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ABSTRACT

The present study describes the modeling and simulation of the effective

strength of hybrid composites reinforced by carbon and steel fibers. The

numerical simulations are performed within the framework of a finite element

analysis. The macroscopic effective material properties are determined from

microscopic properties using a homogenization and a representative volume

element (RVE) approach. An elastic–plastic model is used to describe the

mechanical behavior of the steel fibers and the epoxy resin, while the carbon

fibers are modeled as a linear elastic material. The nonlinear stress–strain curves

are determined under macroscopic longitudinal and transversal tensile as well

as under shear loads. Moreover, 2D and 3D failure envelopes are computed. By

using hexagonal-, square- and micrograph-based RVEs, the influences of fiber

arrangements and different volume fractions of the carbon and steel fibers are

investigated. Finally, the simulation results for tensile loads in fiber direction are

compared with the experimental results of comparable topologies made of steel

and carbon fiber reinforced plastics. The modeling and computational approach

used in this study correlates with the experimentally determined, effective

properties of hybrid composites in the tensile test.

Introduction

The weight reduction in airplanes is one of the big

challenges in aerospace industry. In order to achieve

the ambitious goals considering fuel consumption

and emission reduction, new airplanes with more

than 50 wt% of composite materials, mainly carbon

fiber reinforced plastics (CFRP), were introduced to

the market [1]. Future efforts are to be focused on

manufacturing efficiency as well as on breakthrough

solutions for damage tolerance and function inte-

gration. Compared to aluminum alloys, contempo-

rary CFRP solutions for airframe structures offer poor

electrical and thermal conductivities. In order to

improve these properties, the outer airplane structure

is covered with an expanded copper foil according to
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lightning zoning requirements. Moreover, CFRP

shows brittle failure behavior, limiting the structural

integrity in crash load cases. The limited damage

tolerance against impact events leads to a minimum

wall thickness criterion. Against this background, a

new hybrid composite material, consisting of rein-

forcing carbon and steel fibers embedded in an epoxy

matrix, is investigated. Basic idea of this material

concept is to combine electrical and load-bearing

functions by incorporating highly conductive and

ductile stainless steel fibers. The increased density of

the composite is overcompensated by eliminating the

need for additional electrical system installation

items and the enhanced damage tolerance, resulting

in a reduced minimum wall thickness. Within this

topic, the mechanical strength of these new hybrid

materials is an important property. Because of the

anisotropy of fiber reinforced plastics (FRP), the

mechanical strength has to be determined by a mul-

titude of experimental techniques (tensile/compres-

sion tests in fiber direction and transversal to fiber

direction as well as tests for several combined ten-

sion/compression and shear loads). Thus, it is

desirable to model and simulate the strength of

hybrid composites in order to reduce the experi-

mental efforts and costs. The present study focuses

on determining the effective strength of hybrid

steel/carbon fiber reinforced plastics (SCFRP) for

unidirectional plies. A representative volume ele-

ment (RVE) and a homogenization approach are used

to calculate the effective material properties based on

micromechanical models.

Homogenization and representative
volume element

For transversally isotropic and linear approximable

materials like CFRP, the prediction of some effective

material properties is possible by using simple rules

of mixture [2]. However, the prediction of effective

strength by rule of mixtures is not accurate enough,

because of the oversimplification of the microme-

chanical stress states. This is particularly true for

loadings transverse to the fiber direction and for

shear loadings. Thus, homogenization methods that

rely on the identification of a representative volume

element (RVE) [3] have to be used. The RVE is a

finite-sized sample from the heterogeneous material

which characterizes its macroscopic behavior [4–8]. A

general requirement for a RVE is that the typical

dimension of the heterogeneities should be much

smaller than that of the RVE. This is true for RVEs

that are generated using the geometrical data such as

the volume fraction as well as using the mechanical

information such as strain and stress. Moreover, the

size of the RVE should be much smaller than the

typical dimension of the macrostructures. This is

known as the micro–meso–macro principle, where

micro, meso and macro refer to the microstructure,

RVE size and macrostructure, respectively [9, 10].

Generally, the size of the RVE is given by the smallest

unit cell in the case of heterogeneous materials that

possess local or global periodicity, provided that

appropriate boundary conditions are used in the

homogenization analysis [11–13]. However, this

procedure might fail when deviations from period-

icity or material instabilities occur on the microscale

[14–16]. For the numerical simulations, three different

types of boundary conditions for the RVE might be

used: linear displacement, uniform traction and

mixed type [4, 5, 17, 18]. The periodic boundary

conditions belong to the mixed type and are the

preferred choice, particularly for materials with lin-

ear properties [12, 19, 20]. The homogenization

approach is well established for linear material

properties [7, 12]. The nonlinear, inelastic issues have

been studied for infinitesimal and finite deformation

as well [21–28].

The homogenization procedure is based on the

assumption that an arbitrary physical quantity f xð Þ of
a considered volume V (e.g., stress, strain and con-

ductivity) can be split in their macroscopic mean

value �fV and a microscopic fluctuation f 0 xð ÞV. More-

over, it is assumed that the averaged microscopic

fluctuations are negligible small for a sufficiently

large representative volume element (RVE). There-

fore, the physical quantities on macroscopic scale can

be determined by means of the volume integral

shown in Eq. (1) [29].

f xð Þ ¼ �fV þ f 0 xð ÞV
|fflffl{zfflffl}

¼0

¼ 1

V

Z

V

f xð Þ dx: ð1Þ

In order to determine the size of a sufficiently large

RVE, it has to be considered that the RVE needs to

represent the volume fraction and the topology of the

given hybrid composite. That means that the fiber

and matrix volume fractions and the fiber
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arrangements should represent the composite as

accurately as possible [30].

Within this study, carbon fibers with a diameter of

dc = 7 lm and steel fibers with a diameter of

ds = 8 lm are used. Based on this basic geometric

dimension, the generated RVEs of the hybrid com-

posites fulfill the following requirements:

• Square- and hexagonal-packed RVEs are

investigated

• The epoxy resin volume fraction (CE) is around

40%

• The steel fiber volume fraction (CS) is varied

between approximately 10 and 30% volume ratios

in at least three steps

• RVEs for pure CFRP and pure steel fiber rein-

forced plastics (SFRP) should be built in order to

compare their effective properties with those of

the hybrid composites.

The smallest RVE that fulfills all requirements

contains 16 fibers for square arrangements (Fig. 1a)

and 18 fibers for hexagonal arrangements (Fig. 1b). In

respect of the fiber diameters, this leads to RVEs of a

cross-sectional size between 1026 and 1341 lm2 for

square arrangements and 1154 and 1508 lm2 for

hexagonal arrangements. The depth for both kinds of

ideal-packed RVE is 2.5 lm. Additionally, recorded

micrographs exist for non-hybrid SFRP (Fig. 1c) and

non-hybrid CFRP (Fig. 1d), which allow to build RVE

with a quadratic cross-sectional size of 10000 lm2.

The depth of such real RVEs is 4 lm. The coordinate

system for all RVEs is chosen in such a way that the

1-direction is the fiber direction and the 2- and 3-di-

rections are the directions transverse to the fiber. For

the ideal-packed RVEs (Fig. 1a, b), the origin of each

coordinate system is placed in the center of volume of

the RVE.

Modeling and simulation

The macroscopic effective material properties of

hybrid polymer composites reinforced by carbon and

steel fibers, which represent the behavior of the

whole composite, are determined from the properties

and material models selected for each individual

phase. This study restricts to the investigation of

tensile and shear loadings using the finite element

program ANSYS. In order to simulate the effective

strength, it is necessary to take the nonlinear material

behavior into account. Therefore, the flowchart shown

in Fig. 2 is implemented in ANSYS Parametric Design

Language (APDL).

In a first step, the material properties, the geometry

and the mesh are defined. All RVEs are meshed with

second-order 3D SOLID186 elements. The fiber

matrix contact is assumed to be ideal and is modeled

by sharing their nodes at the interface. According to

the components of the hybrid composite, three dif-

ferent material models are used. All components are

assumed to be isotropic. For the carbon fiber a linear

elastic model and for the steel fiber a bilinear elastic–

plastic material model are applied. For the epoxy

resin, the stress–strain curve measured in Hob-

biebrunken et al. [31] is adopted. The used material

parameters are listed in Table 1.

Afterward, a predefined strain state of ei = 0 is

chosen which is increased sequentially. Based on a

given strain state, the boundary conditions (BC) are

calculated. Taking into account that a RVE can only

represent a small part of a composite material, peri-

odic BCs representing the predefined strain state are

used. The ideal-packed RVEs used in this study are

modeled with center-based coordinate systems and

are at least orthotropic; see Fig. 1a, b. Due to ortho-

tropic symmetry, the model size for tensile and

compression loadings can be reduced to 1/8 of the

3

1 2

3

1 2
3

1 2

3

1 2

(a) (b) (c) (d)

Figure 1 Different RVEs: a square arrangement; b hexagonal arrangement; RVE based on micrographs for SFRP (c) and CFRP (d).
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original RVE. This means that all nodes, which are

initially placed at the coordinate planes, remain at the

coordinate plane as shown in Eq. (2).

at x1 ¼ 0;u1 ¼ 0; at x2 ¼ 0; u2 ¼ 0;
at x3 ¼ 0; u3 ¼ 0

ð2Þ

Nodes at the outer faces are coupled in the direc-

tion perpendicular to the plane.

at x1 ¼
L1
2
; ui1 ¼ u

j
1 ¼ � � � ; at x2 ¼

L2
2
; ui2 ¼ u

j
2 ¼ � � � ;

at x3 ¼
L3
2
; ui3 ¼ u

j
3 ¼ � � �

ð3Þ

The lengths L1,2,3 are the side length of the full RVE,

and i and j are representative, local node numbers of

nodes on the plane. At the three planes shown in (3),

a displacement BC can be applied additionally,

which is calculable out of the given strain state [see

Eq. (4)]. If no strain is given, the faces are only cou-

pled as seen in Eq. (3). So the transverse contraction

is not hindered macroscopically in this direction and

the homogenized stress in this direction is zero.

at x1 ¼
L1
2
; u1 ¼ e1 �

L1
2
; at x2 ¼

L2
2
; u2 ¼ e2 �

L2
2
;

at x3 ¼
L3
2
; u3 ¼ e3 �

L3
2

ð4Þ

This approach is also applicable for RVEs based on

micrographs (Fig. 1c, d), since their material behavior

can be assumed as quasi-orthotropic for sufficiently

large RVEs. For this, the coordinate system is shifted

to the RVEs corner and the 1/8 boundary conditions

are applied analogous; see Eqs. (2), (3) and (4).

With the 1/8 method, only tensile and compression

loadings can be applied. For shear loadings, the

assumption that nodes can remain within the coor-

dinate planes is not valid. Hence, the full RVE has to

be used and the nodes at opposing sides are coupled

with constrain equations (CE). Therefore, the dis-

placement difference u of these nodes in each direc-

tion is constant. The constant value is determined

from the given strain state eij and the side length of

the RVE Li. Equations (5)–(7) show the used CEs in

vector notation.

Figure 2 Program

flowchart to calculate the

effective strength of fiber

reinforced composites.

Table 1 Material parameters for the steel fiber, the carbon fiber

and the epoxy resin

Steel fiber Carbon fiber Epoxy resin

Young’s modulus, GPa 200 230 2.89

Poisson’s ratio 0.28 0.23 0.35

Density, kg/m3 7990 1800 1140

Yield strength, MPa 500 – 20

Tensile strength, MPa 650 4900 81

Breaking elongation, % 12.0 2.13 5.1
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at x1 ¼ � L1
2
;

u
L1
2
; x2; x3

� �

� u � L1
2
; x2; x3

� �

¼ L1 e11e21e31½ �T

ð5Þ

at x2 ¼ � L2
2
;

u x1;
L2
2
; x3

� �

� u x1;�
L2
2
; x3

� �

¼ L2 e21e22e23½ �T

ð6Þ

at x3 ¼ � L3
2
;

u x1; x2;
L3
2

� �

� u x1; x2;�
L3
2

� �

¼ L3 e31e23e33½ �T
ð7Þ

To guarantee a statically determined system, the

node in the center of the RVE has to be fixed. These

BCs, which allow a periodical deformation of the

RVE, are set automatically within an APDL macro. To

reduce computational time, only the constant term of

the CE is changed, if the strain state changes.

In the next step, the finite element problem is

solved by the ANSYS implicit solver using the

Newton–Raphson method. The macroscopic stresses

are determined from the microscopic ones following

the described homogenization technique; see ‘‘Ho-

mogenization and representative volume element’’

section. Due to the discretization, the volume integral

[cf. Eq. (1)] can be replaced by a discrete finite sum,

as shown in cf. Eq. (8). Each component of the

homogenized stress tensor rhom for the whole RVE

can be calculated out of the total volume Vtot of the

RVE, the volume of each finite element Vel,i and the

corresponding component of the element stress ten-

sor rel,i of each element. The element stress tensor rel,i
is the mean value of all integration point values of

this element.

rhom ¼ 1

Vtot

X
n

i¼1

rel;i � Vel;i ð8Þ

After each homogenization step, the hybrid com-

posite is checked for failure states. Therefore, differ-

ent failure criteria are considered for each

constituent. For the brittle carbon fibers the maxi-

mum principal stress criterion and for the ductile

steel fiber the von Mises criterion are used. For the

epoxy resin, both equivalent stresses are applied to

evaluate the influence of the criteria for inter-fiber

failure. If failure occurs, a stiffness degradation

strategy is used inside the corresponding finite

elements. For tensile loadings, the simulation stops if

a predefined maximum strain emax (cf. Fig. 2) is

reached. emax is chosen 10% higher than the highest

breaking elongation of all the composite components

(cf. Table 1). For loadings transversal to fiber direc-

tion and for shear loadings, it is assumed that the

composite fails due to inter-fiber failure and the

simulation stops, if the first failure is detected. To

simulate failure curves and 3D failure surfaces, a

similar procedure including a second iteration loop is

considered. The first outer iteration loop is used to

vary the strain state, and the second loop iterates over

the magnitude of the chosen strain state as explained

above. In this case, the simulation stops when the first

outer iteration loop ends, after all defined strain

states are sampled.

Results and discussion

For the investigation of the stress–strain behavior in

fiber direction and transversal to fiber direction 1/8

RVEs and for shear loadings full RVEs are used. The

failure envelopes are computed by using the exten-

ded program sequence consisting of the inner and the

outer iteration loop. The failure envelopes are com-

piled for different superposed tensile loadings. A

comparable analysis for different arrangements and

other failure criterions is feasible.

Uniaxial tensile loading in fiber direction

For uniaxial tensile loading in fiber direction, the

stress–strain diagrams for different CS are displayed

in Fig. 3 (left). The results for CFRP (CS = 0%) show a

linear material behavior with a brittle fracture when

the breaking strain (e = 2.13%) is reached. The stress–

strain diagram for SCFRP shows a bilinear material

behavior with a kink at e = 0.25% and decreasing

strength with higher CS. This bilinear behavior is

caused by the plastic deformation of the stainless

steel fibers which decreases their load carrying

capacity for uniaxial strain states higher than

e = 0.25%. After the degradation of the carbon fiber

at e = 2.13%, the steel fibers are still intact. This

behavior is caused by the used stiffness degradation

strategy, which reduces the stiffness of all affected

finite elements. In this case, the remaining load car-

rying capacity of the steel fibers increases for high CS

J Mater Sci (2018) 53:667–677 671



up to the load carrying capacity of pure SFRP

(CS = 60%), which shows no break at e = 2.13%.

Another degradation strategy reduces the stiffness

only for the affected finite elements at the symmetry

plane; see Fig. 3 (right). In this case, a load transfer

occurs between the carbon and the steel fibers. The

elastic energy previously carried by the carbon fibers

now must be carried by the steel fibers. In depen-

dency of CS (it is assumed that the steel fibers still

remain intact after the degradation of the carbon

fibers for significantly higher CS), the resulting strain

state leads to the failure of the steel fibers, too. Due to

the chosen static analysis, the influence of the

dynamic effects of the load transfer between the

carbon fibers and the steel fibers can be neglected.

Table 2 shows that the use of hexagonal-, square-

and real-packed RVEs has no impact on the strength

results in fiber direction R1,FEM because all results

show a relative deviation of less than 0.1% compared

to the strength calculated by simple rules of mixtures

R1,analytic. This verifies that the chosen RVEs represent

the properties in fiber direction for the tested com-

posite (see ‘‘Experimental verification’’ section)

sufficiently.

Uniaxial tensile loading transversal to fiber
direction

The stress–strain diagram for tensile loadings

transversal to fiber direction is shown in Fig. 4 (left).

To visualize the strength results, the end of the

stress–strain curves is connected to the x-axis with a

vertical line. The curves show a nonlinear hardening

behavior. The strength in 2-direction is on average

37% higher than in 1-direction. For pure CFRP and

pure SFRP, the strengths reach their maximum. For

hybrid composites, the strength values are lower and

decrease with higher CS. This is mainly caused by the

decreasing distances between the fibers within the

corresponding RVEs resulting in the higher fiber

diameter of the steel fibers. Due to the assumed iso-

tropic material behavior of the carbon fiber and the

resulting very small difference between the stiffness

of the carbon and the steel fiber in transverse direc-

tion of the fiber, the influence of the stiffness on the

tensile strength transversal to fiber direction is not

investigated. Square-packed RVEs show the same

dependence of the steel fiber content. As it was

Cs = 0%

Cs = 8.4%
Cs = 20.1%

Cs = 30.7%

Cs = 60%

/ %

/
M
Pa

1- 1

1- 1

Degadation at coordinate plane
Full Degadation

/ %

/
M
Pa

Figure 3 Stress–strain curves for tensile loadings in fiber direction of hexagonal RVE with different CS (left); stress–strain curves for

tensile loadings in fiber direction of hexagonal RVE with CS = 30.7% using full degradation and degradation at coordinate plane (right).

Table 2 Comparison of the simulation results in fiber direction with simple rules of mixtures

Arrangement CS (%) CC (%) CM (%) R1,analytic (MPa) R1,FEM (MPa) (R1,FEM - R1,analytic)/R1,analytic (%)

Hexagonal RVE 0 60 40 2959.8 2961.0 0.041

Hexagonal RVE 8.4 51.6 40 2591.3 2592.8 0.058

Hexagonal RVE 20.1 39.1 40 2081.9 2083.6 0.082

Square RVE 0 60 40 2959.8 2961.1 0.044

Square RVE 9.4 50.6 40 2546.9 2547.5 0.024

Square RVE 18.2 41.8 40 2163.4 2164.4 0.046

Square RVE 22.4 37.6 40 1981.7 1983.4 0.086

RVE based on micrograph 0 60 40 2959.8 2961.0 0.041
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expected, the behavior in 2- and 3-directions is

identical.

Figure 4 (right) shows the result of the comparison

between the hexagonal-, square- and real-packed RVEs

for an SFRP in 2-direction. It can be observed that the

stiffness depends on the fiber arrangement of RVE

(19.4 GPa for square RVEs, 13.65 GPa for hexagonal

RVEs and 15.32 GPa for RVE based on recorded micro-

graphs). On average, the predicted strength based on the

vonMises criterion is 98%higher than the strengthbased

on the maximum principal stress criterion. The strength

for the real arrangement is at least two times lower than

the strength of the ideal arrangements (R2,real = 18.3

MPa; R2,hex = 63.6 MPa; R2,square = 39.6 MPa) when

using themaximumprincipal stresscriterion.For thevon

Mises criterion, the strength is also reduced for the real

arrangement (R2,real = 53.6 MPa; R2,hex = 88.6 MPa;

R2,hex = 98.16 MPa).

Shear loading

For shear loadings, the resulting stress state leads to

an inter-fiber failure. For the failure criterion and the

yield criterion, the von Mises stress is taken into

account. For shear loadings, the von Mises criterion is

more conservative than the maximum principal

stress criterion. As soon as the end of the stress–strain

curve of the epoxy resin is reached, the material

behaves ideally plastic and the maximum principal

stress can never reach the strength. For this reason,

the maximum principal criterion is not considered in

this study.

Figure 5 shows the stress–strain curves of RVEs

with hexagonal and square arrangements for pure

CFRP (Cs = 0%). The stress–strain curves show a

typical hardening behavior. The shear stiffness G12

and the shear stiffness G13 are for hexagonal

(4.3 GPa) and square (4.7 GPa) arrangements in the

same dimension. The shear stiffness G23 is for square

(3.1 GPa) arrangements 26% lower than for hexago-

nal (4.2 GPa) ones. The strength R23 shows in mean

3.2% higher values than the strengths R12 and R13 for

square arrangements. Hexagonal RVEs show 22.6%

higher strengths for loadings in 1–2- or 1–3-directions

than for loadings in 2–3-directions.

Failure envelopes

In general arbitrary, external loads generate a com-

plex stress states inside a composite. In such cases,

failure envelopes are needed to indicate the failure

behavior for these multiaxial loadings. Figure 6

(right) shows the failure behavior for CFRP (black),

SFRP (magenta) and hybrid SCFRP with different

Cs = 0%
Cs = 8.4%
Cs = 20.1%

Cs = 30.7%
Cs = 60%

/ %

/
M
Pa

2/3- 2/3

Square arrangement
Real arrangement

/ %

/
M
Pa

Hexagonal arrangement
2/3- 2/3

3

1 2

3

1 2

Figure 4 Stress–strain curves for tensile loadings transverse to

fiber direction of hexagonal RVE in 2-direction (continuous line)

and in 3-direction (dashed line) with different CS (left); stress–

strain curves of hexagonal RVE, square RVE and RVE based in

micrographs using the von Mises criterion (continuous line) and

the maximal principle stress criterion (dashed line) for pure SFRP

in 2-direction (right).

/
M
Pa

shear / %

3

1 2

3

1 2

hex. 23- 23

hex. 12- 12

hex. 13- 13

quad. 23- 23

quad. 12-

31

13

31

13

23

32

23

32

Figure 5 Results for hexagonal and square RVE out of CFRP for

shear loading.
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fiber volume fractions (red, green, turquoise and

blue).

The strength in 1-direction is in mean 35 times

higher than in 2-direction. In order to visualize this

difference, the 2-axis is scaled. Because the strength

in 1-direction is mainly influenced by the carbon fiber

volume fraction and the strength in 2-direction is

mostly influenced by the CS, the different failure

curves intersect each other. The 3D failure surface,

shown in Fig. 6 (right), visualizes the failure behavior

of pure CFRP according to the three stress compo-

nents r1, r2 and r3. From these results, it is possible to

identify the areas where the fiber fails (blue) and

where inter-fiber failure occurs (rest of 3D failure

surface). The color of the inter-fiber failure surface

indicates the distance to the 1-axis. It is shown that

the strength in 3-direction can be enhanced, if there is

a non-negligible stress in 2-direction for ideally

hexagonal RVE.

Experimental verification

Hannemann’s et al. [32, 33] experimental investiga-

tions on hybrid composites reinforced by carbon and

steel fibers allow a validation of the simulation

results. In order to assess the electrical and mechan-

ical properties of carbon and steel fiber reinforced

epoxy resin, Hannemann manufactured various

uniaxial reinforced hybrid composites with various

fiber proportions and fiber arrangements by a com-

bination of tape deposition and filament winding

technology. The laminates had a thickness of

approximately 1 mm. Examples are shown in Fig. 7.

These laminates were analyzed with regard to their

tensile properties in parallel with the fiber direction.

For this purpose, tensile tests were carried out in

dependence on DIN EN ISO 527-5 with a hydraulic

tensile testing machine of type Zwick Roell HTM

50/20. The specimens were sized 250 mm by 15 mm

and provided with 3-mm-thick, chamfered alu-

minum end tabs. The specimen was clamped with a

free gauge length of 150 mm and loaded to failure

with a constant crosshead speed of 3 mm/s. The test

forces were metered by a piezoelectric load cell with

a calibrated range of 50 kN. In order to determine the

elongation of the specimen, all tests were captured by

a high-speed camera system (sample rate 200 Hz)

and evaluated by a digital image correlation system

of type GOM ARAMIS v6.3.0. Among others, two

material configurations with a homogenous steel

fiber distribution and 10 vol% (SCFRP 1) or 19 vol%

(SCFRP 2) of stainless steel fibers were considered.

For each material configuration, five specimens were

analyzed. The obtained characteristics (arithmetic

mean and standard deviation of modulus of elastic-

ity, ultimate tensile strength, elongation at break) are

summarized in Table 3.

It should be pointed out that the steel fiber diam-

eters and arrangements used in [32, 33] differ from

those of this study. However, as shown in ‘‘Uniaxial

tensile loading in fiber direction’’ section this has no

impact on the results for tensile loadings in fiber

direction. For these reasons, the material properties

as well as the fiber volume fractions of the numerical

Figure 6 3D failure surface

for CFRP with hexagonal

RVEs (left) and 2D failure

curves for square RVEs with

different steel fiber fractions

(right).

Figure 7 Architecture and fiber volume fractions of manufac-

tured laminate SCFRP 1 and SCFRP 2 (CC = carbon fiber volume

fraction; CS = steel fiber volume fraction).
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investigations were adapted to the experimental

study. In Fig. 8, the nominal stress–strain curves of

each sample are plotted (depicted in blue) and com-

pared with the results of the numerical simulation

(marked in red).

The comparison proves a good agreement of the

measured and simulated stiffness. Despite incorpo-

ration of highly ductile steel fibers, a post-failure

behavior (after fracture of the carbon fibers) cannot be

observed, which indicates that the element degrada-

tion at coordinate plane (see ‘‘Uniaxial tensile loading

in fiber direction’’ section) leads to more realistic

results. The simulated strength value is larger than

the experimental one (SCFRP 1: ?6.3%, SCFRP 2:

?8.3%). This difference between theoretical and

measured values is, however, already known and

presented in Schürmann [30]. The main reason is the

preexisting microscopic damage in each composite.

The fiber strength is in general not consistent for each

fiber, but it can be assumed that it is rather a nor-

mally distributed value. If certain fibers fail early, the

applied load has to be carried by the remaining,

intact fibers. As a consequence, strength of

unidirectional layers is determined mainly on the

microscopic scale [30].

Summery and outlook

In the present study, a micromechanical approach is

used to estimate the effective strength of hybrid

composites consisting of carbon and stainless steel

fibers. As expected, the predicted strength agrees

well with simple rules of mixtures in fiber direction.

In addition, the strength in fiber direction does not

depend on the choice of the RVE, supposing that the

volume contents of the fibers remain unchanged. In

order to predict the residual load capability after

carbon fiber failure due to their lower breaking

elongation, a degradation strategy is used. In case

that the stiffness of the finite elements in the sym-

metry plane is reduced, the residual load capability

of the hybrid composite is rather negligible. This

behavior agrees well with the experimental results

obtained for hybrid carbon and stainless steel fiber

composites. Furthermore, the calculated values of the

stiffness agree well with the experimental ones.

However, the measured strength values are generally

smaller by about 8% than the calculated ones. This

behavior is observed for pure carbon fibers compos-

ites as well [30].

The present simulations show that the shape of the

RVE and the used failure criterion influence the

results strongly for loadings transversal to fiber

direction and for shear loadings. Moreover, it is

shown that the strength values depend on the dis-

tribution of the fibers within a given RVE. Significant

lower strength values are obtained for RVEs based on

micrographs where higher stress concentration areas

are present. For a further analysis of this phe-

nomenon, the effect of fiber matrix adhesion should

be considered. In the subsequent study, the crack

initiation and the delamination process at the

Table 3 Results of the

experimental tests on hybrid

composites

Property CFRP SCFRP 1 SCFRP 2

Density q, g/cm3 1.60 2.25 2.79

Steel fiber share Cs, vol% 0.0 10.4 18.8

Carbon fiber share Cc, vol% 64.1 35.4 49.1

Young’s modulus E, GPa 146 ± 5 128 ± 4 121 ± 5

Ultimate tensile strength rmax, MPa 2492 ± 85 2323 ± 74 2093 ± 72

Strain at failure emax, % 1.61 ± 0.06 1.73 ± 0.04 1.75 ± 0.09

Figure 8 Comparison between simulation and experimental

results [32, 33] for tensile loadings in fiber direction (SCFRP 1

Cs = 10%/SCFRP 2 Cs = 18%).
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constituent’s interfaces will be investigated using

cohesive zone models.

The proposed modeling approach allows analyzing

2D failure envelopes and 3D failure bodies of the

hybrid composites for complex, multiaxial stress

states. For the different composite’s constituents,

linear and nonlinear failure criteria can be applied.

Moreover, the adhesion concerns at the constituent’s

interfaces can be investigated as well by implement-

ing appropriate models. The used approach allows

identifying the different failure modes of the hybrid

composites. Thus, for the design of hybrid composite

structures physical-based models instead of empiri-

cal-based assumptions can be used.
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