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ABSTRACT

Spark plasma and flash sintering process characteristics together with their

corresponding sintering and densification mechanisms and field effects were

briefly reviewed. The enhanced and inhibited grain growth obtained using these

field-assisted densification techniques were reported for different ceramic

nanoparticle systems and related to their respective densification mechanisms.

When the densification is aided by plastic deformation, the kinetics of grain

growth depends on the particles’ rotation/sliding rate and is controlled by

lattice and pipe diffusion. When the densification is aided by spark, plasma, and

the particles’ surface softening, grain growth kinetics is controlled by viscous

diffusion and interface reactions. Grain growth in both cases is hierarchical by

grain rotation, grain cluster formation and sliding, as long as the plastic

deformation proceeds or as long as plasma exists. Densification by diffusion in a

solid state via defects leads to normal grain growth, which takes over at the final

stage of sintering. Various field effects, as well as the effect of external pressure

on the grain growth behaviour were also addressed.

Introduction

Field-assisted sintering techniques have become

important for the rapid fabrication of fully dense

ceramic powders. Among these, the novel techniques

of spark plasma sintering (SPS) and flash sintering

(FS), or a combination of both were used for the

superfast densification of ceramic nanoparticles

within a few minutes. Although these two techniques

differ in the voltage and current levels applied to the

ceramic powder compact, hence in the process

duration, they may exhibit similar electrical and

thermal processes. Therefore, these techniques are

appropriate for the fabrication of fully dense nano-

crystalline ceramics using nanoparticle precursors. In

this respect, the prime target is to fabricate a fully

dense ceramic whose nano-crystalline character is

preserved and affects its properties [1–5]. However,

the preservation of the nano-crystalline character of

the green powder compact to its dense counterpart is

not straightforward and depends upon several

material and process parameters. Different grain
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growth behaviour is reported in various ceramic

systems subject to an electric field-assisted sintering;

these include both grain growth inhibition, i.e. in 3Y-

TZP [6–9], Al2O3 [9], Y2O3 [10], and ZnO [11], as well

as grain growth acceleration, i.e. in Al2O3 [12], NiO

[13], SrTiO3 [14, 15], and SiC [16]. In addition,

increase in the applied external pressure during the

SPS led to both enhanced [17] and retarded grain

growth [1]. The present paper reviews the grain

growth aspect in the SPS and FS processes. In the

light of these opposite trends of grain growth beha-

viour subject to SPS and FS techniques, we will

briefly describe these two processes and set the

background for understanding the grain growth

associated with each one of these respective pro-

cesses. Nevertheless, recent review papers by Guillon

et al. [3] and Yu et al. [18] present detailed descrip-

tions of the SPS and FS processes, respectively. This

review presents the grain growth of several nano-

crystalline ceramic systems from the literature and

discusses the dominating factors that control grain

growth during the SPS and FS processes.

Spark plasma sintering is a modified hot-pressing

process where the ceramic powder compact is placed

within a conducting die (mainly graphite), which is

in turn heated via high DC or AC electric current

density [3]. Minimum pressure (i.e. * 2 MPa) is

needed to hold the whole set-up, but one may

increase it depending on the die material strength

(* 150 MPa for graphite die). The SPS process is

performed in partial and low vacuum (* 3 Pa) in

order to avoid oxidation of the graphite die at high

temperatures. Generally, the applied electric field in

SPS is below 10 V cm-1, whereas current densities

are quite high (i.e. above 100 A cm-2). Densification

can take place both by isothermal treatment and

during the heating process. Therefore, the initial

heating of the non-conducting ceramic specimen

occurs via heat transfer from the die. An increase in

the electric conductivity of the ceramics at higher

temperatures may lead to further heating through

electric energy, i.e. Joule heating [19–21] and plasma

formation [22, 23]. Compared to SPS, higher applied

fields and lower current densities characterize the

flash sintering process [18]. In flash sintering, the

compacted green powder is also located between two

electrodes for passing an electric current through the

compact. However, the specimen is heated within a

furnace prior to or during the application of the

electric field. Subsequently, a constant temperature

setting and a specific electric energy (power multi-

plied by incubation time) are needed to initiate the

flash event. Consequently, the application of higher

electric fields enables the flash event to occur at lower

temperatures, although the field intensity and tem-

perature may depend on the particle size [24, 25].

Despite several different views on the flash source,

i.e. photoemission due to formation of point defects

avalanche [26, 27], thermal radiation [28], or plasma

[22], yet the exact source of the photoemission needs

to be determined.

On the other hand, the flow of an electric current

through the isolating granular system has a percola-

tive nature. Therefore, the formation of a few perco-

lating paths at the flash event may cause damage by

local melting along the path, due to the highly

accumulated and locally consumed electric energy

[29, 30]. Consequently, immediately after the flash

event, the constant voltage mode is switched to the

constant current mode, when limiting and controlling

the current density. Further duration at this current

limit mode provides the conditions for the formation

of parallel percolation paths and more homogeneous

Joule heating of the specimen, which yields homo-

geneous densification throughout the specimen. The

above characteristics lead to apparent processing

conditions at which the densification duration by SPS

lasts tens of minutes compared to tens of seconds for

FS. One important implication of the above that may

affect the choice of the process application may be the

concept that different atomistic mechanisms are

involved in the densification process. In this respect,

during the last few years many direct microstructural

observations proved the existence of spark, plasma,

and local melting during the SPS of ceramic and

metallic powders [21, 31–33]. However, similar

microstructural evidence is rare in FS, and it hence

leads to different atomistic mechanisms suggested for

ultrafast densification, i.e. avalanche of point defects

[34, 35], preferred grain boundary heating [36], par-

ticle surface softening/melting [37, 38], and others

[18]. The lack of clear microstructural features as a

remnant of the atomistic mechanisms of the flash

process may be due to their transient nature, which is

in turn dictated by the extremely short time intervals

of the process. Nevertheless, recent detailed

microstructure observations reveal features typical of

the presence of liquid at some stage during the FS

process [39, 40]. In addition, one can use the same

atomistic mechanisms of spark, plasma, surface
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softening, and local melting that control SPS to suc-

cessfully describe densification during FS. Combina-

tions of the two processes as flash spark plasma

sintering (FSPS) were also developed [16, 41–45].

Recent investigations show that the thermal effect,

i.e. the high heating rates are important and signifi-

cantly contribute to densification during FS [28, 46]

and SPS [46, 47], alongside the electrical effect.

Although this thermal effect was considered for

densification of the green compact only, its effect on

limiting particle coarsening during the densification

should not be underestimated. In this respect, high

heating rates during SPS led to finer grain size in the

fully dense ceramics [48, 49].

Sintering and Nanostructure stability

The chemical potential associated with particle sur-

face curvature and expressed by the capillary forces

is the main driving force for sintering and densifica-

tion of the powder compacts. Mass transport from

convex surfaces to concave surfaces may take place

via solid, liquid, and vapour media. Nevertheless, in

conventional pressureless sintering, densification

necessitates atomic diffusion from the particles’ bulk

into the particles’ surfaces. As long as the atoms

move from one surface to another surface, no densi-

fication will occur. Such atomic diffusions via surface

or through gas (evaporation/condensation) can lead

to particle coarsening, or sintering, i.e. increased

bonds and strength between the adjacent particles.

These processes may change pore morphology, but

they will not lead to a reduction in the pore volume

fraction. These diffusion mechanisms, together with

diffusion through the liquid (viscous sintering), con-

stitute the fastest diffusion mechanisms, albeit the

first two are not considered as densifying mecha-

nisms. Our review mentions these mechanisms since

they may contribute to densification under applica-

tion of external pressure (i.e. SPS), when the parti-

cles/grains are not stationary. Ceramists often

classify the sintering/densification into three stages

according to the microstructural evolution and the

relative densities. At stage I, particle necks form and

the relative density is around 62–74% for closed-

packed systems; stage II is where the continuous

porosity converts into isolated pores and corresponds

to 92% relative density. The third- or final-stage sin-

tering represents the stage where the specimen

converts into a fully dense ceramic. While particle

coarsening may take place within the two first stages,

the main grain growth takes place at the final-stage

sintering, depending on the active diffusion and

densification mechanisms. Therefore, one has to

attribute grain growth behaviour within the frame-

work of SPS and FS to the densification mechanisms

that appear within these sintering methods, as shown

below.

Recent investigations on grain growth and grain

boundary (GB) mobility have further expanded our

understanding of the complexity of grain boundary

motion mechanisms, either via their intrinsic ther-

mal/non-thermal/anti-thermal nature [i.e. [50–52] ]

or via a microstructural feature perspective [i.e.

[53–56] ]. However, in the present review we will

restrict our discussion to the thermally activated GB

motions, in order to highlight the effects of field-as-

sisted sintering on microstructural evolution accom-

panied by grain growth. In this respect, local plastic

deformation, the formation of local plasma and local

particle surface melting/softening may significantly

alter the conventional and normal grain growth

kinetics expected during densification in the solid

state.

The application of conventional pressure (i.e. up to

100 MPa) [57–60] or high pressure [61, 62] during the

SPS produced several transparent nano-crystalline

oxides. Optical transparency in sintered ceramics is

not necessarily associated with zero porosity; nano-

metric pores may be present, the size (diameters) of

which is below the optical wavelength. Indeed,

careful examination of the high-magnification TEM

(transmission electron microscope) images, when

provided, reveal nano-size pores within the visually

transparent and dense nanostructure [59]. Such nano-

pores may significantly retard grain growth kinetics.

The nano-grains in single-phase pure materials

may be stable during the final stage of sinter-

ing/densification, by two means. First, the grain

junctions impose drag on the grain boundary, hence

decreasing GB mobility. Atomistic simulations have

shown a direct relation between excess energy at the

triple junctions (TJ’s), the resolved line tension at the

TJ, vacancy binding, and migration energetics at the

vicinity of these grain junctions [63]. However, the-

oretical calculations indicated that isolated nano-

pores at the grain junctions are more effective and

lead to grain growth stagnation [64–66]. The larger

the grain size, the larger the nano-pore size. The latter
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can stabilize the nano-grain against grain growth

[66]. This stabilization, apparently associated with the

relative free volume at the grain junctions, increases

with the grain size decrease. The second is the grain

boundary roughening transition at a certain temper-

ature, during which defaceting of the grain boundary

can lead to grain growth stagnation [67–70]. The

presence of a liquid layer at the grain boundary

decreases the growth rate of the grain boundary

facets and hence grain growth rate is accelerated and

is directly proportional to the volume of the liquid

layer [68]. Faceting at the grain boundaries often

leads to abnormal grain growth [68]. We will further

discuss these aspects of the grain growth below.

Densification mechanisms in SPS and FS

Different types of grain growth behaviour were

observed, and they occasionally displayed opposing

trends in the same oxide system subjected to SPS or

FS. Therefore, the analysis of the grain growth

behaviour during rapid densification should consider

the respective densification mechanisms. Spark

plasma sintering is often performed when the pow-

der compact is subjected to applied pressure,

although pressureless SPS was also investigated

[71, 72]. Conversely, flash sintering studies are often

pressureless. Recently, a combined method of flash

spark plasma sintering (FSPS) was also introduced

[41–45]. Following previous SPS studies, the domi-

nating densification mechanism may be determined

using plastic deformation—plasma formation tem-

perature-window diagrams [23, 73, 74]. In these dia-

grams, yield stress and electric conductivity were

plotted versus temperature, for constant particle size;

at a constant applied pressure, the respective tem-

perature windows for plastic deformation and

plasma formation are estimated and the process with

lower onset temperature is the one to dominate the

densification mechanism. Densification mechanisms

during flash sintering are expected to be similar to

those of pressureless spark plasma sintering, albeit

under different temperature/pressure conditions,

due to different applied voltage/temperature

regimes [24, 25, 75]. Most of the FS investigations

assume solid-state sintering and relate the rapid

densification to the formation of a high density of

point defects that can lead to amorphysation, at the

particle surfaces/contact points during the flash

event [39, 76–81].

Based on recent findings on local melting during FS

[29, 32, 43, 82, 83] and following the thermal runaway

[39, 84, 85], an alternative model for particle surface

softening and possible air plasma during the flash

sintering was introduced [37]. This particle surface

softening model is consistent with the energy balance

during the flash event and with heat transfer in the

free molecular regime for nanoparticles [38]. It is also

in agreement with the dielectric pre-breakdown

effects observed in a-alumina during the flash pro-

cess [86]. It is worth noting that regardless of whether

a high density of point defects or liquid form at the

particle surfaces during the flash process, full densi-

fication requires the preservation of constant current

(i.e. the last stage in flash sintering) for tens of sec-

onds. This last step may have significant effect on

enhanced grain growth or coarsening of the original

nanoparticles [87, 88].

It is interesting to note that the underlining nano-

to microstructure of the compacts sintered by SPS

and FS and other rapid heating methods reveal the

original nanoparticles occluded within large grain-

shaped clusters (polyhedral), which exhibit wavy

grain boundaries [89], an example of which is shown

in Fig. 1a. This finding may indicate that most of the

inter-particle interfaces are not stationary, i.e. the

nanoparticles slide with respect to each other during

the first and part of the second-stage sintering. The

dynamics of the nanoparticles subjected to applied

stress or liquid-induced capillary forces seems to

inhibit conventional curvature-driven grain growth

(i.e. as in pressureless sintering), hence preserving

the nanoparticle assembly almost up to the final stage

of sintering. This behaviour is supported also by SPS

experiments, where densification up to the final-stage

sintering was associated with negligible grain growth

[65, 90]. Below we will discuss some field effects on

the grain growth processes; thus, these effects can be

interrelated with the densification mechanisms, as

described above.

Field effects on grain growth

The basic effect of the applied electric field on grain

growth was shown through the interaction of this

field with the electrostatic field of the grain boundary

[91, 92]. The external field can change both the local
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driving force (capillary force) and the grain boundary

mobility and thus affect the grain growth kinetics

[93]. Therefore, the characteristics of the grain

boundary, expressed by its chemical composition and

structure, as well as the stress state, are important. In

many ceramics, impurity atoms or alloying elements

segregate to nanoparticle surfaces and the grain

boundaries and change the nature of the previously

charged surfaces/interfaces. Polarization across the

charged grain boundary, together with polarization

of existing point defects, or those formed due to the

field [94] often add an additional driving force for

diffusion. Therefore, assuming solid-state diffusion,

the application of an external electric field in the

absence of external stress, should enhance/reduce

grain boundary mobility, and in turn grain growth

itself, depending on the formation/depletion of point

defects at the GB. Nevertheless, the presence of

external stress may retard grain growth, due to grain

boundary sliding. The increase or decrease in the

grain boundary mobility therefore depends on the

type of the ionic charge present at GB, and the field

strength and direction [95, 96]. In the presence of

liquid at the grain boundaries, the electric field is

expected to decrease the liquid viscosity [97, 98],

hence enhancing diffusivity in the liquid. Neverthe-

less, in such a case, grain growth is controlled by the

slower process between two interfacial reactions, i.e.

first dissolution of ions at the solid–liquid interface of

the dissolving grain and second crystallization of the

ions at the liquid–solid interface of the growing grain.

In this respect, electric fields were reported to

enhance nucleation and crystal growth in SPS [99]

and FS [100]; hence, dissolution is expected to be the

rate-controlling process. Since ions are more mobile

in the liquid state, their polarization by the external

field enhances their diffusion rate and often acceler-

ates grain growth [101].

Grain growth studies

Most of the SPS and FS investigations approach is

aimed at obtaining fully dense ceramics, but some

also characterized the microstructure and the grain

growth behaviour. These include a large spectrum of

ceramics with different electrical properties. Due to

the uncontrolled nature of the flash sintering process,

systematic investigation of grain growth is absent.

The densification of electronic conducting LaB6

nanoparticles (50 nm) by reactive SPS at 80 MPa for

50 min between 1200 and 1400 �C resulted in relative

densities between 0.975 and 0.997, respectively [102].

The corresponding grain size increased almost lin-

early from 120 to 200 nm at 1300 �C, but significantly
increased at 1400 �C (i.e. 300 nm). This increase in

grain size was associated with some decrease in the

specimen’s density. Such behaviour should be related

to the enhanced grain boundary mobility, compared

to the pore mobility, and hence residual pores were

occluded within the grains due to rapid grain coars-

ening, leading to lower final density [103]. Semicon-

ducting ceramics such as TiO2 [103, 104] and ZnO

[39, 105, 106] were densified by SPS under different

conditions. SPS of 20-nm TiO2 nanoparticles at

Figure 1 SEM images of a dense alumina nanoparticles sub-

jected to SPS for 3 min at 100 MPa and 1200 �C. The wavy

nature of the grain boundaries follows the contour of the original

particles at the cluster periphery. b Dense YAG specimen after

SPS for 3 min at 100 MPa and 1400 �C. The grains interior is free
of dislocation networks and the grains grow by curvature-driven

growth.
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62 MPa for 1 h at 700 �C yielded fully dense nano-

crystalline specimens with a 200 nm grain size [103].

Conventional sintering of the same powder to full

density at 900 �C for 1 h led to an average grain size

of 1000 nm. The structure was fully converted to

rutile. For comparison purposes, an almost full den-

sification of 40-nm TiO2 nanoparticles was obtained

at 1000 �C, both by conventional pressureless sinter-

ing (2 h) and via SPS at 15 MPa for 1 min. In this

case, the average grain size in the conventional sin-

tering was 26 times higher than that of the SPS pro-

cess [104].

Nano-crystalline ZnO (* 20 nm) was sintered by

SPS at 50 MPa and 550 �C for 2 min with a final grain

size ranging between 80 and 120 nm [105]. Conven-

tional sintering of the counterpart specimens between

800 and 1000 �C led to a grain size between 100 and

500 nm, respectively. Therefore, SPS led to rapid

densification of ZnO, while the nano-crystalline

character was preserved. However, the presented

SEM microstructure for the SPS specimen reveals

clusters of nano-grains, which resemble densification

via the evaporation–condensation mechanism. Since

Zn sublimes at * 900 �C, the actual specimen tem-

perature must be higher. On the other hand, if high

electric fields are locally formed [107, 108], they may

enhance the sublimation at lower SPS temperatures.

In comparison, extremely rapid grain growth from

submicronic to tens of micrometres was observed,

when ZnO nanoparticles were subjected to DC FS

(field up to 300 V cm-1) at similar temperatures

(600 �C), but at higher electric fields [39]. The authors
attributed this abnormal grain growth at the anode

side to the enhanced interfacial oxidation reaction.

However, crystallization from the melt was evident at

the crack surfaces, leading to the possibility of liquid-

assisted sintering in ZnO. On the other hand, AC

flash sintering of ZnO nanoparticles (* 18 nm) at

electric fields of up to 160 V cm-1 led to exaggerated

grain growth immediately following the flash event

[34]. The authors related this exaggerated grain

growth to the high current densities passed through

the specimen, since they had observed normal grain

growth at low current densities. Moreover, SPS of

ZnO nanoparticles (20–50 nm) was performed at

50 MPa at 400 and 800 �C in dry and in aqueous

conditions, respectively [106]. Both conditions resul-

ted in fully dense nano-crystalline ZnO. The authors

concluded that the water molecules having bound to

the particle surface significantly enhanced

densification at lower temperatures, which were

otherwise stagnant. Apparently, the formation of

hydroxide in the presence of humidity, as well as

liquid at the particle surfaces, leads to grain growth

controlled by interface reactions.

Comparative grain growth studies were performed

for ferroelectric BaTiO3 [109] and ferromagnetic NiZn

ferrite [110] ceramics in order to reveal the electric

field effects. SPS at 39 MPa at 1000 �C for 3 min

resulted in fully dense sub-micrometre-size BaTiO3

specimens [109]. Conventional sintering of the same

powder to full density necessitated 2 h at 1400 �C
and resulted in a 10 lm average grain size. The per-

mittivity measurements of the specimens from the

two sintering techniques revealed preferred oxida-

tion at the grain boundaries in the SPS specimens.

The authors related the reduction in the grain cores to

a possible interaction with the organic residue.

However, deviation from stoichiometry may occur

also by preferred sublimation, in the presence of high

local fields, if plasma or liquid form [29]. This may

lead to significant changes in the composition and

point defect concentration at the particle surfaces and

grain interfaces. In this respect, a decrease in the

partial oxygen pressure led to a decrease in the

number of abnormally grown grains in convention-

ally sintered BaTiO3 [111]. Oxygen vacancies affect

the driving force for grain boundary migration and

faceting (i.e. abnormal grain growth). The application

of external electric fields during the grain growth of

donor-doped Nb-BaTiO3 and acceptor-doped Mg-

BaTiO3 was investigated [91]. Enhanced grain growth

was observed at the positive-biased region in the

undoped and acceptor-doped specimens and at the

negative-biased region for the donor-doped speci-

mens. These results confirm the significant polariza-

tion of defects and the potential change affecting

grain boundaries.

The densification of commercial (Ni Zn) Fe2O4 by

SPS for 5 min at 20 MPa and 900 �C resulted in 98%

dense specimens [110]. The SPS time had a strong

effect on grain growth, and grain size at the specimen

surface was significantly larger than that in the

specimen interior. However, the infrared spectra

showed no significant changes in the crystal condi-

tions around ionic sites of Fe3? with oxygen.

The main body of comparative grain growth

studies relates to the ionic conducting systems of

stabilized zirconia [112–118]. Densification and grain

growth behaviour of porous and dense specimens
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were investigated under the applied AC and DC

fields. Hot pressing and SPS of 3Y-TZP (3 mol%

Y2O3) for 5 min at 100 MPa and different tempera-

tures between 950 and 1200 �C yielded densities and

grain sizes which did not reveal an effect of the

electric field on grain growth kinetics [112]. However,

the application of 18 V cm-1 DC electric field on

similar dense specimens at 1400 �C resulted in faster

grain growth, i.e. linear grain growth, compared to

the normal grain growth (parabolic) in the absence of

the field [113]. The authors referred the change in

grain growth behaviour to the field effect on the

solute drag mechanism in 3Y-TZP. However, for the

opposite trend, where grain growth was retarded by

the electric field [114], the field apparently interacts

with the grain boundary space charge, thus reducing

boundary mobility. The authors related the origin of

the low mobility to the reduction in grain boundary

energy, which in turn reduces the driving force for

grain growth [114]. This approach is supported by

the similar comparative studies on 8YSZ (with

8 mol% Y2O3) [115–117], where lower solute gradi-

ents exist between the grain boundary and grain

interior, compared to 3Y-TZP [119]. Simultaneously,

the increase in the Y2O3 content is associated with an

increase in the concentration of the charged oxygen

vacancies. Consequently, the interaction of the elec-

tric field with less space charge but higher oxygen

vacancies enhances the grain boundary diffusion and

mobility. These effects can explain the enhanced

grain growth observed in SPS of 8YSZ compared to

conventional sintering [115–117]. Enhanced grain

growth also results in the occlusion of pores within

the growing grains [115, 116, 118], which in turn

leads to a lower final relative density. However, a

comparative sintering study of 8YSZ powders with

different nanoparticle sizes revealed no difference in

densification and grain growth at identical sintering

conditions used for conventional and SPS sintering

[118]. It is worth noting that exaggerated grain

growth seems to be an inherent process to SPS prior

to full densification, when the SPS heating rate and

temperature are high enough, as is the case of many

different ceramics [91, 106, 116, 117, 120–122].

A comparative sintering study on Al2O3 using hot

pressing and SPS [123] showed enhanced densifica-

tion in the SPS specimens. However, sintering anal-

ysis revealed that grain boundary diffusion was the

main mechanism of densification in both techniques.

Grain growth behaviour depended on the relative

density rather than on the sintering technique. These

results emphasize the enhanced diffusional pro-

cesses, which are active at particle surfaces and grain

interfaces during the SPS. The SPS of nano-crystalline

Al2O3 (170 nm) at low heating rates (8 �C min-1) and

high heating rates (600 �C min-1), between 1130 and

1300 �C, showed enhanced densification and grain

growth at the higher heating rate [124]. The authors

related these changes to the higher temperature gra-

dients formed at the grain boundaries. However, they

evaluated the level of these temperature gradients as

a few �C m-1, the effectiveness of which at the above

sintering temperatures is questionable. According to

the grain size–density trajectory, they suggested that

low heating rates and low SPS temperatures are

propitious for achieving fine grain size close to full

density. This is not surprising, since moderate SPS

conditions lead to the activation of similar densifi-

cation mechanisms and normal grain growth expec-

ted in conventional sintering [125, 126].

We have thoroughly investigated the densification

and grain growth of Al2O3 nanoparticles (170 nm) at

different SPS process parameters [127]. Our analysis

of the densification and grain growth kinetic pointed

to volume diffusion or diffusion through a liquid

layer at the grain boundaries. Such liquid layers may

have a transient nature and may not survive past the

thermal process. It is clear that appropriate applica-

tion of the electric field in ceramics while conducting

may lead to fully dense nano-crystalline specimens, if

solid-state diffusion is preserved. Under SPS and FS

conditions, when liquid forms, accelerated grain

growth may occur.

Grain growth under external pressure

Ceramic nanoparticles are often subjected to external

pressure during the SPS (as low as the holding

pressure). Therefore, the densification of the

nanoparticle compact may occur by local plastic

deformation at their contact points, if the yield

strength at the respective temperature is attained by

external pressure [74, 128, 129]. Thus, densification

occurs with the formation of dense nano-grain clus-

ters and their hierarchical growth by rotation and

sliding [130], until the closed pores form, i.e. the start

of final-stage sintering. In hard ceramic nanoparti-

cles, without plastic deformation, particle rearrange-

ment and sliding are mostly assisted by particle

surface softening, plasma, or local melting at the
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particle surfaces (i.e. Fig. 2). Such a viscous sliding

may explain the rapid densification kinetics. In both

cases, grain growth rate is controlled by the grain

rotation rate, which in the 2D system is expressed by

[130]:

dh
dt

¼ C �DgbdgbX
kTL4

X

i

dci
dh

 !
1

L40 nþ 1ð Þ2
1� n

Z

� �
; ð1Þ

where Dgb is the diffusion coefficient along the grain

boundary, dgb is the grain boundary thickness, X is

the volume of the rate-controlling ion, k is Boltz-

mann’s constant, T is the absolute temperature, L is

the grain radius, L0 is the initial grain radius, n is the

rotation step number, Z is the grain coordination

number, dci
dh

is the GB energy gradient at the given

interface, and C is a numerical constant between 95

and 128 [130].

Therefore, at low and elevated temperatures, the

densification of the powder compact may occur by

the rotation of the nanoparticles. However, the rota-

tion probability significantly decreases with the

increase in the particle/cluster size and the rotation

step, both of which depend on temperature [130].

Consequently, the rotation of nanoparticles is limited

to a few rotation steps only, after which they form

‘rigid’ nano-clusters, mostly with low-angle sub-

grain boundaries. Further densification necessitates

hierarchical sliding of these nano-clusters, if sub-

jected to applied pressure. The overall process results

in the formation of nanometre- to sub-micrometre-

size clusters of nano-grains, with wavy cluster/grain

boundaries that follow the nanoparticle contours

(Fig. 1a). Pure plastic deformation may lead to

occluded pores within clusters composed of nano-

grains [13]. The transformation of such clusters into a

single large grain necessitates annealing out of the

nano-grain interfaces, which are composed of dislo-

cation networks. This can occur by pipe diffusion of

vacancies from these residual interfaces and pores to

the high-angle cluster grain boundaries. The series of

TEM images at different tilts from the same area of

nano-crystalline NiO, subjected to SPS (Fig. 3), con-

firm this type of grain growth and microstructure

evolution [13]. The kinetics of this grain growth

mechanism is very fast, since the sub-grain rotation

rate is inversely proportional to the fourth power of

its radius (Eq. 1). Therefore, decrease in the original

nanoparticle size may drastically increase the ten-

dency for nanoparticles coalescence, with much faster

kinetics than expected for normal grain growth.

However, once larger clusters form, the rotation rate

should become negligible. Molecular dynamics

computer simulations of nanometric sub-grains with

tilt and mixed boundaries that shrink under capillary

forces revealed the existence of grain size stagnation,

prior to grain disappearance [131]. Following this

trend, dislocation arrays at the nanometric sub-grains

may stabilize them within the cluster. Nevertheless,

dislocation density at the sub-grain boundaries may

decrease with time by pipe diffusion of vacancies/

interstitials between the dislocation cores and the

cluster grain boundaries. Therefore, at certain dislo-

cation density, the sub-grains will become unsta-

ble compared to a single grain ‘cluster’. A series of

TEM images at different tilts, from the same area of

nano-crystalline Y2O3 subjected to SPS (Fig. 4) at

1100 �C, confirm the stability of the nano-grains as

sub-grains within larger clusters, by interfacial dis-

location networks and residual nano-pores at the

grain junctions. This is in contrast to the normal grain

growth of grains with almost faceted grain bound-

aries at the final-stage sintering (Fig. 1b) [132, 133],

where growth is curvature driven, and its rate, dL/dt

is proportional to the inverse of the grain radius,

according to:

L2 � L20 ¼ C1 � kt !
dL

dt
¼ C1 � k

L
; ð2Þ

where C1 and k are geometrical and temperature-

dependent constants, respectively, and t is the grain

growth time.Figure 2 SEM image of the melting layer formed between the

micrometre-size LiF crystals subjected to SPS at 2 MPa and

100 �C/min heating rate up to 500 �C (totally 5 min).
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Similar densification and microstructural evolution

are expected when spark and plasma form and

densification proceed via viscous sintering. This type

of hierarchical growth of the nanoparticle clusters

was recently explained in terms of the various driv-

ing forces for densification [42]. In both processes, as

long as the SPS homologous temperature and dura-

tion are low for efficient lattice diffusion (i.e. the

characteristic diffusion distance is smaller than the

grain radius), the final grains may contain intra-

granular residual pores, as a remnant of the original

inter-particle pores within the clusters (Fig. 4)

[11, 13, 134, 135].

The application of high pressures during SPS often

led to a decrease in the final grain size of different

nano-ceramics [48, 136, 137]. However, such a

decrease in grain size is more effective at lower sin-

tering temperatures, in both cubic zirconia [48] and in

YAG [136, 137]. It turns out that the pressure increase

affects pore closure [48] or assists plastic deformation

[136, 137] during the densification process. However,

at higher SPS temperatures, the effect of pressure on

the grain boundary mobility is limited, which may

arise from prior densification during the heating

stage. This was also confirmed by the comparative

study of grain growth on 3Y-TZP, where two-step

pressure-assisted and pressureless SPS were investi-

gated [72].

Grain growth by multiple ordered coalescence of

nanoparticles (Fig. 5) was also observed in systems

with high surface energy anisotropy, i.e. in SrTiO3

cuboidal nano-crystals subjected to SPS [14, 138]. This

is similar to the imperfect oriented attachment of

nano-crystals [139]. In such systems, the rotation

velocity of the nanoparticle, Vrms is related to its

Brownian motion by [138]:

Figure 3 a–d TEM images at different tilting angles from the same area in nano-crystalline NiO after SPS for 5 min at 100 MPa and

900 �C. The larger grains/clusters are composed of nanometric sub-grains separated by dislocation networks.
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Vrms ¼
ffiffiffiffiffiffiffiffi
3kT

m

r
; ð3Þ

where m is the particle mass, k is Boltzmann’s con-

stant, and T is temperature.

Such a thermal activation, if accompanied by soft-

ening/melting at the nanoparticle surfaces, may lead

to a significant increase in the grain growth regime

[14, 88]. A tenfold increase in the grain size of SrTiO3

subjected to SPS was observed at 950 �C, due to the

bimodal grain size development [14].

The application of very high pressure during the

SPS is expected to anneal out the residual pores as

well as the intra-granular dislocations and sub-grain

boundaries [133]. Nevertheless, the analysis of the

grain boundary dynamics under applied stress

showed that lower activation enthalpies were needed

compared to their curvature-driven migration [140];

the applied pressure screened the effect of the surface

energy anisotropy. This may lead to enhanced grain

Figure 4 a–d TEM images at different tilting angles from the

same area in nano-crystalline Y2O3 after SPS for 10 min at

100 MPa and 1100 �C. The larger grains/clusters are composed of

nanometric sub-grains separated by dislocation networks. The

residual nano-pores at the grain junctions (white triangles) were

the primary cause for the grain growth stagnation.

Figure 5 Schematic of the multiple ordered coalescence of

nanoparticles with anisotropic surface energy during the SPS.

The darker area represents the porosity.

3096 J Mater Sci (2018) 53:3087–3105



growth during SPS, when external pressure in

applied.

Grain growth without external pressure

In the absence of external pressure, as is often the

case during the flash sintering process, the main

driving forces for nanoparticle rearrangement, clus-

tering, and densification are the capillary forces

characteristic of the particle size and/or induced by

surface softening, plasma, and partial melting at the

particle surfaces. These capillary forces at the

nanoscale size range are comparable to attractive

forces as high as 50 MPa (i.e. for an 80-nm-diameter

particle) according to:

DP ¼ 2c
L
; ð4Þ

where DP is the capillary force (with respect to the

reference planar surface), c is the particle surface

energy, and L is the particle radius.

Therefore, particle surface softening by plasma or

local surface melting induces wetting and attractive

forces between the adjacent particles, and hence

immediate particle rearrangement into clusters, in the

absence of an external pressure. Consequently, the

final microstructure may contain a higher density of

nano-size residual pores within these clusters; the

nano-grain clusters rearrange into the shape of

polyhedra, to minimize their interfacial energy with

the adjacent clusters. If the SPS or FS processes per-

formed for short durations (a few seconds) at high

temperature, the nano-crystalline sub-grains within

the polyhedral clusters may be preserved. These

nano-grains are metastable and retained as long as

the characteristic diffusion distance, i.e. x ¼
ffiffiffiffiffiffi
Dt

p

(where D is the grain boundary or lattice diffusion

coefficient and t is diffusion time) is smaller than the

average cluster radius formed in the densified pow-

der compact. Sub-grain size structures observed in

flash-sintered nano-crystalline ceramics are the

manifestation of such densification and cluster

growth [141]. However, for processes with long

durations, annealing of the sub-grain boundaries by

vacancy diffusion to the cluster boundaries trans-

forms the nano-grain clusters into single grains.

Consequently, the expected grain growth kinetics is

exponential with an exponent n = 5 much faster than

normal grain growth with n = 2 or n = 3, which is

expected for liquid-assisted grain growth [90].

Grain growth stagnation

As we have shown above, grain growth is a diffu-

sional process, where atoms move across the grain

boundary mainly by step growth or by interface-

controlled reactions, such as dissolution–reprecipita-

tion. It can be accompanied by a rotation of parti-

cle/sub-grain/nano-grain, when nanometric in size.

In these latter cases, nano-grain coalescence takes

place by lattice or pipe diffusion, depending on

misorientation angle of the sub-grain boundary.

Grain boundary energy considerations have shown

that grain boundary motion perpendicular to the

boundary (i.e. normal grain growth) does not have to

couple with the tangential motion of the two grains

relative to each other [142]. Therefore, the nano-

grains at the cluster edges formed during the SPS can

grow into their adjacent cluster, regardless of the

internal sub-grain structure of the clusters or a pos-

sible mutual sliding.

The stability of the nano-grain structure within the

cluster depends on the nano-grain’s ability to rotate

and the sub-grain boundary characteristics. Molecu-

lar dynamic simulations have shown that pure tilt

sub-grain boundaries enable sub-grain rotation into

higher misorientation angles, hence stabilizing the

nano-grain assembly [131]. However, mixed tilt–twist

boundaries were found to avoid sub-grain rotation,

albeit with much higher mobility than the tilt

boundary. These dynamic characteristics of the

internal GB’s within the cluster may also lead to

nano-grain growth stagnation.

Nano-crystalline grain size may be stable due to

thermodynamic or kinetic causes [143]. In this regard,

the carbonados atmosphere within the SPS unit (due

to the graphite dies) assists the dissolution of carbon

at high temperatures within the otherwise pure oxide

specimens. The dissolved carbon may segregate to

the GB region and assist grain growth inhibition by

solute drag. An addition of elements segregating to

the surfaces and grain boundaries was found to

control the grain boundary energy [144, 145] and

mobility [146], similar to those expected for conven-

tional sintering. However, addition of alloying ele-

ments may change also the onset temperature for

flash sintering, as was noted by NiO additives to

Y2O3 [80].

Finally, the ceramic specimens subjected to the

electric field at high temperatures gain certain ionic

and electronic conductivities, hence acting as an
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electrochemical cell, with an asymmetric response at

the two electrodes [147]. In this respect, one should

expect a different grain growth behaviour near the

electrodes, due to the different electrical processes at

these loci. Different grain growth rates were found at

the cathode and the anode by several investigators,

although the electrode definition may not be similar

[39, 148, 149]. The application of different electrode

materials with different activity also resulted in dif-

ferent grain growth behaviour, most possibly by

modifying the concentration of the point defects at

the GB [148].

AC and DC currents

Significant changes in the microstructure were

observed at the two opposite electrodes during flash

sintering, when using AC or DC currents [18, 148].

DC flash sintering experiments consistently show

asymmetric and enhanced grain growth or pore

growth at one of the two electrodes [39, 148, 149]. The

effects of field polarity were summarized in the

recent review paper on flash sintering [18]. As was

mentioned above, the applied electric field interacts

with the grain boundary potential through the

charged ions at the space charge layer and the point

defects at GB. Consequently, DC field, due to its

directionality, was considered more effective in

changing the grain growth kinetics during FS.

Accordingly, the majority of the FS experiments were

carried out using DC current [18]. Enhanced grain

growth was observed at the cathode side of yttria-

stabilized zirconia, where grain size was larger by 10

[150] to 20 times [147] compared to the grain size at

the gage section of the dog-bone specimens subjected

to DC fields. The DC field may also induce

PressurelessApplied Pressure
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Homogeneous deforma�on
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Figure 6 Flow chart showing

the densification processes and

the resultant grain growth

behaviour during SPS/FS of

ceramic nanoparticles. The

three types of arrows highlight

the corresponding

densification and grain growth

mechanisms versus the

ceramic hardness and the

applied pressure. All the routes

are equally valid for

conductive and non-

conductive ceramic

nanoparticles. The specific

grain growth behaviours listed

in 1 and 2 were determined by

the corresponding

densification mechanism listed

in their preceding steps,

respectively.
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anisotropic grain growth due to its still direction. The

application of AC field in ZnO did not cause asym-

metric densification or grain growth [34]. Further and

significant chemical reactions may also take place

especially at the electrode/specimen interfaces, due

to oxidation/reduction reactions and due to genera-

tion and migration of high density of point and pore

defects, which may drastically affect the grain growth

adjacent to these interfaces. Nevertheless, such

exaggerated grain growth or pore formation is lim-

ited to the vicinity of the electrode, where grain

growth in the bulk is homogeneous, regardless of DC

or AC currents [148, 151]. As long as comparison can

be made by observation of the reported microstruc-

tures resulting from DC and AC flash experiments at

close conditions, i.e. on stabilized zirconia [31–33]

and ZnO [34, 39], one may conclude that the AC

mode yields finer grain size and more homogeneous

microstructures.

Summary and conclusions

Spark plasma sintering (SPS) and flash sintering (FS)

techniques assisted by external electric field are used

for the rapid densification of ceramic nanoparticle

compacts to full density. The rapid sintering and

densification are associated with thermal effects, due

to rapid heating rates as well as electrical effects, due

to the interaction of the electric field with point and

planar defects. Despite the low voltage/high current

densities used during SPS, compared to high volt-

age/low current densities in FS, both techniques are

associated with enhanced diffusion mechanisms

mainly at the nanoparticle surfaces subjected to sin-

tering. Electric field effects, such as generation of

point defects, dielectric breakdown, sparking, plasma

formation, and local surface softening/melting, may

be active during both the SPS and FS process. These

electric field-induced processes dictate the active

sintering and densification mechanisms, and in turn

the simultaneous particle coarsening and grain

growth behaviour. The densification during SPS and

FS span a wide range of mechanisms, from time-in-

dependent plastic deformation under applied pres-

sure to diffusional processes via the solid, liquid, and

vapour media within the nanoparticle compact.

These densification mechanisms dictate the dynamics

of the nanoparticle/nano-grain motions to form

clusters with hierarchical grain growth.

Consequently, the grain size evolution during these

processes strongly depends upon their atomistic

densification mechanisms, which in turn, are affected

by the ceramic thermal and electric properties and

the electric field-assisted process parameters. The

expected microstructural evolution during SPS and

FS was summarized in the flow chart in Fig. 6. The

chart is equally valid for conductive and non-con-

ductive ceramics. The three types of arrows highlight

the corresponding densification and grain growth

mechanisms versus the ceramic hardness and the

applied pressure. The specific grain growth beha-

viours in 1 and 2 were dictated by the corresponding

densification mechanism listed in their preceding

steps, respectively. Densification during SPS and FS

in the solid state should yield fully dense nano-

crystalline ceramics with enhanced yet normal grain

growth, if the process parameters are optimally con-

trolled. However, the presence of vapour and liquid

during densification may lead to exaggerated grain

growth.
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