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ABSTRACT

Applying the thermodynamic extremal principle, a model for grain growth and

densification in the final stage of sintering of doped ceramics was derived, with

segregation-dependent interfacial energies and mobilities (or diffusivities). The

model demonstrated an interdependence between the driving forces of grain

growth and densification during sintering evolution, observed because the

surface energy contributes positively to the driving force of grain growth while

the GB energy negatively to the driving force of densification. The model was

tested in alumina as a host system, and calculations demonstrate that dopants

with more negative GB (or surface) segregation enthalpy or which cause lower

GB diffusion coefficient can induce higher relative densities at a given grain size.

Comparatively studying yttria- and lanthana-doped alumina, the lanthana

doping showed significantly enhanced sintering attributed to the larger La3?

radius causing a more negative GB segregation energy. This present model is

expected to help dopant designing to improve control over sintering.

Introduction

The usage of solid solution additives, or in other

words, dopants, is able to bring dramatically

microstructural benefits for ceramics, such as

microstructural refinement [1–15] to substantially

improve mechanical properties. In principle, a

dopant is capable of operating on the grain growth

and densification in sintering. A dopant can act

thermodynamically to reduce the grain boundary

(GB) energy and the surface energy [11, 12, 16], and

kinetically by altering the GB mobility and the dif-

fusivity of rate-determining species [14, 15, 17], both

effects caused by the dopant segregation at GBs and

free surfaces around pores [18, 19].

Efforts have been made to theoretically describe

the dependence of grain growth or densification, i.e.

pore elimination, on dopant segregation at both GB

and surface of ceramics during sintering. In this case,
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grain growth is generally considered to be affected by

two parameters [20, 21], namely the solute drag due

to the interaction between GB and dissolved solutes,

and the pore drag due to the interaction between GB

and pores situated along it. For the solute drag effect,

Cahn’s theory [22] is most commonly used to explain

the retardation by doping. For the pore-drag effect, a

theory of grain growth controlled by migration of

pores was developed by incorporating the formu-

lated pore-drag force (dependent on mass transport)

into the curvature-driven grain growth equation

[17, 23–28]. While considering the densification, a

mass diffusion flux with composition-dependent

diffusion coefficient was derived by applying chem-

ical potential gradients of various constituents

obtained using grand partition function, showing

certain effects of dopants on the densification rate

(closely associated with the mass flux) [29, 30]. Fol-

lowing previous works, the evolution of grain size

and relative density in the final stage of sintering of

magnesia-doped alumina were plotted by Brook [17]

through coupling the (pore-drag-limited) grain

growth and the (diffusion-mediated) densification

equations with the experimental values of diffusion

coefficients (as equation parameters) to qualitatively

explain the role of magnesia. Brook’s work was fur-

ther developed in our recently published paper [31],

where, with well-formulated segregation-dependent

thermodynamic and kinetic parameters, the grain

growth and densification equations were modified

separately and then coupled to describe the evolution

of grain size (or relative density) with time.

So far, the theoretical framework for grain growth

and densification of doped ceramics (especially in

the final sintering stage) has been initially estab-

lished, particularly for a coupling of these two pro-

cesses. As far as the authors know, however, the

previous theoretical works suffer from a certain

shortcoming, that is, a significantly mutual interac-

tion between grain growth and densification is

ignored, as is shown in Fig. 1. From Fig. 1a, the

densification occurs by removal of matter from the

GB to the pores, leaving the reduced cross-sectional

region of pores on the GB plane to be occupied by

the newly formed GB to maintain the stability of the

pore-grain structure; this increases the total GB

energy. Previously, such effect was not considered

when deriving the pore-drag-limited grain growth

equation. In addition, as shown in Fig. 1b, due to the

GB migration (if grain growth occurs), the pores in

various GB regions are moving close to each other,

contacting and eventually merging; this process can

also be called ‘‘self-similar coarsening of pores’’ [32]

which reduces the surface area and then the total

surface energy. This effect was also ignored when

deriving the diffusion-mediated densification

equation.

Obviously, grain growth and densification upon

sintering affect the respective driving force of each

other due to interfacial energies changes. If one con-

siders them as independent phenomena, upon mod-

eling the two processes, ignoring the mutual

interaction will underestimate the driving force for

grain growth but overestimate that for densification.

Consequently, the actual driving forces when

describing effects of doping are not accurate; thus, a

reliable assessment for the dopant effect on grain

growth and densification cannot be reliably made.

On this basis, a modified theoretical description for

the final sintering stage of sintering of doped

ceramics (generally considered as the most important

stage when targeting fully dense ceramics) is here

presented by considering such mutual interaction. To

enable a more comprehensive description, grain

growth and densification are treated as a whole

rather than two separate processes so that the mutual

interaction can be naturally incorporated. Model

calculations were carried out to explore the thermo-

dynamic and kinetic effects in terms of the parame-

ters reflecting inherent properties affected by the

dopant. Thereafter, the model was applied to alu-

mina as a model system to test its validity. This work

shows enhanced thermo-kinetic effect on grain

growth and densification caused by larger dopant

cationic radius and, meanwhile, helping to establish

more efficient protocols for the selection of dopants

designed to improve sintering control to help achieve

fully dense nanocrystalline/ultrafine-grained

ceramics.

Model derivation

Thermodynamic extremal principle (TEP) [33], has

been intensively applied in modeling dynamic pro-

cesses involved in material science, e.g., grain growth

[34–36] and solid-state phase transformation

[28, 32, 37–39]. As TEP is based on the energy evo-

lution of the process as whole than in single sub-

processes, multiple sub-processes are no longer
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treated separately. A global formulation of TEP can

be mainly divided into [33]: (1) to introduce charac-

teristic parameters for proper description of the state

and evolution of the system (‘‘Basic model assump-

tions’’ section); (2) to derive the evolution equations

under certain constraints among the characteristic

parameters (‘‘Derivation of evolution laws’’ section).

Basic model assumptions

In this work, singly doped systems with molecular

formula (A, B)mCn are solely concerned, in which A,

B and C denote, respectively, the host cation, the

dopant cation and the anion, and m:n is the stoi-

chiometric ratio; this means that the host and the

dopant have same valence state. Such treatment is

designed to avoid additional cation/anion vacancies

(to maintain the electrical neutrality) due to aliova-

lent doping, thus minimizing the effect of doping on

the defect balance and the resultant effects on the

thermodynamic state and the evolution of the system.

Coble’s geometrical assumption of sintering com-

pacts [40] for the final sintering stage is used here; see

Supplementary materials I for details. Accordingly,

sintering compacts can be well defined in terms of

two main geometrical parameters, i.e., the grain size

(R) and the relative density (q). Moreover, the solute

distribution in the matrix (including the bulk, GBs

and free surface layers around pores) should also be

one of the main characteristics of the system. Note

that, the actual polycrystalline material often pos-

sesses many different types of GBs and some free

surfaces with different crystal orientations. As a

consequence, the solute content in different GBs/free

surfaces will also be different. For simplicity, in this

paper, we adopt Hillert’s interface phase description

[41], thereby ignoring the specific structure of GBs,

but treating all GBs in the polycrystalline material as

a thermodynamic phase of constant thickness that

has its specific composition, isotropic GB energy and

diffusivity/mobility. The ‘‘GB phase’’ defined here

can be considered to be the average of all GBs. The

current model would be suitable for the general

polycrystalline material with low- and high-angle

GBs, which should not have obvious texture or

intergranular films. Using a similar approach, the

specific crystal orientation of the free surface layers is

also ignored and they are also treated as a thermo-

dynamic phase of constant thickness.

Therefore, the grain size, the relative density, and

the solute contents at the bulk (xB
bulk), the GBs (xB

GB)

and the free surfaces (xB
s ) are considered as the

characteristic parameters for TEP application. All the

parameters involved are summarized in Table 1. For

simplicity, it is assumed that steady-state solute dif-

fusion [34, 42] is maintained at every moment in the

evolution of the system, regardless of the solute

redistribution. This assumption will be reflected

when deriving the dissipation associated with solute

diffusion; see Supplementary materials II.

Derivation of evolution laws

Gibbs energy and total dissipation

Different from metals, the crystal structure of ceramic

materials is often more complex, with multiple sub-

lattices, and more types of defects and defect com-

plexes. Accordingly, the GBs/free surfaces of ceramic

materials are also more complex than those of metals.

The system will be further complicated when

dopants are introduced as it largely affects the defect

balance. Therefore, certain simplification and ideal-

ization of the research system would be required to

achieve an intelligible thermodynamic description.

As elucidated above, the effect of doping on the

defect balance is reduced as much as possible taking

Figure 1 Schematic of a the shrinkage of a pore situated in a GB

upon densification and b the coalescence of pores caused by the

GB migration upon grain growth.
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into account only binary isovalent doped systems.

Moreover, the intrinsic defect concentration is

assumed negligible, such that both the bulk and the

interface phases are assumed as ideal lattice with

strict stoichiometric ratios, implying the electric

neutrality in the entire matrix.

Table 1 Parameters and the corresponding meanings in the modeling process

Symbol Meaning

A, B, C Host cation, dopant cation, anion

m:n Stoichiometric ratio

R Average grain size (in radius)

q Relative density

G Gibbs free energy

fGB, fs Volume fractions occupied by grain boundary and free surface region

xA
bulk, xB

bulk, xA
GB, xB

GB, xA
s , xB

s Molar fractions of solvent (host cation) and solute (dopant cation) at the bulk, the grain

boundaries and the free surfaces

lA
bulk, lB

bulk, lC
bulk, lA

GB, lB
GB, lC

GB, lA
s ,

xB
s , lC

s ; lGB, lGB0

Chemical potentials of host cation, dopant cation and anion at the bulk, the grain boundaries and

the free surfaces; the chemical potentials of molecular at the grain boundaries in the stress state

and the unstressed state

Q, QM, Qtr, QD, QP The total dissipation, the dissipations due to intrinsic grain boundary migration, solute trans-

grain boundary diffusion, grain boundary self-diffusion, and pore migration with the grain

boundary, respectively

M, Mintr, Mintr0, MP Grain boundary mobility, intrinsic GB mobility and its value for pure host systems, and pore

mobility

AGB Grain boundary area per unit mole of grains

Rg Mole gas constant

T Temperature (in unit of K)

JA, JB, JC, JD, Jtr Diffusive flux of host cations, dopant cations, anions and molecules along the grain boundaries,

trans-grain boundary diffusive flux of solute under steady state

cA
GB, cB

GB, cC
GB Concentrations of host cation, dopant cation, and anion at the grain boundaries

DB
GB, DGB, Ds, DB0

GB, DGB0, Ds0 Diffusion coefficient of solute (dopant cation) at the grain boundaries, grain boundary self-

diffusion coefficient, free-surface self-diffusion coefficient and their values for pure host

systems

dGB, ds The widths of grain boundary diffusion layer and free-surface diffusion layer

Vm Molar volume

w, q(w) Two times the ratio of pore radius to edge length of the polyhedron, a function of w

v Grain boundary migration velocity

N Number of pores per unit mole of grains

r Pore radius

a, b Two Lagrange multipliers

cGB, cs, cGB0, cs0 Grain boundary and free-surface energies and their values for pure host systems

k(q), h(q), g(q) Three parameters as a function of relative density

DHseg
GB, DHseg

s Grain boundary- and free-surface-segregation enthalpies

Cj, j = GB, s Gibbs excess of solute at the interface j; ‘‘GB’’ for grain boundary and ‘‘s’’ for free surface

mGB, ms Average number of the atomic layers at the grain boundaries and the free surfaces

X Average volume per molecule

Vgrain Volume per grain

l Edge length of the polyhedron

rn, r0 Normal stress acting on the grain boundaries, sintering stress

un Normal displacement of the adjacent grains due to grain boundary self-diffusion

n Distance from the center of the pore

t Time

J Mater Sci (2018) 53:1680–1698 1683



The molar Gibbs free energy of the system, G, can

thus be expressed as a volume fraction-weighted

average1 of the molar Gibbs free energy for the bulk,

the GBs and the free surface layers, taking the fol-

lowing form:

where the superscripts ‘‘GB,’’ ‘‘bulk’’ and ‘‘s’’ distin-

guish the bulk, the GB and the surface, respectively,

f is the volume fraction occupied by the interface (see

Supplementary materials I), and x and l are the

molar fraction and chemical potential of the compo-

nent, respectively.

The total energy dissipation, Q, should consist of

the following four contributions:

Q ¼ QM þQtr þQD þQP ð2Þ

where the subscripts ‘‘M,’’ ‘‘tr,’’ ‘‘D’’ and ‘‘P’’ represent

the intrinsic GB migration, the solute trans-GB dif-

fusion, the diffusion along the GB and the pore

migration with the GB, respectively. The above four

different types of dissipation can be simply written as

[33] (see Eqs. 3–6):

QM ¼
Z
GB area

v2

Mintr

dAGB ð3Þ

Qtr ¼
Z
GB volume

RgTJ
2
tr

cGBB DGB
B

dVGB ð4Þ

QD ¼
Z
GBdiffusion area

RgTJ2A
cGBA DGB

A

þ RgTJ2B
cGBB DGB

B

þ RgTJ2C
cGBC DGB

C

� �
dVGB

ð5Þ

QP ¼
Z
Pore number

v2

MP

dN ð6Þ

where v is the rate of GB migration, Mintr the intrinsic

GB mobility, and AGB the GB area per unit mole of

matter; Rg is the mole gas constant, T the temperature

(in unit of K), Jtr the steady-state trans-GB diffusive

flux of solute atoms, cB
GB the solute (dopant cation)

concentration at GBs, DB
GB the diffusion coefficient of

solute atoms at GBs, and VGB the GB volume per unit

mole of matter; JA, JB and JC are the diffusion flux of

components ‘‘A,’’ ‘‘B’’ and ‘‘C’’ along GBs, respec-

tively, cA
GB and cC

GB are the concentration of compo-

nent ‘‘A’’ and ‘‘C’’ at GBs, and DA
GB and DC

GB are the

diffusion coefficients of components ‘‘A’’ and ‘‘C’’ at

GBs of the doped system; N is the number of pores

per unit mole of matter, equivalent to the number of

pores possessed by each grain multiplied by the

number of grains per unit mole of matter, and MP is

the pore mobility. See Supplementary materials II for

the specific derivations of QM, Qtr, QD and QP. The

total dissipation is then derived by summing each

contribution as (see Eq. 7):

where the superimposed dot ‘‘�’’ represents the time

derivative, dGB the width of GB diffusion layer, Vm

the molar volume, xB
GB and xB

bulk the solute contents at

G ¼
1� fGB � fsð Þ 1� xbulkB

� �
lbulkA þ xbulkB lbulkB þ n

m
lbulkC

h i

þ fGB 1� xGBB
� �

lGBA þ xGBB lGBB þ n

m
lGBC

h i
þ fs 1� xsB

� �
lsA þ xsBl

s
B þ n

m
lsC

h i
8<
:

9=
; ð1Þ

Q ¼
AGB

1

Mint r

þ 1

VmDGB
B

�
dGBRgT

xGBB � xbulkB

� �2
xGBB

þ N

AGB

1

3VmdsDs

�
2pRgTr4

" #
_R
� �2

þ 1

66

q wð Þ
1� wð Þ2

RgT

dGBDGB

R3

q4
_qð Þ2

8>>>><
>>>>:

9>>>>=
>>>>;

ð7Þ

1 Here, ignoring the difference in atomic volume between the
three different regions, then the molar fraction will be equiv-
alent to the volume fraction.

1684 J Mater Sci (2018) 53:1680–1698



the GB and the bulk, respectively, q(w) a function of

w that is dependent on q (Eq. (S20) in Supplementary

materials II), DGB is the GB self-diffusion coefficient,

ds the width of surface diffusion layer, Ds the surface

self-diffusion coefficient, and r the pore radius.

Note that, Eq. (4), representing the solute drag

effect and directly reflecting the contribution of

dopant cations to GB migration and system evolu-

tion, is directly adopted from metals. Although

ceramic materials present more complex GB structure

as compared to metals, the idealization and simpli-

fication of the research system here and the previous

successful application of solute drag idea (in con-

junction with the segregation thermodynamics) from

the metal system to the ceramic system

[15, 20–22, 43–48] suggest that the above treatment

should be reasonable.

Constraints and evolution equations

The evolution path of a system corresponds to the

maximum of the total dissipation, Q, constrained by

the premise of TEP [33],

_GþQ ¼ 0 ð8Þ

and the conservation relation of solute amount, i.e.,

1� fGB � fsð ÞxbulkB þ fGBx
GB
B þ fsx

s
B ¼ xB ð9Þ

with xB the total solute content. Then, taking the

derivatives of both sides in Eq. (9) with respect to

time leads to:

� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B þ 1� fGB � fsð Þ _xbulkB

þ fGB _xGBB þ fs _x
s
B

¼ 0

ð10Þ

The necessary conditions for the constraint are thus

given by:

o

o _R
Qþ a _GþQ

� �	

þb
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

2
4

3
5
9=
; ¼ 0

ð11aÞ

o

o _q
Qþ a _GþQ

� �	

þb
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

2
4

3
5
9=
; ¼ 0

ð11bÞ
o

o _xbulkB

Qþ a _GþQ
� �	

þb
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

2
4

3
5
9=
; ¼ 0

ð11cÞ
o

o _xGBB
Qþ a _GþQ

� �	

þb
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

2
4

3
5
9=
; ¼ 0

ð11dÞ
o

o _xsB
Qþ a _GþQ

� �	

þb
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

2
4

3
5
9=
; ¼ 0

ð11eÞ

where both a and b are the Lagrange multipliers.

Whether the chemical potential is well defined or not,

the derivative of Gibbs energy with respect to time

will not be affected, as the contributions from the

derivatives of chemical potentials offset according to

the Gibbs–Duhem relation. Each term in Eqs. (11a–

11e) is multiplied by each parameter rate, and these

five equations can be further summarized as:

2Qþ a _Gþ 2Q
� �

þ b
� _fGB þ _fs

� �
xbulkB þ _fGBx

GB
B þ _fsx

s
B

þ 1� fGB � fsð Þ _xbulkB þ fGB _xGBB þ fs _xsB

" #

¼ 0 ð12Þ

Comparing Eq. (12) with Eqs. (8) and (10) gives:

2þ að ÞQ ¼ 0 ) a ¼ �2 ð13Þ

Substituting the value of a and the expressions of

total Gibbs energy and dissipation into Eqs. (11c–11e)

leads to,
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b ¼ 2 lbulkB � lbulkA

� �
¼ 2 lGBB � lGBA
� �

¼ 2 lsB � lsA
� �

ð14Þ

which is known as the ‘‘parallel tangent rule,’’ proposed

by Hillert [41] for describing the equilibrium between

the bulk and the interface phases. Substituting the value

of a, and the expressionsofb and totalGibbs energy and

dissipation into Eqs. (11a) and (11b) yields

X
i¼GB;s

� ofi
oR

1� xiB
� �

liA þ xiBl
i
B þ n

m
liC

h i

� 1� xbulkB

� �
lbulkA þ xbulkB lbulkB þ n

m
lbulkC

h i

� xiB � xbulkB

� �
lbulkB � lbulkA

� �

8>>><
>>>:

9>>>=
>>>;

¼ AGB

1

Mintr

þ 1

VmDGB
B

�
dGBRgT

xGBB � xbulkB

� �2
xGBB

"

þ N

AGB

1

3VmdsDs

�
2pRgTr4

#
R
�

ð15aÞ

and

X
i¼GB;s

� ofi
oq

1� xiB
� �

liA þ xiBl
i
B þ n

m
liC

h i

� 1� xbulkB

� �
lbulkA þ xbulkB lbulkB þ n

m
lbulkC

h i

� xiB � xbulkB

� �
lbulkB � lbulkA

� �

8>>><
>>>:

9>>>=
>>>;

¼ 1

66

q wð Þ
1� wð Þ2

RgT

dGBDGB

R3

q4
_q

ð15bÞ

Further employing Hillert’s definition of interface

energy [41] and inserting expressions of volume

fractions occupied by GBs and free surface layers (see

Eqs. (S6) and (S7) in Supplementary materials I),

Eqs. (15a) and (15b) can be rewritten as:

_R ¼ M cGB þ k qð Þcs½ �
R

ð16Þ

where the GB mobility is expressed by

M ¼ 1

Mintr

þ 1

VmDGB
B

�
dGBRgT

xGBB � xbulkB

� �2
xGBB

"

þ N

AGB

1

3VmdsDs

�
2pRgTr4

#�1 ð17Þ

and k following

k qð Þ ¼ 24p 1� qð Þ
2
3

3þ 6
ffiffiffi
3

p� �
pffiffi
2

p
� �2

3�11p 1� qð Þ
2
3

ð18Þ

and

_q ¼ h qð ÞVmdGBDGB g qð ÞcGB þ cs½ �
RgTR4

ð19Þ

where the parameter h is dependent on q by the fol-

lowing relationship

h qð Þ ¼ 132
ffiffiffi
6

3
p 1� wð Þ2

q wð Þ q2
1� q
q

� ��1
3

ð20Þ

and g following

g qð Þ ¼ 1

8
ffiffiffiffiffiffi
2p3

p 1þ 2
ffiffiffi
3

p� �
1� qð Þ

1
3� 11

24
ð21Þ

Therein, cGB and cs are the GB energy and surface

energy, respectively.

As the evolution equations for R [Eq. (16)] and q
[Eq. (19)] are derived, corresponding work for the

solute contents at the bulk, GBs and free surfaces,

needs to be completed. As elucidated above, Eq. (14),

namely the ‘‘parallel tangent rule,’’ stipulates the

equilibrium between the bulk and the interface pha-

ses (for a given interface area), at which the equilib-

rium solute distribution is achieved [41].

Accordingly, a modified version [16] of the Lang-

muir–Mclean isothermal segregation theory [49, 50],

which addresses the coexistence of GB and free sur-

face, is used to assess the equilibrium solute distri-

bution among the bulk, the GBs and the free surfaces:

xGBB
1� xGBB

¼ xbulkB

1� xbulkB

exp �
DHGB

seg

RgT

 !
ð22aÞ

xsB
1� xsB

¼ xbulkB

1� xbulkB

exp �
DHs

seg

RgT

� �
ð22bÞ

where DHseg
GB and DHseg

s are the GB- and the surface-

segregation enthalpies, respectively. Combining

Eqs. (22a) and (22b) with the conservation equation

of solute amount [Eq. (9)], xB
bulk, xB

GB and xB
s for a

given total solute content and temperature can be

solved as functions of the grain radius and the rela-

tive density. Since the composition redistribution

during the sintering process is not the focus of this

work, then evolution of the three solute contents over

time will not be displayed below.

Note that Eq. (16) has a mathematical form similar

to the classical curvature-driven grain growth equa-

tion (i.e., dR/dt = McGB/R) except for the term

cGB ? kcs. This means a different constituent of

driving force involved in the grain growth with the

densification proceeding; the surface energy also
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contributes to the driving force of grain growth, in

contrast with the conventional viewpoint that the GB

energy is the only constituent [51]. Analogously,

Eq. (19) has a mathematical form similar to the

widely used GB-diffusion-mediated densification

equation [52] (i.e., dq/dt�VmdGBDGBcs/RgTR
4)

except for the scale factor h(q) and the term gcGB ? cs.
The different constituents of driving force involved in

the densification means that the GB energy also

contributes to the driving force of densification when

grain growth occurs, in contrast with the conven-

tional viewpoint that the surface energy is the only

constituent [40, 52–55]. The different scale factors

imply different diffusion gradients utilized for

deriving diffusion flux along the GB, JD; see Eq.(S19)

in Supplementary materials II.

Segregation-dependent interface energy and interface

diffusivity

To assess the five characteristic parameters derived in

section ‘‘Constraints and evolution equations,’’ in the

case of dopant-cation segregation, the segregation

dependence of several thermodynamic and kinetic

parameters, including the GB energy (cGB), the sur-

face energy (cs), the GB self-diffusion coefficient

(DGB), the surface self-diffusion coefficient (Ds), the

GB diffusion coefficient of dopant cation (DB
GB) and

the intrinsic GB mobility (Mintr), must be known.

(1) Interface energy

As formulated by Gibbs [56], the effect of solute

segregation on interface energy can be expressed as

dcj ¼ �Cjdl
bulk
B ð23Þ

where j is the interface type, Cj the Gibbs excess of

solute at the interface j. Subsequently, a lot of work

[57–63] has been developed to give analytical

expressions of segregation-dependent interface

energy. One of them [60], assuming negligible

entropic contributions, is well accepted, exhibiting

the interface energy directly associated with the

interface segregation enthalpy and the solute excess,

i.e.,

cj ¼ cj0 þ CjDH
j
seg � cj0 þ

mjxj

X2=3NAvg

DHj
seg ð24Þ

where cj0 is the interface energy for a pure host sys-

tem, Cj the Gibbs solute excess, X the average volume

per molecule, and mj the average number of the

atomic layers at interface j (i.e., 3 for GB [49] and 1 for

free surface [11, 12]).

Note that, Eq. (24) was originally derived using the

Hillert’s polycrystalline material free energy map and

the parallel tangent rule [41]. Although the configu-

rational entropy term is ignored compared with the

widely used Weissmüller’s interface energy model

[57], Eq. (24) can also be used to relatively accurately

assess the effect of segregation on GB (surface)

energy, as previously demonstrated

[11, 13, 16, 31, 64]. In fact, although the configura-

tional entropy affects the level of segregation and the

interface energy to a certain extent, segregation

enthalpy plays a more important role.

It should be noteworthy that the energy contribu-

tion from elastic distortion due to size misfit could

considerably influence segregation and the interface

energy, which has been widely recognized in other

research works [62, 63, 65–68]. In the current work,

differently, no explicit elastic energy term appears in

Eq. (24). However, the elastic energy term, in fact, has

been implicitly included in the physical quantity,

namely segregation enthalpy DHseg
j .

(2) Self-diffusion coefficient/mobility

As the segregation proceeds, the increased avail-

ability of solute atoms at the interface allows the sites

of high compression and tension to be removed so

that the net energy of the interface is reduced, which

is expected according to the Gibbs adsorption iso-

therm theory [Eq. (23)] [56]. Consequently, the

materials at the interface become more like the bulk

from the diffusion viewpoint. This concept has been

formulized by Borisov [69] to give a semi-empirical

relationship between the GB energy and the GB self-

diffusion coefficient. Borisov’s semi-empirical rela-

tionship [69] was combined with the segregation-

dependent GB energy [Eq. (24)] to quantitatively

describe the dependence of GB self-diffusion coeffi-

cient on segregation level, which was further exten-

ded to the case of surface diffusion [31]:

Dj ¼ Dj0 exp
aDHj

seg

RgT
xj

 !
ð25Þ

where Dj0 is the self-diffusivity of interface j, and a
denotes the diffusion mechanism (2 for vacancy dif-

fusion and 1 for interstitial diffusion).

Based on the reaction rate theory [70] that describes

the relationship between the intrinsic GB mobility
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and the GB self-diffusion coefficient, i.e., Mintr = -

VmDGB/aRgT, the intrinsic GB mobility affected by

segregation can be derived by incorporating the

segregation-dependent GB self-diffusion coefficient

[Eq. (25)] [31]:

Mintr ¼ Mintr0 exp
aDHGB

seg

RgT
xGB

 !
ð26Þ

with Mintr0 = VmDGB0/aRgT.

(3) GB diffusion coefficient of solute

To the authors’ knowledge, the dependence of the

GB diffusion coefficient of dopant cation in the host,

DB
GB, on the segregation level has rarely been repor-

ted. As proposed for metal/alloys [71], the solute

atoms have nearly the same activation energy of GB

diffusion as the solvent atoms because the changed

environment around the atom diffusion path due to

segregation will apply to both, so that the GB diffu-

sion of solute exhibits similar segregation depen-

dence to that of solvent, as shown in Eq. (25).

Considering that only isovalent doping is concerned

in this work,2 it is assumed that Eq. (25) applies to the

case of ionic compounds. Then we have:

DGB
B ¼ DGB

B0 exp
aDHGB

seg

RgT
xGB

 !
ð27Þ

where DB0
GB is the GB diffusion coefficient of dopant

cation in the case of dilute limit of solution.

Modified equations for grain growth
and densification in sintering

Substituting Eqs. (24–27) into Eqs. (16), (17) and

Eq. (19), we obtain

and

_q ¼ h qð ÞVmdGBDGB0

RgTR4

� g qð Þ cGB0 þ
mGBxGB

X2=3NAvg

DHGB
seg

 !"

þ cs0 þ
msxs

X2=3NAvg

DHs
seg

 !#
exp

aDHGB
seg

RgT
xGB

 !

ð29Þ

Equations (28) and (29) are the modified equations

of grain growth and densification after considering

segregation. Among all the parameters of these two

equations, the GB- and the free-surface-segregation

enthalpies (DHseg
GB and DHseg

s ), and the GB diffusion

coefficient of dopant cation in the case of dilute limit

of solution (DB0
GB), are closely related to the dopant

itself. Therein, DHseg
GB directly influences the GB

energy, the GB self-diffusion coefficient and the

intrinsic GB mobility while DHseg
s acting directly on

the surface energy and the surface self-diffusion

coefficient; DHseg
GB and DB0

GB operate together to impact

the GB diffusion coefficient of dopant cation. On this

basis, effects of the dopant on the grain growth and

the densification, in terms of DHseg
GB, DHseg

s and DB0
GB, as

_R ¼
cGB0 þ mGBxGB

X2=3NAvg
DHGB

seg

� �
þ k qð Þ cs0 þ msxs

X2=3NAvg
DHs

seg

� �h i

R

�

1

Mintr0
exp �

aDHGB
seg

RgT
xGB

 !
þ 1

VmDGB
B0

�
dGBRgT

xGBB � xbulkB

� �2
xGBB

exp �
aDHGB

seg

RgT
xGB

 !

þ N

AGB

1

3VmdsDs0

�
2pRgTr4

exp �
aDHs

seg

RgT
xs

� �

2
66664

3
77775

�1

ð28Þ

2 For ceramics (ionic compounds), the diffusion path of the
dopant cation should be consistent with the host cation, since
the cations generally occupy the same sub-lattice. For the case
of isovalent doping, where the same electrostatic interaction
acts on these two types of cations, the variation of the
surrounding environment due to segregation would produce
a similar effect on the diffusion of the host cation and that of
the dopant cation. For aliovalent doping, the dopant cation
may exhibit different dependence of diffusion on segregation
compared to the host cation since, although the dopant cation
passes through the same diffusion path as the host cation, the
difference in electrostatic interactions due to their own charge
differences may have a more pronounced effect on diffusion.
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well as the calculation procedure for obtaining the

evolution of grain radius and relative density, are

schematically shown in Fig. 2, from which, it is clear

that the mutual interaction bridges the dopant and

the grain growth/densification.

Model calculation and demonstration

The mutual interaction between grain growth and

densification illustrated in ‘‘Introduction’’ enables us

to shine light on the situation where both the GB

energy and the surface energy contribute to the

driving forces of gain growth and densification, so

that the real equations governing the evolution of

R and q can be re-derived. Here, model calculations

for a certain system will be performed, to show the

microstructure evolution affected by doping while

considering the mutual interaction between grain

growth and densification.

Selection of research system

Alumina, which has wide industrial application due

to its excellent mechanical and physical properties

[72], is chosen as the research system. Values of

model parameters are listed in Table 2. Therein, the

initial values for grain radius R0 and relative density

q0 are set as 0.2 lm and 90%,3 respectively. The sin-

tering temperature T is given as 1300 �C, which is

within the range of widely used temperatures for the

Figure 2 Schematic of how dopants affect the grain growth and densification during sintering process, also showing the calculation

procedure for obtaining the evolution of grain radius and relative density over time.

Table 2 Values of some

model parameters used for

calculation

Parameter R0/lm cGB0/J m
-2 dGBDGB0/m

3 s-1 X/m3

Value 0.2 0.34 8.6 9 10-10 exp(-418 9 103/RgT) 2.11 9 10-29

Parameter q0 cs0/J m
-2 Ds0/m

2 s-1 T/K

Value 90% 0.71 0.09 exp(-322 9 103/RgT) 1573

3 The relative density during the final stage of sintering is
usually above 90%.
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sintering of Al2O3. The dopant content xB is set as

1 9 10-3. The molecule volume X (of AlO3/2) is

2.11 9 10-29 m3 [17], and then the average inter-

atomic distance a is according to a = X1/3 calculated

as 2.76 9 10-10 m. The GB energy (cGB0) and the

surface energy (cs0) for pure Al2O3 are set as 0.34 J/

m2 [52] and 0.71 J/m2 [52], respectively. dGBDGB0 is

selected to follow the relationship

8.6 9 10-10 exp(-418 9 103/RgT) [52], while Ds0 fol-

lows 0.09 exp(-322 9 103/RgT) [17].

Driving forces for grain growth
and densification

As shown in section ‘‘Constraints and evolution

equations,’’ the mutual interaction between grain

growth and densification is reflected in the con-

stituents of driving force for the two processes, cf.

Equations (16) and (19). For simplicity, the driving

forces of grain growth and densification in pure

Al2O3 as a function of q are calculated using the data

given in Table 2, see Fig. 3a. As q increases, the

driving force of grain growth decreases and eventu-

ally returns to the GB energy at q = 100%. For den-

sification, the driving force is always smaller than the

surface energy, also decreasing with q. The above

evolutions are compatible with the evolutions of k
and g with q (Fig. 3b) calculated using Eqs. (18) and

(21), respectively. As q increases, k systematically

decreases from 1.06 to 0 while g decreases from -0.32

to -0.44. Obviously, the surface energy serves a

positive role in lifting the driving force of grain

growth, which decreases with q and eventually

vanishes as q achieves 100%, where all the pores are

eliminated and a full densification is attained. On the

contrary, the negative g indicates that the GB energy

operates to reduce the driving force of densification.

The decreasing g with q implies a continuously

enhanced effect which reaches its maximum at full

densification.

Note that, the two dimensionless parameters, k and
g, are only dependent on q, which means the above

mutual interaction comes naturally as a result of

grain-pore structure, regardless of doping or not.

Similar results also occur for the case of doping and

are therefore not displayed here.

Effects of GB- and surface-segregation
enthalpies and dopant-cation GB diffusivity

Considering the mutual interaction, it is desirable to

obtain physically realistic driving forces of grain

growth and densification, so that, for the case of

doping, the evolution of microstructure during sin-

tering can be described, and a more reliable assess-

ment of the action of dopants is allowed, with the

help of segregation-dependent interface energies and

diffusivities/mobilities.

GB segregation enthalpy

As a first analysis, DHseg
s is set to be -40 kJ mol-1,

which corresponds to a relatively moderate segrega-

tion behavior; DB0
GB is assumed to be 0.02DGB0,

enabling an observable solute drag effect.4 Then, by

combining the calculation procedures (Fig. 2) with

the parameters listed in Table 2, the evolution of

Figure 3 Evolution of a the driving forces for grain growth and

densification in pure Al2O3 and of b two dimensionless param-

eters, k and g as a function of relative density.

4 Model calculations show that, at moderate levels of GB
segregation and surface segregation (DHseg

GB =

DHseg
s = -40 kJ mol-1) with T = 1300 �C and xB = 1910-3,

when DB0
GB[ 0.02DGB0, solute drag will not exert any observ-

able effect on grain growth and densification.
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R and q over t and the trajectory of R versus q are

calculated for DHseg
GB (= -20, -40, and -60 kJ mol-1

corresponding to the cases of relatively weak, mod-

erate and strong GB segregation), see Fig. 4. With

increasing DHseg
GB (the absolute value), a smaller R at

the same t is achieved, suggesting a suppressed grain

growth (Fig. 4a), while a higher q is presented except

for the initial stage, corresponding to an accelerated

densification (Fig. 4b). For a given R, an enhanced GB

segregation exhibits a higher q (Fig. 4c), indicating a

promoted sintering behavior.

Since the modified grain growth equation [Eq. (16)]

seems associated with the dopant itself and q, then
the grain growth is directly affected by the dopant-

cation segregation and indirectly by the feedback

from densification; the modified densification equa-

tion [Eq. (19)] implies an analogous physics. So, the

evolution of both R and q is governed by both the

direct action of dopant-cation segregation and the

mutual feedback between grain growth and

densification.

With increasing the GB segregation level, reflected

by the absolute value of DHseg
GB, a decreased GB

energy and a consequently reduced driving force of

grain growth are thermodynamically exhibited, see

Fig. 5a and Figs. S1a and S1b in Supplementary

materials III. Kinetically, a decreased intrinsic GB

mobility and an enhanced solute drag effect (due to

reduced DB
GB) arise, both of which act together to

create a decreased GB mobility at the initial stage, see

Fig. 5a and Figs. S1c to S1f in Supplementary mate-

rials III. Thereby, a sluggish grain growth is yielded

(Fig. 4a) with respect to DHseg
GB, due to the thermo-

dynamically reduced driving force and the kineti-

cally reduced GB mobility. From Fig. 5b, the direct

effect of DHseg
GB on densification, thermodynamically,

decreases the GB energy (Fig. S1a in Supplementary

materials III) but increases the driving force of den-

sification (Fig. S2a in Supplementary materials III),

while, kinetically, decreasing the GB self-diffusion

coefficient (Fig. S2b in Supplementary materials III).

Since the densification is delayed at the initial stage

with respect to DHseg
GB (Fig. 4b), then it can be con-

cluded that the reduced GB self-diffusion coefficient

influences the densification much stronger than the

increased driving force of densification does.

As the sintering proceeds, the feedback between

grain growth and densification must be considered.

Since the densification rate is inversely proportional

to the biquadrate of grain radius [cf. Eq. (19)], the

grain growth will suppress the densification process

(Fig. 5c). With progressing the densification (Fig. 5d),

thermodynamically, a decreased driving force of

grain growth is predicted due to its dependence on q
(Fig. 3a and Fig. S3a in Supplementary materials III),

and kinetically, an increased pore mobility and a

decreased GB-pore density (N/AGB) would be

Figure 4 a Grain radius and b relative density calculated as a

function of time and c trajectory of grain radius versus relative

density, at T = 1300 �C and xB = 0.001 for different values of

GB segregation enthalpy (DHseg
GB = -20, -40, -60 kJ mol-1)

with the model parameters of DHseg
s = -40 kJ mol-1 and

DB0
GB = 0.02DGB0. The arrow marks the direction of decreasing

DHseg
GB (the absolute value).
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expected due to their relationships with q (see the

description regarding Fig. S3 in Supplementary

materials III), thus weakening the pore drag and

enhancing the GB mobility. This is not consistent

with the evolution of GB mobility with q (Figs. S1f

and S3f in Supplementary materials III). On this

basis, we put our attentions upon the change of GB

mobility with respect to segregation enthalpy, i.e., an

initially decreased but later increased GB mobility

with the increase of DHseg
GB (the absolute value)

(Figs. S1f and S3f in Supplementary Materials III),

arising from a transition of GB mobility-dominant

factor from the intrinsic and solute drag (directly

from DHseg
GB) to the pore drag (indirectly from

densification).

As DHseg
GB increases, the always retarded grain

growth upon sintering (Fig. 4a) is thus explained as

follows. The direct action of DHseg
GB, decreasing both

the driving force of grain growth and the GB mobility

(Fig. 5a), governs the initial stage of grain growth

and, together with the feedback from densification

that decreases the driving force but increases the GB

mobility (Fig. 5d), affects the later stage. The initially

suppressed but later accelerated densification with

increasing DHseg
GB (the absolute value) (Fig. 4b) implies

a transition from the direct action of DHseg
GB

(enhancing the driving force of densification but

reducing the GB self-diffusion coefficient more)

(Fig. 5b) to the feedback from grain growth (Fig. 5c).

Clearly, both the suppressed grain growth and the

enhanced densification (except for the initial stage)

contribute positively to the sintering, thus leading to

the promoted sintering behavior (Fig. 4c).

Surface segregation enthalpy

Following the GB segregation, the evolution of R and q
over t and the trajectory of R versus q for DHseg

s (= -20,

-40, and -60 kJ mol-1) at DHseg
GB = -40 kJ mol-1 and

DB0
GB = 0.02DGB0 are calculated and shown in Fig. 6.

With increasing DHseg
s (the absolute value), both the

grain growth and the densification are initially sup-

pressed but later accelerated (Fig. 6a, b), while a pro-

moted sintering behavior (Fig. 6c) is observed; see

Figs. S4–S7 in Supplementary Materials III.

Dopant-cation GB diffusion

Analogous to section ‘‘GB segregation enthalpy,’’ the

evolution ofR and q over t and the trajectory ofR versus

q for DB0
GB (= 0.05DGB0, 0.02DGB0, 0.01DGB0, corre-

sponding to the cases of relative weak, moderate and

Figure 5 Logical sequence

showing how the increasing

GB segregation enthalpy

(absolute value) affects a grain

growth and b densification,

and c the feedback from grain

growth on densification and

d the feedback from

densification on grain growth.

The up and down arrows

represent the increase and

decrease in a parameter,

respectively, the symbol

‘‘Asterisk’’ marks the change

that plays the dominant role,

and the symbols ‘‘Question

mark’’ marks that the

parameter change is not sure.

The meanings of these

symbols always apply

throughout this article.
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strong solute drag effect) at DHseg
GB = DHseg

s = -40 -

kJ mol-1, are calculated and shown in Fig. 7. With

decreasing DB0
GB, a reduction of R is observed at the ini-

tial stage, followed by its increase at the later stage

(Fig. 7a), exhibiting an accelerated grain growth

behavior (except for the initial stage). For densification,

a higher q is attained at a smaller DB0
GB (Fig. 7b).

Accordingly, a displacement of R versus q trajectory to

smallerR for a givenq is exhibited (Fig. 7c), indicating a

promotion of sintering behavior, see Figs. S8–S10 in

Supplementary Materials III.

Accordingly, it is concluded that the dopant with a

more negative GB (or surface) segregation enthalpy

or a lower GB diffusion coefficient can achieve a

higher relative density at the same grain size. This

confirms our viewpoint that dopants play a role in

Figure 6 a Grain radius and b relative density as a function of

time, and c trajectory of grain radius versus relative density at

T = 1300 �C and xB = 0.001 for different values of surface

segregation enthalpy (DHseg
s = -20, -40, -60 kJ mol-1) with

the model parameters of DHseg
GB = -40 kJ mol-1 and

DB0
GB = 0.02DGB0.

Figure 7 a Grain radius and b relative density as a function of

time, and c trajectory of grain radius versus relative density, at

T = 1300 �C and xB = 0.001 for different values of the GB

diffusion coefficient of dopant cation (DB0
GB = 0.05DGB0,

0.02DGB0, 0.01DGB0) with the model parameters of

DHseg
GB = DHseg

s = -40 kJ mol-1.
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stabilizing the microstructure of ceramics, and

moreover, this enhanced stabilization caused by

more negative GB (or surface) segregation enthalpy

or lower dopant-cation GB diffusivity seems analo-

gous to that in nano-scale alloys caused by more

negative GB segregation enthalpy or slower solute

diffusivity; see section ‘‘Enhanced thermo-kinetic

effects due to oversized dopant cation.’’

Application and discussions

Model application in sintering of doped
alumina

The final-stage of sintering of Al2O3 doped with

1000 ppm Y2O3 or La2O3 was investigated at 1350 �C
[4]. Accordingly, the trajectory of grain size to relative

density during this isothermal process was recorded,

as shown in Fig. 8. Obviously, the addition of La2O3

brought about a smaller grain size at the same rela-

tive density compared to that of Y2O3.

Before applying the model, it is necessary to

determine the fitting parameters; see Supplementary

materials IV. Applying the segregation enthalpy (for

both GB and surface segregation) and the dopant-

cation GB diffusion coefficient (in the case of dilute

limit of solution) as the fitting parameters, the current

model is used to describe well the evolution of grain

radius with relative density for Al2O3 individually

doped with 1000 ppm Y2O3 and La2O3 (Fig. 8). For

Y3? (La3?) doping, the segregation enthalpy and the

dopant-cation GB diffusion coefficient (in the case of

dilute solution limit) are fitted to be

-56.3 ± 0.2 kJ mol-1 and -60.8 ± 0.2 kJ mol-1; and

(0.102 ± 0.003)�DGB0 and 0.078 ± 0.003)�DGB0 for

yttria and lanthana, respectively. La3? doping corre-

sponds to a more negative segregation enthalpy and

a slower GB diffusion coefficient as compared to the

Y3? doping, consistently with the correspondingly

promoted sintering behavior. Furthermore, we per-

formed the fitting using three parameters (i.e., DHseg
GB,

DHseg
s and DB0

GB) and also obtained good agreement

between the model and the experiment; see Supple-

mentary materials IV. For the La3? (Y3?) doping, we

note there is certain difference between the fittings

using two and three parameters; however, the rela-

tive contrast between the two cases of doping always

holds, that is, the promoted sintering behavior is

always consistent with the increased segregation

enthalpy (absolute value) and the decreased dopant-

cation GB diffusion coefficient, irrespective of using

two- or three-parameter fitting.

While the model is well-behaved in the tested

experimental data, this is hardly a full proof of

credibility and universal applicability. From the point

view of modeling, while the theoretical framework

used here, i.e., TEP was certainly demonstrated to be

applicable for describing dynamic processes involved

in material science, the model itself is limited by

system constrains used in the model development,

such as GB-diffusion-mediated pore shrinkage and

surface-diffusion-mediated pore migration. Although

such mechanisms have previously been shown to

account for a number of the real situations, these are

certainly not overreaching mechanisms.

Enhanced thermo-kinetic effects due
to oversized dopant cation

As is well known, the segregation tendency and dif-

fusion of solute atoms would be closely associated

with the misfit strain due to their introduction into

the solvent matrix. Generally, the segregation

enthalpy (absolute value) and the work required to

overcome the diffusion barrier for large atoms are

thought to greatly exceed those of small atoms [49],

as a result of large strain energy. Moreover, for ionic

compounds, the electrostatic interaction between the

dopant cation and the host space charge layer exerts

an additional force on itself and then impacts its

diffusion and segregation process. In the case of iso-

valent doping, however, the effect of electrostatic

interaction is minimized [13], so that the cationic

Figure 8 Comparison between the model calculation and the

experimental result for the trajectory of grain radius to relative

density in yttria- or lanthana-doped alumina annealed at 1350 �C.
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radius mismatch would play the dominant role. As

such, the cationic radius of the dopant would prob-

ably become the determining factor influencing its

segregation and diffusion.

Thermodynamically, the dopant acts in sintering

through a concurrent segregation of its cation to GBs

and free surfaces to reduce the GB energy and the

surface energy. That is to say, the dopants play a role

in stabilizing the microstructure of sintering com-

pacts, which is similar to the case of nanocrystalline

alloys [59], where the thermal stability of the system

is improved due to the reduced GB energy by seg-

regation of solute atoms to the GBs. Actually, this

similarity originates from an intrinsic correlation of

thermodynamics and kinetics, that is, the smaller

driving force (caused by more negative segregation

enthalpy) and the higher activation energy (caused

by lower dopant-cation/solute diffusivity) are corre-

lated with each other. A summary of this concept is

described in Supplementary materials V.

Therefore, it is inferred that isovalent dopant

cations having a larger ionic radius would be able to

produce a more negative segregation enthalpy and a

slower GB diffusion coefficient in the host, thus

promoting the sintering behavior. This is consistent

with the situation presented in section ‘‘Model

application in sintering of doped alumina,’’ where

compared with Y3?, La3?, which has larger radius,

exhibits a promoted sintering behavior, with more

negative GB- and surface-segregation enthalpies and

lower GB diffusion coefficient. We believe this con-

clusion would also apply to other ionic systems

besides alumina and may be considered as a guide-

line for selection of the dopant species.

Conclusion

The main conclusions can be summarized as follows:

1. Applying the thermodynamic extremal principle,

the evolution equations, for the grain size and the

relative density in the final-stage of sintering of

doped ceramics were derived with segregation-

dependent interface energy and diffusivity/mo-

bility. The mutual interaction between grain

growth and densification was considered, and

essentially depends on the driving forces of the

concurrent processes: the surface energy con-

tributes positively to the driving force of grain

growth while the GB energy negatively to the

driving force of densification.

2. Increased GB (or surface) segregation enthalpy

and/or decreased GB diffusion coefficient of

dopant cation leads to a promoted sintering

behavior in Al2O3 system, i.e., a higher relative

density at the same grain size, due to enhanced

thermodynamic and/or kinetic effect.

3. As compared with the doping of Y2O3, the

significantly enhanced sintering behavior by

La2O3 is consistent with the more negative GB-

and surface-segregation enthalpies and the

slower dopant-cation GB diffusion coefficient.

This suggests that an isovalent dopant with a

larger cationic radius presents a more negative

segregation enthalpy and a lower GB diffusion

coefficient, which can be considered as a guide-

line for selecting the dopant species for targeting

full dense, nanocrystalline or ultrafine-grained

ceramics.
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