method. The Butler equation is extended to find the equilibrium composition of

the solid/liquid interfacial region and the solid/liquid interfacial energy at fixed

temperatures. This method takes into account the segregation of low-interfacial

energy components to the solid/liquid interfacial region. It is shown how the

new method can be extended to multi-component alloys. The method is applied

to calculate the solid/liquid interfacial energy of Al-rich solid solutions in

equilibrium with eutectic liquid alloys of Al–Cu, Al–Ni, Al–Ag and Al–Ag–Cu

systems. Good agreement was found with experimental values. For the Al–Ag–

Cu system, the modelled value allows to select the more probable experimental

value from the two contradicting experimental values published in the litera-

ture. The solid/liquid interfacial energy is calculated for the eutectic Ag–Cu

system as function of liquidus composition (which determines both the equi-

librium solidus composition and the equilibrium temperature). Finally it is

claimed that using solely bulk thermodynamic data (melting enthalpy and

molar volumes of pure components and molar excess Gibbs energies of equi-

librium solid and liquid solutions) it is possible to provide meaningful values

for the temperature and concentration dependence of solid/liquid interfacial

energies of alloys. The method can be applied for simulation of solid/liquid

phase transformation and also to solid/liquid equilibrium calculations of nano-

alloys.
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Introduction

Solid/liquid interfacial energy (sigma) of alloys [1–3]

is an important thermodynamic property needed to

model both nucleation [4–9] and grain growth, i.e. the

evolution of the microstructure of alloys [10–21]. The

same quantity is essential in producing nano-struc-

tured materials [22–24], to calculate solid/liquid

equilibrium phase diagrams for nano-systems [25–39]

or even to predict dissolution kinetics [40]. Since the

pioneering experimental work of Turnbull and Cech

[41] measurement techniques and interpretation the-

ories have been constantly developed [42–55], it is

still a challenge to measure solid/liquid interfacial

energy of alloys of any composition [56–63]. As a

consequence, the development of a reliable thermo-

dynamic method is needed. Although there are quite

a number of methods developed to model sigma for

one-component metals [64–85] and for alloys [86–92],

including the ab initio methods [93–98], segregation

is taken into account only in some of them [87, 89].

The goal of this paper is to develop a newmodel for

the solid–liquid interfacial energy of alloys taking into

account segregation and to check its validity against

experimental values. The present paper is an extension

of the method developed by the present author earlier

for liquid/liquid and for solid/solid coherent interfa-

cial energies [99], being itself an extension of the Butler

equation [100]. The Butler equation (originally

designed [100] and applied [101–108] for liquid sur-

faces) has been recently rederived [109, 110] and

applied to different other interfaces [111–113]. The

present model is similar to the previous models

[87, 89], but it is worked out here in more details.

The general framework of the model

Let us consider a binary A–B system at standard

pressure of 1 bar and at a temperature T (K) in a two-

phase region when a solid solution of composition

xB;S keeps equilibrium with a liquid solution of

composition xB;L, where xB;S and xB;L (both dimen-

sionless) are the mole fractions of component B in the

solid solution (subscript ‘‘S’’) and in the liquid solu-

tion (subscript ‘‘L’’), respectively, with the solid and

liquid phases separated by a macroscopic planar (and

not curved) solid/liquid interface. The goal in the

present paper is to develop a method to calculate the

concentration and temperature dependence of the

solid/liquid interfacial energy.

In the simplest case of the phase diagram type

shown in Fig. 1a, temperature will define both equi-

librium values xB;S and xB;L. Then, whatever is the

average composition of the alloy in the range

between xB;S and xB;L, the solid/liquid interfacial

energy will have a constant value at given tempera-

ture, as shown in Fig. 1b. Outside this concentration

range, the solid/liquid interfacial energy is not

defined. The goal of the present paper is to work out

an equation for the T dependence of the solid/liquid

interfacial energy as shown in Fig. 1b.

The equilibrium between the bulk phases

The equilibrium compositions of the phases (xB;S and

xB;L) follow from the condition of heterogeneous

equilibrium:
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Figure 1 A simple phase diagram with a two-phase solid–liquid

region (a) and the corresponding concentration independence of

the solid/liquid interfacial energy at a fixed T = 1400 K (b). a is

calculated by Eq. (1c–f) using parameters: loA;L � loA;S ¼
8 � 1000� Tð Þ, loB;L � loB;S ¼ 20 � 2000� Tð Þ.
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li;S ¼ li;L ð1Þ

where li;S (J/mol) is the chemical potential of com-

ponent i in the solid solution, while li;L (J/mol) is the

same in the liquid solution. For a binary A–B system

described by the regular solution model, the follow-

ing two equations should be solved simultaneously

for xB;S and xB;L at given T and other fixed

parameters:

loA;S þ R � T � lnð1� xB;SÞ þ L0;S � x2B;S
¼ loA;L þ R � T � lnð1� xB;LÞ þ L0;L � x2B;L ð1aÞ

loB;S þ R � T � lnxB;S þ L0;S � 1� xB;S
� �2

¼ loB;L þ R � T � lnxB;L þ L0;L � 1� xB;L
� �2 ð1bÞ

where loA;S (J/mol) is the standard chemical potential

of a pure component A in the solid state, loA;L (J/mol)

is the same in the liquid state, loB;S and loB;L (J/mol)

are the same for component B, R = 8.3145 J/molK is

the universal gas constant, T (K) is the absolute

temperature, L0;L (J/mol) is the zeroth-order interac-

tion energy for the liquid solution in the Redlich–

Kister formalism, being the same as the interaction

energy in the regular solution model and L0;S (J/mol)

is the same for the solid solution. Equation (1a, b) has

the following simple analytical solution for the ideal

solutions (L0;L ¼ L0;L ¼ 0):

xB;L ¼ KA � 1

KA � KB
ð1cÞ

xB;S ¼ KB � xB;L ð1dÞ

KA � exp
loA;L � loA;S

R � T

� �
ð1eÞ

KB � exp
loB;L � loB;S

R � T

� �
ð1fÞ

Figure 1a is drawn by Eq. (1c–f) using parameters:

loA;L � loA;S ¼ 8 � 1000� Tð Þ and

loB;L � loB;S ¼ 20 � 2000� Tð Þ, as an example.

The equilibrium at the solid/liquid interface

In Fig. 2, a system containing a bulk solid solution

and a bulk liquid solution with an interface between

them is shown schematically. The width of the

interface is not defined in this paper. It is only

defined that it has a special equilibrium mole fraction

of component B, denoted as xB;S=L, being generally

different from both xB;S and xB;L.

According to the general model of the partial

interfacial energy of a component, it is calculated as

the change of the chemical potential of the given

component accompanying the transport of the same

component from the bulk phase to the interfacial

region divided by the molar interfacial area of the

same component [100, 109]. In case of two condensed

phases surrounding the given interface, the average

value calculated from the two bulk phases is taken as

[109]:

ri ¼
Dli;S þ Dli;L

2 � xi
ð2Þ

where ri (J/m
2) is the partial solid/liquid interfacial

energy of component i (i = A or B in the binary A–B

system), Dli;S (J/mol) is the change of the chemical

potential of component i accompanying the transport

of this component from the bulk solid phase to the

interfacial region, Dli;L (J/mol) is the change of the

chemical potential of component i accompanying the

transport of this component from the bulk liquid

phase to the interfacial region and xi (m
2/mol) is the

molar interfacial area of component i. The two

chemical potential changes are defined as:

Dli;S � li;S=L � li;S ð2aÞ

Dli;L � li;S=L � li;L ð2bÞ

where li;S=L (J/mol) is the chemical potential of

component i in the S/L interfacial region, li;S (J/mol)

is the same in the bulk of the solid phase and

li;L (J/mol) is the same in the bulk of the liquid

phase. Substituting Eq. (2a, b) into Eq. (2):

S LS/L

Figure 2 Schematic of the solid and liquid bulk phases with the

interface between them.
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ri ¼
2 � li;S=L � li;S � li;L

2 � xi
ð3Þ

The chemical potentials in the two bulk phases are

written by the following usual expressions:

li;S ¼ loi;S þ R � T � lnxi;S þ DGE
i;S ð4aÞ

li;L ¼ loi;L þ R � T � lnxi;L þ DGE
i;L ð4bÞ

where DGE
i;S (J/mol) is the partial molar excess Gibbs

energy of component i in the solid solution and

DGE
i;L (J/mol) is the same in the liquid solution. The

chemical potential of the component in the S/L

interfacial region is written by a similar equation:

li;S=L ¼ loi;S=L þ R � T � lnxi;S=L þ DGE
i;S=L ð4cÞ

where loi;S=L (J/mol) is the standard chemical poten-

tial of the pure component i in the solid/liquid

interfacial region, xi;S=L (dimensionless) is the mole

fraction of component i in the solid/liquid interfacial

region and DGE
i;S=L (J/mol) is the partial excess Gibbs

energy of component i in the solid/liquid interfacial

region. Substituting Eq. (4a–c) into Eq. (3), after some

rearrangements:

ri ¼ roi þ
R � T
xi

� ln
xi;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;S � xi=L

p

 !

þ
2 � DGE

i;S=L � DGE
i;S � DGE

i;L

2 � xi
ð5Þ

where roi (J/m
2) is the solid/liquid interfacial energy

of the pure component i, defined as:

roi �
2 � loi;S=L � loi;S � loi;L

2 � xi
ð6Þ

The roi and xi values are temperature dependent.

In the best-case scenario, they are known for each

pure substance, or they can be found by modelling.

For the two-component A–B system, the mole frac-

tion of component B is written as xB, while that of

component A is written as 1� xBð Þ. Substituting these

values into Eq. (5), the partial solid/liquid interfacial

energies of components A and B are obtained as:

rA ¼ roA þ R � T
xA

� ln
1� xB;S=Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xB;S
� �

� 1� xB;L
� �q

0

B@

1

CA

þ
2 � DGE

A;S=L � DGE
A;S � DGE

A;L

2 � xA
ð7aÞ

rB ¼ roB þ
R � T
xB

� ln
xB;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB;S � xB;L

p
� �

þ
2 � DGE

B;S=L � DGE
B;S � DGE

B;L

2 � xB
ð7bÞ

The bulk equilibrium mole fractions xB;S and xB;L
follow from bulk equilibrium of the solid and liquid

phases and can be read from the phase diagram at

given temperature as shown in Fig. 1a and Eq. 1c–f.

The equilibrium mole fraction in the interfacial

region xB;S=L can be found by extending the Butler

equation for the solid/liquid interface [100, 109, 110]:

r ¼ rA ¼ rB ð8Þ

Substituting Eq. (7a, b) into the right-hand side of

Eq. (8), the equilibrium value of xB;S=L can be found.

Substituting this value back into any of Eq. (7a, b),

the solid/liquid interfacial energy is obtained, in

agreement with Eq. (8). To perform this calculation,

the excess partial Gibbs energies are usually descri-

bed by the Redlich–Kister polynomials, using differ-

ent interaction energies for solid and liquid solutions

obtained from a CALPHAD assessment for the given

system.

The application of the present model
to ideal solutions

Equations (7, 8) have analytical solution only if both

solid and liquid solutions are taken as ideal

L0;S ¼ L0;S ¼ 0
� �

and if the atomic sizes and interfacial

arrangements of the two components are equal

xA ¼ xB ¼ xð Þ. In this case, Eq. (7a, b) are rewritten

as:

rA ¼ roA þ R � T
x

� ln
1� xB;S=Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xB;S
� �

� 1� xB;L
� �q

0

B@

1

CA ð9aÞ

rB ¼ roB þ
R � T
x

� ln
xB;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB;S � xB;L

p
� �

ð9bÞ

Substituting these equations into the Butler equation

Eq. (8) (rA ¼ rB), the following equation is obtained

for xB;S=L:

xB;S=L ¼
KB;seg

KB;seg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xB;Sð Þ� 1�xB;Lð Þ

xB;S�xB;L

r ð9cÞ

where KB;seg (dimensionless) is the segregation coef-

ficient of component B, defined as:
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KB;seg � exp
x � roA � roB
� �

R � T

� �
ð9dÞ

Now, let us apply Eqs. (1c–f, 9c, d) to calculate xB;L,

xB;S and xB;S=L as function of T for the following

model parameters, as an example: loA;L � loA;S ¼ 8�
1000� Tð Þ, loB;L � loB;S ¼ 20 � 2000� Tð Þ, roA = 0.15 J/

m2, roB = 0.30 J/m2, x = 40,000 m2/mol. The results

of calculations for xB;S=L are shown in Fig. 3. Substi-

tuting the values of xB;S=L found by Eq. (9c, d) into

Eqs. (8, 9a, b), the solid/liquid interfacial energy of

the alloy is calculated. Repeating the same procedure

at different temperatures, the temperature depen-

dence of the interfacial energy is found as shown in

Fig. 4. A negative deviation from the additive rule in

Fig. 4 is found despite the fact that an ideal solution

is considered. It is obviously due to the segregation of

component A to the interface. This is because com-

ponent A is interface-active as it has a lower solid/

liquid interfacial energy for its pure state compared

to component B. For the same reason, the dotted line

corresponding to the composition of the solid/liquid

interfacial region deviates from the additive rule

towards alloys with higher A content in Fig. 3. This

effect of segregation makes our present new method

superior compared to previous published models.

Let us note that increasing the value of KB;seg the

dotted line in Fig. 3 shifts from the left top corner

towards the right bottom corner of the diagram.

On the interaction energies in the solid/
liquid interfacial region

The interaction energy in the solid/liquid interfacial

region in the first estimation can be calculated as the

average of the interaction energies in the liquid phase

and in the solid phase:

Lj;S=L ffi 0:5 � Lj;L þ Lj;S
� �

ð10Þ

where Lj;S=L (J/mol) is the jth interaction energy of

the components in the solid/liquid interfacial region,

Lj;L (J/mol) is the same in the bulk liquid solution

and Lj;S (J/mol) is the same in the bulk solid solution.

Equations (7–8, 10) are the central equations of our

new model to estimate the concentration and tem-

perature dependence of solid/liquid interfacial

energy of alloys. As an example, in the framework of

the regular solution model, when only the zeroth-

order interaction energies are used, Eq. (7a, b) can be

rewritten using Eq. (10) as:

rA ¼ roA þ R � T
xA

� ln
1� xB;S=Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xB;S
� �

� 1� xB;L
� �q

0

B@

1

CA

þ
L0;L � x2B;S=L � x2B;L

	 

þ L0;S � x2B;S=L � x2B;S

	 


2 � xA

ð10aÞ

rB ¼ roB þ
R � T
xB

� ln
xB;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB;S � xB;L

p
� �

þ
L0;L � 1� xB;S=L

� �2� 1� xB;L
� �2h i

þ L0;S � 1� xB;S=L
� �2� 1� xB;S

� �2h i

2 � xB

ð10bÞ
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Figure 3 Same as Fig. 1a, but with the concentration values of

xB;S=L shown by the dotted line. Calculations by Eqs. (1c–f, 9a, c,

d) with parameters: loA;L � loA;S ¼ 8 � 1000� Tð Þ, loB;L � loB;S ¼
20� 2000� Tð Þ, roA = 0.15 J/m2, roB = 0.30 J/m2, x =

40,000 m2/mol.
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Figure 4 Temperature dependence of the solid/liquid interfacial

energy for the case of Figs. 1a, 3. The bold line is calculated by

Eqs. (8, 9a, b) using parameters of Fig. 3. The straight dotted line

shows the additive rule to help the eye.
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Looking at Eq. (10a, b) it is more obvious how

xB;S=L can be found by substituting Eq. (10a, b) into

Eq. (8) (rA ¼ rB) at a given set of state parameters (T,

xB;S, xB;L), if the following parameters are known: roA,
roB, xA, xB, L0;S, L0;L. Equation (10a, b) are written for

the most simple case of the regular solution. Gener-

ally Eq. (7a, b) should be used, taking into account

Eq. (10) for each interaction energy value.

Extension of the present model to
multi-component alloys

Equations (7a, b, 8) can be extended to ternary A–B–

C alloys, as well, taking also into account the mate-

rials balance equations:

rA ¼ roA þ R � T
xA

� ln
xA;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA;S � xA;L

p
� �

þ
2 � DGE

A;S=L � DGE
A;S � DGE

A;L

2 � xA
ð11aÞ

rB ¼ roB þ
R � T
xB

� ln
xB;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xB;S � xB;L

p
� �

þ
2 � DGE

B;S=L � DGE
B;S � DGE

B;L

2 � xB
ð11bÞ

rC ¼ roC þ R � T
xC

� ln
xC;S=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xC;S � xC;L

p
� �

þ
2 � DGE

C;S=L � DGE
C;S � DGE

C;L

2 � xC
ð11cÞ

r ¼ rA ¼ rB ¼ rC ð11dÞ

xA;S þ xB;S þ xC;S ¼ 1 ð11eÞ

xA;L þ xB;L þ xC;L ¼ 1 ð11fÞ

xA;S=L þ xB;S=L þ xC;S=L ¼ 1 ð11gÞ

First, the equilibrium compositions of the bulk

solid (xi;S) and bulk liquid (xi;L) phases are calculated

by the CALPHAD method. The equilibrium compo-

sition of the solid/liquid interface (xi;S=L) is calculated

by substituting Eq. (11a–c) into different parts of

Eq. (11d) (rA ¼ rB and rA ¼ rC), taking into account

also the materials balance Eqs. (10) and (11g). The

equilibrium composition of the interface can be sub-

stituted back into Eq. (11a–c) to find the partial solid/

liquid interfacial energies, which should be identical

within the uncertainty of the numerical method.

Their average value provides the requested value for

the solid/liquid interfacial energy of the given alloy,

in accordance with Eq. (11d).

The same method can be logically extended to

higher-order systems, extending further Eqs. (7a, b, 8,

10) for the binary systems and Eqs. (10, 11a–g) for the

ternary systems.

The model for pure metals

As follows from the above, the temperature depen-

dences of the solid/liquid interfacial energies and

molar interfacial areas of the pure components are

needed to model the solid/liquid interfacial energy

of multi-component alloys. As these data are usually

not available, simple models will be offered herewith.

The goal is to connect these missing complex quan-

tities with the simplest and well-known thermody-

namic properties, such as melting enthalpy and

molar volume of the pure metals.

The present model on interfacial energies will be

built using the general definition of Eq. (6) for the

solid/liquid interfacial energy of pure components.

The two differences in chemical potentials of Eq. (6)

are written through the enthalpy and entropy terms

as:

loi;S=L � loi;S ¼ Ho
i;S=L �Ho

i;S

	 

� T � Soi;S=L � Soi;S

	 


ð12aÞ

loi;S=L � loi;L ¼ Ho
i;S=L �Ho

i;L

	 

� T � Soi;S=L � Soi;L

	 


ð12bÞ

where Ho
i;S=L (J/mol) is the standard enthalpy of pure

component i in the solid/liquid interface region,

Ho
i;S (J/mol) is the same in the bulk solid phase,

Ho
i;L (J/mol) is the same in the bulk liquid phase, Soi;S=L

(J/molK) is the standard entropy of pure component i

in the solid/liquid interface region, Soi;S (J/molK) is

the same in the bulk solid phase and Soi;L (J/molK) is

the same in the bulk liquid phase.

The enthalpy and entropy differences of Eq. (12a,

b) are estimated supposing that the solid/liquid

region is liquid-like, adsorbed to the outer plane of

the solid crystal. Because of this, the atoms within the

crystal have approximately the same freedom as the

atoms in its surface, i.e. the entropies of atoms within

a crystal and in its surface region are approximately

the same:

Soi;S=L � Soi;S

	 

ffi 0 ð13aÞ
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On the other hand, the atoms within bulk liquid

have more freedom to move around compared to the

adsorbed liquid atoms along its interface with the

solid crystal. Thus, the liquid atoms in the interfacial

region lose half of their configurational freedom

characteristic for the bulk liquid, leading to the fol-

lowing approximated equation:

Soi;S=L � Soi;L

	 

ffi � 1

2 � DmSoconf , where DmSoconf is the

configurational part of the melting entropy of a

general pure metal. The latter can be approximated as

[114]: DmSoconf ffi R � ln2. (Note that the same expres-

sion is valid for the configurational entropy of the

equimolar binary solution, but it is just a coinci-

dence.) Substituting this expression into the previous

one, the final equation is obtained as:

Soi;S=L � Soi;L

	 

ffi �0:5 � R � ln2 ¼ �2:88 J/molK ð13bÞ

As the solid/liquid interface is liquid-like, there is

almost no cohesion energy change from the liquid

side; thus, the following equation is approximately

valid:

Ho
i;S=L �Ho

i;L

	 

ffi 0 ð13cÞ

On the other hand, the cohesion energy within the

solid crystal is decreased by the standard melting

enthalpy when the atom is transferred from the bulk

of the crystal into the liquid-like interfacial region,

i.e.:

Ho
i;S=L �Ho

i;S

	 

ffi DmH

o
i ð13dÞ

where DmHo
i (J/mol) is the standard molar enthalpy

of melting of a pure component i.

The molar interfacial area of component i is cal-

culated as [115]:

xi ¼ f � V2=3
i �N1=3

Av ð14aÞ

f ¼ 3 � fb
4

� �2=3

� p
1=3

fi
ð14bÞ

where Vi (m
3/mole) is the characteristic molar vol-

ume of the pure component i at the solid/liquid

interface at given temperature, NAv ¼ 6:02 � 1023

mol-1 is the Avogadro number and f (dimensionless)

is a structural parameter depending on the packing

ratios of the bulk phases (fb) and that of the interface

(fi). As follows from the above, the solid/liquid

interfacial region is liquid-like. Therefore, the molar

volume in Eq. (14a) is taken as the molar volume of

the pure liquid metal and fb (the bulk packing frac-

tion) in Eq. (14a) is also taken as the bulk packing

fraction of the liquid metal. As was shown in [115],

the average value for simple liquid metals (resulting

from bcc, fcc and hcp metals) is: fb ffi 0:65 � 0:02,

being also consistent with the bulk random packing

fraction of equal spheres [116, 117]. On the other

hand, fi (the packing fraction in the solid/liquid

interface) is taken as the packing fraction of the outer

crystal plane of the solid crystal, as the liquid is

adsorbed to it. For the most dense crystal plane (such

as the 111 plane of the fcc crystal), fi = 0.906 [115].

Substituting these two latter values into Eq. (14b), f ffi
1.00. Let us note that anisotropy of interfacial energy

is neglected in this paper for simplicity, as it has a

small magnitude [118].

In this model, the excess molar volumes of both the

solid and liquid solutions are neglected for simplic-

ity, that is why the molar interfacial areas of the

components are taken as independent of the com-

position, and thus, they are taken equal in both

Eqs. (5, 6).

The temperature dependence of the molar volumes

of fcc metals is known in the liquid state using the

following semi-empirical equations [119]:

Vi ¼ aþ b � Tn below the melting point ð15aÞ

Vi ¼ cþ d � T above the melting point ð15bÞ

with semi-empirical parameters a, b, n, c, d given in

Table 1 for fcc metals. Substituting Eq. (13a–d) into

Eq. (12a, b) and substituting the resulting equation

and Eqs. (14a, 15a–b) with f ffi 1.00 into Eq. (6), the

following final equations are obtained:

roi ffi
DmHo

i þ 0:5 � R � T � ln2
2 � aþ b � Tnð Þ2=3�N1=3

Av

below the melting point

ð16aÞ

roi ffi
DmH

o
i þ 0:5 � R � T � ln2

2 � cþ d � Tð Þ2=3�N1=3
Av

above the melting point

ð16bÞ

Equation (16a, b) can be generally written as:

roi ffi
a � DmHo

i þ b � R � T
V2=3

i �N1=3
Av

ð16cÞ

where a and b (dimensionless) are semi-empirical

model parameters. Comparing Eq. (16a, b) with

Eq. (16c), the parameter values for our new model

are: a = 0.5, b = 0.173. The melting enthalpies of
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metals are taken in the first approximation as T-in-

dependent quantities from [120]. The T dependence

of the solid/liquid interfacial energies of the 10 fcc

metals for 0 K and for the melting points is given in

Table 1. The T dependences are shown in Fig. 5,

calculated by Eq. (16a, b). All modelled values have

an uncertainty of ± 10%.

As follows from Eq. (16a–c), interfacial energy of a

metal at a fixed temperature is higher for lower molar

volume and higher melting point. The interfacial

energy increases with melting point, as the melting

entropies are approximately constant (especially for

the group of fcc metals considered here), and that is

why higher melting points mean higher melting

enthalpies. This is in agreement with the original

approximation of Turnbull [64, 65]. The interfacial

energy values for fcc metals range from 43.8 mJ/m2

for Pb at T = 0 K to 468 mJ/m2 for Ir at T = 4000 K.

Thus, more than an order of magnitude change is

expected in solid/liquid interfacial energies of fcc

alloys as function of composition and temperature.

This is especially important for nucleation calcula-

tions, as the activation energy of nucleation is pro-

portional to the cube of the interfacial energy. Thus,

the activation energy of nucleation can change more

than 3 orders of magnitudes for fcc metal-based

alloys as function of composition and temperature.

This shows the importance of the present model.

The validation of the method for some fcc
eutectic alloys

As in Table 1 only fcc metals are shown, our method

to calculate the solid/liquid interfacial energy of

alloys will be validated for fcc alloys. For the purpose

of validation high-precision, experimental data are

needed, found only for the Al-rich eutectics of the Al–

Cu, Al–Ni, Al–Ag and Ag–Al–Cu systems. That is

why the reliability of the new method will be checked

only for these three binary and one ternary system.

Trial calculations for binary eutectic Al–Cu,
Al–Ni and Ag–Al systems

For the Al–Cu system, the solid/liquid interfacial

energy between the Al-rich fcc solid solution and the

eutectic liquid solution was measured at the eutectic

temperature using the grain boundary groove

method and the results were found as

163.4 ± 16.2 mJ/m2 [49] and 160.0 ± 19.2 mJ/m2

Table 1 Modelled solid/liquid interfacial energies (± 10%) for fcc metals using Eq. (16a, b)

Me Tm

K

a cm3/mol b* 105 cm3/molKn n c cm3/mol d* 104cm3/molK DmHo
i kJ/mol roi;0K mJ/m2 roi;Tm mJ/m2

Ag 1235 10.49 9.646 1.314 10.14 11.85 11.3 140 172

Al 933 10.269 3.860 1.491 9.761 16.54 10.67 134 157

Au 1337 10.396 9.528 1.272 10.15 8.586 12.7 158 195

Cu 1358 7.226 4.06 1.355 6.973 7.123 13.0 206 252

Ir 2719 8.866 1.847 1.377 8.493 5.014 26.4 365 441

Ni 1728 6.718 2.936 1.355 6.464 5.614 17.6 293 351

Pb 600.6 18.21 46.67 1.229 17.93 24.83 5.12 43.8 56.2

Pd 1828 9.047 4.597 1.321 8.746 6.768 17.2 235 287

Pt 2042 9.321 5.120 1.274 9.090 5.265 19.7 263 323

Rh 2237 8.569 1.753 1.414 8.173 6.039 21.55 305 369

*Melting point and heat of fusion are taken from [120], and parameters a, b, n, c and d are taken from [119]
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Figure 5 Modelled solid/liquid interfacial energies of pure fcc

metals as function of temperature by Eq. (16a, b) using the data

given in Table 1.
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[52]. The magnitude of anisotropy in solid/liquid

interfacial energy in this system is measured below

1% [118]. For the Al–Ni system, the solid/liquid

interfacial energy between the Al-rich fcc solid solu-

tion and the eutectic liquid solution was measured at

the eutectic temperature using the same method and

the result was found as 171.6 ± 18 mJ/m2 [52]. For

the Al–Ag system, the solid/liquid interfacial energy

between the Al-rich fcc solid solution and the eutectic

liquid solution was measured at the eutectic tem-

perature using the same method and the results was

found as 166.32 ± 21.62 mJ/m2 [121]. These values

are used here to validate our model.

The eutectic temperatures and compositions of the

Al-rich alloys are taken from [121] (Table 2). The

molar surface areas and solid/liquid interfacial

energies of the pure components Ag, Al, Cu and Ni

are calculated by Eqs. (14a–16a) and by the parame-

ters of Table 1 for given eutectic temperatures as

shown in Table 2. The interaction energies for the Al–

Cu, Al–Ni and Ag–Al solid fcc and liquid solutions

are given in Tables 3, 4 and 5, based on the CAL-

PHAD assessments [123, 124]. Using these interaction

energies, the molar integral and partial excess Gibbs

energies are calculated for the given A–B binary

system, as:

DGE ¼ xB � 1� xBð Þ

� L0 þ L1 � 1� 2 � xBð Þ þ L2 � 1� 2 � xBð Þ2þ
L3 � 1� 2 � xBð Þ3þL4 � 1� 2 � xBð Þ4

� �

ð17aÞ

Table 2 Results of calculations of the solid/liquid interfacial energies between fcc Al-rich solid solutions and the equilibrium liquid

solutions of eutectic compositions at the eutectic temperatures in the Al–Cu, Al–Ni and Ag–Al systems

System A–B quantities Al–Cu Al–Ni Ag–Al

Teut, K 821 916 839

xB,S 0.0248 0.002 0.762

xB,L 0.171 0.030 0.625

r, mJ/m2 measured 163.4 ± 16.2 [49]

160.0 ± 19.2 [52]

171.6 ± 18 [52] 166.32 ± 21.62 [121]

xA, m
2/mol, Eqs. (14a, 15a), Table 1 42,080.7 42,462.1 42,172.3

xB, m
2/mol, Eqs. (14a, 15a), Table 1 32,605.6 30,962.6 42,151.5

roA, mJ/m2, Eq. (16a), Table 1 154.9 156.7 162.6

roB, mJ/m2, Eq. (16a), Table 1 235.6 326.8 155.2

xB,S/L, Eqs. (7a, b, 8, 10) 0.0676 0.001343 0.8665

r mJ/m2, Eqs. (7a, b, 8, 10) 164.7 ± 16 159.5 ± 16 172.5 ± 17

Deviation r, %
Numerical/measured

? 0.8 [49]

? 2.9 [52]

- 7.0 [52] ? 3.7 [121]

Table 3 Interaction energies (J/mol) for the fcc and liquid solu-

tion phases for the Al–Cu system [123]

Lj fcc Liquid

L0 - 53520 ? 2 T - 67094 ? 8.555 T

L1 38581–2 T 32148–7.118 T

L2 1170 5915–5.889 T

L3 – - 8175 ? 6.049 T

Table 4 Interaction energies (J/mol) for the fcc and liquid solu-

tion phases of the Al–Ni system [124]

Lj fcc Liquid

L0 - 162407.75 ? 16.212965 T - 207109.28 ? 41.31501 T

L1 73417.798–34.914 T - 10185.79 ? 5.8714 T

L2 33471.014–9.837 T 81204.81 - 31.95713 T

L3 - 30758.01 ? 10.253T 4365.35–2.51632 T

L4 – - 22101.64 ? 13.16341 T

Table 5 Interaction energies (J/mol) for the fcc and liquid solu-

tion phases of the Ag–Al system [123]

Lj fcc Liquid

L0 - 7154 - 19.562 T - 15,022 - 20.538 T

L1 - 16.541–21.694 - 20,456–17.291 T

L2 4274–27.839 T - 3821–17.169 T

L3 - 8100 7028–12.247 T

L4 – 7661–5.857 T
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DGE
A ¼ x2B

�
L0 þ L1 � 3� 4 � xBð Þ þ L2 � 5� 16 � xB þ 12 � x2B

� �
þ

þL3 � 7� 36 � xB þ 60 � x2B � 32 � x3B
� �

þ
þL4 � 9� 64 � xB þ 168 � x2B � 192 � x3B þ 80 � x4B

� �

2

64

3

75

ð17bÞ

DGE
B ¼ 1� xBð Þ2

�
L0 þ L1 � 1� 4 � xBð Þ þ L2 � 1� 8 � xB þ 12 � x2B

� �
þ

þL3 � 1� 12 � xB þ 36 � x2B � 32 � x3B
� �

þ
þ L4 � 1� 16 � xB þ 72 � x2B � 128 � x3B þ 80 � x4B

� �

2

64

3

75

ð17cÞ

The calculation of the solid/liquid interfacial

energies is performed by the numerical solution of

Eqs. (7a–b, 8, 10). As given in Table 2, the calculated

composition of the solid/liquid interfacial region is

richer in Al than the average mole fraction of equi-

librium bulk solid and liquid solutions. This is

because Al has the lowest interfacial energy com-

pared to Ag, Cu and Ni, and so Al segregates pref-

erentially to the interfacial region. As also given in

Table 2, the calculated interfacial energy values

deviate only by ? 0.8%/? 2.9%/- 7.0%/? 3.7%

from the 4 measured values for the 3 systems, while

both measured and modelled values have an uncer-

tainty of at least 10%. This agreement between the

measured and modelled values confirms the validity

of the present model.

Trial calculation for the ternary Ag–Al–Cu
system

For the Ag–Al–Cu system, the solid/liquid interfacial

energy between the Al-rich fcc solid solution and the

eutectic liquid solution was measured at the eutectic

temperature using the grain boundary groove

method and the result was found as: 67 ± 15 mJ/m2

[125] and 137.40 ± 16.49 mJ/m2 [126]. This large

difference in experimental values allows us to use our

new theoretical method to decide which of the above

two contradicting experimental values is closer to

reality.

The eutectic temperatures and compositions of the

Al-rich alloys are taken from [127] (Table 6). The

molar surface areas and solid/liquid interfacial

energies of the pure components Ag, Al and Cu are

calculated by Eqs. (14a–16a) and by the parameters of

Table 1 at the eutectic temperature (Table 6). The

interaction energies for binary Al–Cu, Ag–Al, Ag–Cu

and for the ternary Ag–Al–Cu systems for solid fcc

and liquid solutions are given in Tables 3, 5, 7, 8

based on the CALPHAD assessments [123, 127].

Using these interaction energies, the molar integral

and molar partial excess Gibbs energies are calcu-

lated for the Ag–Al–Cu system, as:

Table 6 Calculation of the solid/liquid interfacial energy between

Al-rich fcc solid solution and the equilibrium eutectic liquid Ag–

Al–Cu alloy at the eutectic temperature

Quantity, unit Value

Teu, K 775.09

xAl,L 0.7156

xAg,L 0.1657

xCu,L 0.1187

xAl,S 0.7861

xAg,S 0.1642

xCu,S 0.0497

r, mJ/m2, measured 67 ± 15 [125]

137.40 ± 16.49 [126]

xAg, m
2/mol, Eqs. (14a, 15a), Table 1 42005.2

xAl, m
2/mol, Eqs. (14a, 15a), Table 1 41903.3

xCu, m
2/mol, Eqs. (14a, 15a), Table 1 32528.0

roAg, mJ/m2, Eq. (16a), Table 1 161.1

roAl, mJ/m2, Eq. (16a), Table 1 154.0

roCu, mJ/m2, Eq. (16a), Table 1 234.2

xAl,S/L, calculated 0.7795

xAg,S/L, calculated 0.1655

xCu,S/L, calculated 0.0550

r ¼ rAl ¼ rAg ¼ rCu, mJ/m2, calculated 160.5 ± 16

r deviation, %, calculated/experimental 140% [125]

16.8% [126]

Table 7 Interaction energies (J/mol) for the fcc and liquid solu-

tion phases of the Ag–Cu system [123]

Lj fcc Liquid

L0 34817 - 8.876 T 14463 - 1.516 T

L1 - 3207 - 0.570 T - 934 ? 0.319 T

Table 8 Ternary interaction energies (J/mol) for the fcc and liq-

uid solution phases of the Ag–Al–Cu system [127]

Lj fcc Liquid

L3,Ag 72,814.0–270.0090 T - 133981.8

L3,Al - 7437.2 30555.6–72.0962 T

L3,Cu - 124167.3 - 165118.4 ? 78.6913 T
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DGE
Ag�Al�Cu ¼ xAg � xAl �

X

j

Lj;Ag�Al � xAg � xAl
� � j

þ xAg � xCu �
X

j

Lj;Ag�Cu � xAg � xCu
� � j

þ xAl � xCu �
X

j

Lj;Al�Cu � xAl � xCuð Þ j

þ xAg � xAl � xCu � xAg � L3;Ag þ xAl � L3;Al þ xCu � L3;Cu
� �

ð18Þ

DGE
Ag ¼ DGE

Ag�Al�Cu þ 1� xAg
� �

�
dDGE

Ag�Al�Cu

dxAg

 !

xAl=xCu�a

ð19aÞ

xCu ¼
1

1þ a
� 1� xAg
� �

ð19bÞ

xAl ¼
a

1þ a
� 1� xAg
� �

ð19cÞ

DGE
Al ¼ DGE

Ag�Al�Cu þ 1� xAlð Þ

�
dDGE

Ag�Al�Cu

dxAl

 !

xAg=xCu�b

ð20aÞ

xCu ¼
1

1þ b
� 1� xAlð Þ ð20bÞ

xAg ¼
b

1þ b
� 1� xAlð Þ ð20cÞ

DGE
Cu ¼ DGE

Ag�Al�Cu þ 1� xCuð Þ

�
dDGE

Ag�Al�Cu

dxCu

 !

xAg=xAl�c

ð21aÞ

xAl ¼
1

1þ c
� 1� xCuð Þ ð21bÞ

xAg ¼
c

1þ c
� 1� xCuð Þ ð21cÞ

The solid/liquid interfacial energies are calculated

by solving numerically Eqs. (10, 11a–g). As given in

Table 6, the calculated composition of the interfacial

region is richer in Al and slightly in Ag, and is poorer

in Cu compared to the average compositions in the

bulk solid and liquid solutions. This is because Al

and Ag have similar and low interfacial energies

compared to Cu, so Al and Ag are interfacial active in

the system. As also given in Table 6, the calculated

interfacial energy value is larger by 16.8% compared

to the data of [126], but larger by 140% compared to

the data of [125]. Thus, our model calculations con-

firm that the experimental values of [126] are proba-

bly much closer to the reality than those of [125].

Although the deviation between calculated and

experimental [126] data is larger than for the binary

systems above, the possible experimental and theo-

retical intervals still overlap: the possible modelled

interval of 160.5 ± 16 mJ/m2 overlaps with the

experimentally found possible interval of

137.40 ± 16.49 mJ/m2 by [126]. This proves again the

validity of our new model.

Model calculations for a binary alloy
as function of composition
and temperature

In this chapter, we calculate the concentration/tem-

perature dependence of the composition and energy

for the solid/liquid interfacial region for a binary

phase diagram. As the Al–Cu, Al–Ni and Al–Ag

binary systems considered in Table 2 all contain

intermetallic compounds [122] not considered in this

paper, the present calculation will be performed for

the eutectic Ag–Cu system with no intermetallic

compound [122]. Unfortunately no experimental

information on interfacial energies exists for this

system to compare our calculated values.

There are three, interconnected quantities in an

eutectic phase diagram of Fig. 6a: temperature, liq-

uidus temperature and solidus temperature. The

liquidus temperature is selected here as the leading

parameter. The other two parameters are calculated

by the CALPHAD method, using Eqs. (1, 17a–c) and

Table 7. The calculated and measured [122] phase

diagrams are very close to each other. The molar

surface areas and solid/liquid interfacial energies of

the pure components Ag and Cu are calculated by

Eqs. (14a–16a) and by the parameters of Table 1 as

function of temperature. The interaction energies are

given in Table 7 using Eq. (17a–c).

The results of calculations are shown in Fig. 6. The

broken line in top Fig. 6 shows the mole fraction of

Cu in the solid/liquid interfacial region as function of

temperature. The values left from the eutectic point

correspond to the equilibrium between the Ag-rich

solid solution and the liquid solution, while the val-

ues right from the eutectic point correspond to the

equilibrium between the Cu-rich solid solution and

the liquid solution. One can see that the interfacial

region is enriched in Ag if compared to the average
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solidus and liquidus values at the same temperature.

This is because pure Ag has a lower interfacial energy

compared to pure Cu, as given in Table 1.

In the bottom part of Fig. 6, the solid/liquid

interfacial energy is shown as function of the liquidus

mole fraction of Cu. One can see that at the eutectic

point the solid/liquid interfacial energies have the

same values for Ag-rich and for the Cu-rich solid

solutions, keeping equilibrium with the same eutectic

liquid. (This is because the partial Gibbs energies of

components are identical in these two equilibrium

solid solutions.) However, the curve in the bottom

part of Fig. 6 is broken in the eutectic point. It also

follows from the bottom part of Fig. 6 that the solid/

liquid interfacial energy is lower compared to the

additive rule shown by a broken straight line. As this

seems not be the case for Cu-rich alloys, the same

results are shown in Fig. 7 as function of the average

solidus and liquidus mole fraction of Cu. As shown

in Fig. 7, the modelled values coincide with those

calculated by the additive rule in alloys with more

than 90 at.% Cu. For all other cases, the modelled

values are lower compared to the additive rule. This

is explained again by the segregation of Ag to the

interfacial region, which follows from the fact that

pure Ag has a lower interfacial energy compared to

pure Cu (Table 1).

Discussion on the model parameters
of Eq. (16c)

The solid/liquid interfacial energy of pure metals is

described by the general Eq. (16c). The above model

for pure metals provides the semi-empirical values

as: a = 0.5, b = 0.173. The calculated results shown in

Tables 2 and 6 are obtained using these values. The

experimental and modelled values are compared in

Fig. 8. As shown in Fig. 8, the correlation coefficient

is negative. This is probably due to the not perfectly

selected values of parameters a and b.
All model equations in the literature on solid/liq-

uid interfacial energies of pure metals can be sum-

marized by the general Eq. (6c). However, all

literature models provide different values of param-

eters a and b. Some models claim a = 0 with some

positive value for b, some other models claim b = 0

with some positive value of a, while some models

provide both parameters with positive values [64–84].

As follows from the above, our model with a = 0.5,

b = 0.173 is in the interval of possible values,

according to the previous models. Based on the
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Figure 6 Equilibrium phase diagram of the Ag–Cu system [122]

with the T dependence of the Cu mole fraction at the solid/liquid

interfacial region shown by the dotted line (top figure) and the

solid/liquid interfacial energy of the Ag–Cu alloy as function of

the liquidus composition with the dotted line showing the additive

rule (bottom figure).

 

160

180

200

220

240

260

0 0,2 0,4 0,6 0,8 1

si
gm

a,
 m

J/
m

2

0.5*(xCU,L+xCu,S)Ag Cu

Figure 7 Solid/liquid interfacial energy of the Ag–Cu alloy as
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The horizontal dotted line only shows that at the eutectic point the

solid/liquid interfacial energies have the same values when the

liquid is in equilibrium with Ag-rich and Cu-rich solid solutions.

The thin dotted line shows the additive rule.
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above, let us check how the two boundary conditions

with a = 0 and b = 0 perform, optimizing the other

nonzero parameter such that the maximum absolute

deviation between experimental and modelled values

is minimized.

One of the options is shown in Fig. 9 calculated

with parameters: a = 0.59, b = 0. One can see that the

situation in Fig. 9 is not improved compared to Fig. 8.

Another option is shown in Fig. 10 calculated with

parameters: a = 0, b = 0.925. One can see that the

situation in Fig. 10 is considerably improved com-

pared to Figs. 8 and 9. In this latter case, all the five

experimental data of Table 2 and 6 are within ± 6%

of deviation compared to the modelled values, which

is the real improvement compared to the 16% of

difference shown in Table 6. It is clear that if both

parameters a and b are free to optimize, even a better

situation can be achieved. However, the five experi-

mental points for the 4 systems are not sufficient to

find the generally valid value in this paper. Thus, this

topic should be clarified at a later date, based on

more numerous and more precise experimental

values.

Conclusions

A general method is developed to model the solid/

liquid interfacial energies between an equilibrium

solid solution and an equilibrium liquid solution.

This new method is the extension of the Butler model

developed for liquid/gas surfaces and our previous

model developed for liquid/liquid and for coherent

solid/solid interfaces. The method allows the calcu-

lation of the composition of the interfacial region and

its interfacial energy, if the excess Gibbs energies of

the neighbouring phases are known as function of

composition and temperature. The accuracy of the

theoretical method is estimated to be around 10%.

The method also takes into account segregation of

low-interfacial energy components to the interface,

and in this way, the new method is superior to pre-

vious models.

For the method to apply, the solid/liquid interfa-

cial energies and the molar interfacial areas of the

pure components should be known. Simple models

are developed in this paper for the 10 pure fcc metals.

Further, the excess molar Gibbs energies of

y = 1,0241x
R² = -5,358

0

40

80

120

160

200

0 50 100 150 200

si
gm

a 
m

od
el

, m
J/

m
2

sigma exp, mJ/m2

Figure 8 Comparison of experimental (x-axis) and modelled (y-

axis) solid/liquid interfacial energies of the 4 eutectic alloys of

Tables 2 and 6. The model is based on solid/liquid interfacial

energies of pure metals calculated by Eq. (6c) and parameters:

a = 0.5, b = 0.173.
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Figure 9 Comparison of experimental (x-axis) and modelled (y-

axis) solid/liquid interfacial energies of the 4 eutectic alloys of

Tables 2 and 6. The model is based on solid/liquid interfacial

energies of pure metals calculated by Eq. (6c) and parameters:
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Figure 10 Comparison of experimental (x-axis) and modelled (y-

axis) solid/liquid interfacial energies of the 4 eutectic alloys of

Tables 2 and 6. The model is based on solid/liquid interfacial

energies of pure metals calculated by Eq. (6c) and parameters:

a = 0, b = 0.925.
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equilibrium phases should be known, to be taken

from CALPHAD assessments.

The present method is validated on the three bin-

ary systems: Al–Cu, Al–Ni and Al–Ag. In all three

cases, measured values are known for the interface

between Al-rich solid solutions and equilibrium

eutectic liquids at the eutectic temperature. The

agreement between calculated and experimental

values is within 7% for each of the 3 binary systems,

confirming the validity of the model.

The method is also extended to multi-component

systems. It is validated against experimental data on

Al–Ag–Cu system, for the interface between Al-rich

fcc solid solution and the equilibrium liquid Al–Ag–

Cu solution at the eutectic temperature. Among the

two existing experimental values, one can be exclu-

ded when compared with our calculated values. The

agreement between another experiment and our cal-

culated data is acceptable. (The indicated experi-

mental interval overlaps with our calculated interval

if 10% of uncertainty is allowed for the model values.)

This confirms further the validity of our method. This

agreement can be improved if the semi-empirical

parameters are fitted to experimental data.

As a final conclusion, we claim that using solely

bulk thermodynamic data (melting enthalpy and

molar volumes of pure components and molar excess

Gibbs energies of equilibrium solid and liquid solu-

tions) it is possible to provide meaningful values for

the temperature and concentration dependence of

solid/liquid interfacial energies of alloys.

The present method is claimed to be final for the

concentration dependence of solid/liquid interfacial

energies between solid and liquid solutions of binary

and multi-component alloys if the interfacial energies

and molar surface areas of the pure metals and the

excess Gibbs energies of the solid and liquid bulk

alloys are known. However, further work is needed

to improve/extend the method to estimate the solid/

liquid interfacial energies of pure fcc and/or non-fcc

metals as function of temperature. Also, further effort

is needed to extend the present method to the inter-

face between intermetallic compounds and liquid

alloys.
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Shankar S (2015) Phase stability in nanoscale material

systems: extension from bulk phase diagrams. Nanoscale

7:9868–9877
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(1979) Microstucture and interfacial tensions in Zn–In and

Zn–Bi alloys. Metal Sci 13:359–365

[48] Mondolfo LF, Parisi NL, Kardys J (1984) Interfacial

energies on low melting point metals. Mater Sci Eng

68:249–266

[49] Gunduz M, Hunt JD (1985) The measurement of solid–

liquid surface energies in the Al–Cu, Al–Si and Pb–Sn

systems. Acta Metall 33:1651–1672

[50] Gunduz M, Hunt JD (1989) Solid–liquid surface energy in

the Al–Mg system. Acta Metall 37:1839–1845

[51] Cortella L, Vinet B (1995) Undercooling and nucleation

studies on pure refractory metals processed in the Grenoble

high-drop tube. Phil Mag 71:11–21

[52] Marasli N, Hunt JD (1996) Solid–liquid surface energies in

the Al–CuAl2, Al–NiAl3, and Al–Ti systems. Acta Metall

44:1085–1096

[53] Keslioglu K, Marasli N (2004) Experimental determination

of solid–liquid interfacial energy for Zn solid solution in

equilibrium with the Zn–Al eutectic liquid. Metal Mater

Trans A 35A:3665–3672

[54] Morris JR, Napolitano RE (2004) Developments in deter-

mining the anisotropy of solid–liquid interfacial free

energy. JOM 56:40–44

[55] Rogers RB, Ackerson BJ (2011) The measurement of

solid–liquid interfacial energy in colloidal suspensions

using grain boundary grooves. Phil Mag 91:682–729

[56] Paliwal M, Jung IH (2013) Solid/liquid interfacial energy of

Mg–Al alloys. Metall Mater Trans A 44A(2013):1636–1640

[57] Kaptay G (2014) A method to estimate interfacial energy

between eutectic solid phases from the results of eutectic

solidification experiments. Mater Sci Forum 790–791:133–

139

[58] Son S, Dong HB (2015) Measuring Solid–liquid interfacial

energy by grain boundary groove profile method. Mater

Today Proc 2:S306–S313

[59] Mondal S, Phukan M, Ghatak A (2015) Estimation of

solid–liquid interfacial tension using curved surface of a

soft solid. Proc Nat Acad Sci USA 112:12563–12568

[60] Ozturk E, Aksoz S, Altintas Y, Keslioglu K, Marasli N

(2016) Experimental measurements of some thermophysi-

cal properties of solid CdSb intermetallic in the Sn–Cd–Sb

ternary alloy. J Thermal Anal Calorimetry 126:1059–1065

[61] Maire E, Redston E, Gulda MP, Weitz DA, Spaepen F

(2016) Imaging grain boundary grooves in hard-sphere

colloidal bicrystals. Phys Rev E 94:042604
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