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ABSTRACT

The coarseningbehavior of three-phasematerials, such as eutectic alloys, is of high

technological interest. In this study, 3D ternary three-phase polycrystalline

materials were modeled to study the effect of bulk diffusion and phase arrange-

ment on the coarsening kinetics. The diffusion mobilities were defined to be dif-

ferent in the three phases. By varying the phase boundary and grain boundary

energies, microstructures with different phase arrangements were obtained, in

which the different types of grains had a tendency to alternate or cluster. In all

cases, a regimewas reachedwhere the average grain size follows a power growth

lawwith growth exponent n ¼ 3, indicating bulk diffusion-controlled coarsening.

The overall growth rate and that of the individual phases were clearly affected by

the phase arrangement, the magnitude of the phase boundary energy and the

diffusion mobilities of the different phases. In all cases, the phase with the lowest

diffusionmobility showed thehighest growth rate andonaverage a largernumber

of grain faces.While the average number of grain faces became constant in time in

systems with constant grain boundary energy, the average number of grain faces

continued to increase during thewhole simulation timewhen the grain boundary

energy was misorientation dependent.

Introduction

As the functionality demands on engineering mate-

rials continue to rise, multi-phase materials become

more popular. A number of technologically

important alloys, composites, and precipitated hard-

ened materials consist of phases with different

properties. In these materials, the desired functional

and mechanical properties can largely be tailored by

the properties of the individual constituent phases.

Moreover, some material properties, including the
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mechanical and electrical properties, are influenced

by the grain size and spatial arrangement of the

phases. Many of the enhanced properties in multi-

phase materials are mainly attributed to the inher-

ently different phase boundary and grain boundary

properties.

Although coarsening in multi-phase materials

involves both, Ostwald ripening and grain growth,

several previous studies performed for dual-phase

coarsening of systems with a conserved volume

fraction of phases in 2D [1–6] and 3D [7–11] and

recent coarsening simulations for 3D three-phase

systems [12], confirm that Ostwald ripening is the

controlling coarsening mechanism at steady-state

coarsening.

In multi-phase materials and under diffusion-con-

trolled growth, the structural evolution is then

mainly controlled by the chemical energy, interfacial

energies, volume fractions of the phases, and the

diffusivities of the different chemical elements in the

constituent phases. When the bulk chemical energy

and volume fraction of phases are assumed to be

equal, the microstructural evolution is governed by

the grain boundary and interface energies and the

diffusivities in the different phases. Sheng et al. [13]

performed 2D simulations for a two-phase system,

formed by spinodal decomposition, with highly dis-

parate diffusion mobilities for the two phases and

obtained a different growth behavior for different

ratios of the diffusion mobilities in the two phases.

The evolved phase arrangements during the

microstructural evolution was not meaningfully

affected by the diffusion mobilities of the phases in

this study. Moreover, for a 3D ternary three-phase

system with different diffusivities in the different

phases, but equal grain boundary and interface

energies, Ravash et al. [12] showed that the phase

with the lowest diffusivity coarsens fastest and the

two other phases grow at a nearly equal rate. Chang

et al. [14, 15] and Holm et al. [16] studied the effect of

the interfacial energy ratio (this is the ratio of the

energy of the boundaries between grains of the same

phase and that of boundaries between grains of dis-

similar phases) on the microstructure evolution for

two-phase systems. They found that the interfacial

energy ratio determines largely the grain topology,

phase arrangement, and coarsening kinetics in a

microstructure.

So far, the effects of different diffusivities in the

different phases and those of phase arrangement on

the evolving morphology of a multi-phase system

have not been considered simultaneously. Moreover,

practical conclusions from 2D two-phase systems to

3D three-phase systems may not be relevant.

In the present study, the microstructural evolution

in 3D three-phase systems was simulated consider-

ing different phase arrangements and assuming

different diffusion mobilities in the different phases.

A ternary system is considered, since it follows from

Gibbs phase rule that at least three components

should be present to have three-phase regions in a

phase diagram at given temperature and pressure.

Different phase arrangements are obtained by using

different interfacial energy conditions. If rgb is the

energy of boundaries between grains of the same

phase and rpb represents the energy of boundaries

between grains of dissimilar phases, the interfacial

energy ratio is defined as ER ¼ rgb=rpb. Simulations

were conducted for microstructures with (a) phase

boundary energy smaller than grain boundary

energy (ER ¼ 1:78), (b) phase boundary energy lar-

ger than grain boundary energy (ER ¼ 0:566) and (c)

misorientation-dependent grain boundary energy

with rgb;max ¼ rpb (0:06\ER� 1), assuming a Read–

Shockley misorientation dependence. For cases (a)

and (b), the ER ratio was chosen so that there is a

considerable difference between the grain boundary

and interface energy to observe an obvious effect on

the spatial distribution of the phases, but with

0:5\ER\2 to avoid the possibility of complete

wetting of certain boundaries and obtain fully con-

nected grain structures. For case (c), the lowest ER-

value is obtained for a grain boundary between two

grains with a misorientation of 0:18�, the lowest

misorientation that is resolved in the simulations. In

this system, there is a possibility to observe com-

plete wetting of an interphase or high-angle grain

boundary, as it is energetically favorable to replace

such a boundary by two low-energy grain bound-

aries when locally present in the structure. The grain

size and topology evolution and the grain size and

topological class distributions were determined from

the simulated microstructures. Moreover, the

growth behavior of the individual phases is ana-

lyzed considering the selected diffusion mobilities

and different phase arrangements. The results are

also compared with results from a previous study

[12] for a system with the same chemical and dif-

fusion properties as those considered in the present
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study, but an equal energy for the phase and grain

boundaries (i.e., ER ¼ 1).

Model and methodology

Model

An extended description of the model used in this

study was presented before [12]. Only a summary is

given here.

To represent the different grain orientations of the

different phases, large sets of non-conserved phase-

field variables, g1;1; . . .; gp1;1; g1;2; . . .; gp2;2; . . .,

g1;N; . . .; gpj;N , were used, with pj the number of grain

orientations of phase j and N the number of phases

present in the system. The second index refers to the

phase and the first index to the grain number or grain

orientation within each phase. A ternary system is

considered and the local composition at each point of

the system is described using two conserved phase-

field variable cs, with s ¼ 1; 2, representing the local

molar fractions of the two independent components.

The evolution equations of these conserved and

non-conserved phase-field variables were obtained

according to the principles of non-equilibrium ther-

modynamics, namely to ensure a monotonous

decrease of the Gibbs energy in time and mass con-

servation throughout the system, giving for each

phase-field variable gi, with i ¼ 1. . .p and p the total

number of non-conserved phase-field variables, N ¼
3 the number of phases and n ¼ 3 the number of

chemical components,
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and for the two independent conserved composition

fields cs,
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with elr ¼ Vmðofchem=ocrÞ ¼ VmAðcr �
PN

j¼1 Hjc0r;jÞ the

interdiffusion potential and Ms;r ¼
PN

j¼1 HjM
j
s;r with

M
j
s;r the interdiffusion mobility of element s under the

chemical potential gradient of element r for phase j.

The model parameters m, ci;j and j in (1) are related

to the interfacial energy ri;j and width of the diffuse

interface assumed in a phase-field representation li;j
of a boundary between two grains as

ri;j ¼ gðci;jÞ
ffiffiffiffiffiffiffi
jm

p
ð3Þ

and

li;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=ðmf0;maxðci;jÞÞ

q
ð4Þ

with gðci;jÞ and f0;maxðci;jÞ functions that were evalu-

ated numerically as described in Ref. [17] (the func-

tion values are given in the additional material for a

wide range of ci;j-values).

The model parameters Gl, c
0
k;l and A relate to the

bulk chemical energy of phase l as a function of the

composition variables c1 and c2. The bulk chemical

energy is formulated following the model of Folch

and Plapp [18]. Since for the present simulations the

equilibrium compositions are taken far from the

dilute limit and coarsening phenomena are consid-

ered—the composition remains thus close to the

equilibrium composition—a parabolic composition

dependence can be applied to simplify the model

equations. These parameters must be chosen so that

the equilibrium compositions of the phases are

reproduced.

The functions Hl, where the suffix l refers to the

three phases, are used to interpolate between the

chemical energies of the different phases and are

taken from the multi-phase model of Moelans [19],

Hlðgi;kÞ ¼ /l ¼
Ppl

i¼1 g
2
i;lPN

k¼1

Ppk
i¼1 g

2
i;k

ð5Þ

where k is taken over the different phases and i over

all grain orientations of phase k, and which equals

per definition the phase fraction /l of phase l.

The kinetic coefficient L is formulated as a function

of the kinetic constants related to the different grain

boundary and interface boundary mobilities as

L ¼
Pp

i¼1

Pp
j¼iþ1 Li;jg

2
i g

2
j

h i
=
Pp

i¼1

Pp
j¼iþ1 g

2
i g

2
j

h i
, with p

again the total number of non-conserved phase-field

variables used in the model. This expression is cho-

sen so that at each interface where only two non-
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conserved phase-field variables have a value differ-

ent from 0 ðgðk 6¼i; 6¼jÞ ¼ 0Þ, L ¼ Li;j with i and j the

numbers of the two phase-field variables represent-

ing the adjacent grains. For an interface between two

grains of the same phase, Li;j is related to the grain

boundary mobility li;j as Li;jj ¼ ri;jli;j [17]. The Li;j for

the interfaces between grains of a different phase are

chosen to obtain diffusion-controlled growth [19].

In the equation for the conserved concentration

fields, M
j
s;r is defined as the interdiffusion mobility of

element s in phase j under the chemical potential

gradient of element r [20]. The elements in the dif-

fusion mobility matrix can be expressed as a function

of the atomic mobilities of the individual elements. In

this study, the atomic mobilities are assumed to be

equal for all elements within a phase, i.e.,

bð1Þ;j ¼ bð2Þ;j ¼ bð3Þ;j ¼ bð1;2;3Þ;j, but different in the dif-

ferent phases. For a ternary system, and considering a

number-fixed frame, the matrix of diffusion mobili-

ties in each phase M j has then the form

M j ¼
c1ð1� c1Þ �c1c2

�c1c2 c2ð1� c2Þ

� �
�
bð1;2;3Þ;j
Vm

; ð6Þ

with c1 and c2 the molar fractions of the independent

components.

Implementation

Three-dimensional grain growth and coarsening

simulations for polycrystalline structures containing

a statistically relevant number of grains based on

Eqs. (1)–(2) are extremely computationally intensive

due to the large number of phase-field variables for

which an evolution equation has to be solved.

Therefore, the bounding-box algorithm based on a

sparse data structure representation as developed by

Vanherpe et al. [21, 22] and extended for multi-phase

systems by Ravash et al. [12] was used. Like many

sparse data structure algorithms, the bounding-box

technique exploits the fact that at a given time t and a

given grid point r of the microstructure, only a few

phase-field variables gi are active, this means that

they have a value different from 0. The method offers

a significant speedup for phase-field models for

polycrystalline structures compared to the conven-

tional techniques, as the computational requirements

only scale with the system size and not with the

number of phase-field variables used to represent the

microstructure. For the presented simulations, an

explicit finite difference method with Forward-Euler

time stepping and a second-order central scheme for

the Laplacian was used to discretize the partial dif-

ferential equations (1) and (2).

Post processing

For analysis of the simulated microstructures, a so-

called sharp-interface representation was generated

from the resulting phase-fields gi at different time

steps, by taking at each grid point the number of the

phase-fields with the value closest to 1. The grain

volume of the different grains was obtained from this

sharp-interface representation as the number of grid

points represented by a same number in the sharp-

interface representation multiplied by the volume of

a grid point, i.e., ðDxÞ3. The grain radius was obtained

as the equivalent radius of a sphere with a volume

equal to that of the grain.

Input parameters

The parameters in the bulk chemical energy were

taken as c01;1 ¼ 0:5, c02;1 ¼ 0:3 for phase 1, c01;2 ¼ 0:4,

c02;2 ¼ 0:2 for phase 2, c01;3 ¼ 0:6, c02;3 ¼ 0:1 for phase 3,

G1 ¼ G2 ¼ G3 ¼ �1� 105 J/m3, andA ¼ 5� 108 J/m3.

The atomic diffusion mobilities of elements 1, 2 and

3 were set as bð1;2;3Þ;1=Vm ¼ 5� 10�13 mol2=ðmJ sÞ for
phase 1, bð1;2;3Þ;2=Vm ¼ 1� 10�12 mol2=ðmJ sÞ for

phase 2 and bð1;2;3Þ;3=Vm ¼ 2� 10�13 mol2=ðmJ sÞ for

phase 3. Diffusion will thus be fastest in phase 2 and

slowest in phase 3 with a mobility ratio of 0.2

between the phases 3 and 2, 0.4 between the phases 3

and 1 and 0.5 between the phases 1 and 2.

For each system, the model parameters j, m, ci;j
and Lgb were calculated to reproduce in the simula-

tions the selected interface energies rgb and rpb and

grain boundary mobility lgb. Figure 1 presents the

selected energies for boundaries between grains of

the same phase and between grains of dissimilar

phases for the different interfacial energy conditions

considered in this paper. In each simulation, grains

with an orientation number ranging between [0 499],

[500 999] and [1000 1499] belong to phase 1, 2 and 3,

respectively. In this figure, each color or symbol

represents one phase and the given values represent

the r=rmax associated with the interface between the

first selected grain of each phase (namely grains with

J Mater Sci (2017) 52:13852–13867 13855



types 0, 500 and 1000) and the other grains in the

system.

For all simulations, the maximum boundary

energy was taken rmax ¼ 0:25 J/m2 and the diffuse

interface width of these boundaries was taken

‘i;j ¼ 3� 10�7m, resulting in the model parameters

j ¼ 5:62� 10�8 J/m, cmax ¼ 1:5 and m ¼ 5� 106 J/m3.

This is for the grain boundary energy for ER ¼ 1:78,

the interphase boundary energy for ER ¼ 0:566 and

for the interphase boundary and high-angle grain

boundary energies for 0:06\ER� 1.

For ER ¼ 1:78 and 0.566, the minimum boundary

energy is rmin ¼ 0:14 J/m2, resulting in cmin ¼ 0:68

and a diffuse interface width ‘i;j ¼ 5:3� 10�7m for

these boundaries.

These values for rmax and rmin were chosen to

obtain the intended ER-values and independent of a

particular material system. They are slightly lower,

but of the same order of magnitude, than the exper-

imentally measured and MD calculated values of

high-angle grain boundary energies reported for a

number of fcc materials [23]. For the considered

model, the width of the diffuse boundaries between

grains and phases is smaller for boundaries with a

higher energy. Therefore, the diffuse interface width

of the boundaries with energy rmax ¼ 0:25 J/m2 is

taken as ‘i;j ¼ 3� 10�7m ¼ 5� Dx (Dx is specified

further). It was verified before for grain growth [24]

and individual grain boundary [17] and diffusion-

controlled phase boundary [19] migration that accu-

rate velocities (i.e., with a relative error smaller than

5% compared to the analytically expected values for

particular grain structure geometries) are obtained

for ‘� 0:5Dx. The diffuse interface width of the

boundaries with lower energy follows from this

choice and will be slightly larger; they are given by

Eq. (3).

In the system with misorientation-dependent grain

boundary energy (0:06\ER� 1), the crystallographic

orientations of the grains are assumed to be identical

in one direction and random in the plane perpen-

dicular to this direction. For certain types of defor-

mation processes, such a structure is observed after

mechanical deformation in metals; for example,

compression of fcc metals causes a fiber texture with

h110i aligned with the fiber axis [25]. In this study,

however, the assumption was made merely to sim-

plify the formalism while still having the opportunity

to study the effect of varying grain boundary prop-

erties within the phases. A crystal with fourfold

symmetry and pj ¼ 500 grain orientations for each

phase were assumed resulting in an orientation dis-

cretization MðhÞ ¼ 90�=pj ¼ 0:18� within one quad-

rant. The misorientation angle h associated with the

boundary between two neighboring grains assigned

by orientations i and j is calculated using

hi;j ¼
Mh � jj� ij if jj� ij �

pj
2

�90� þ Mh � jj� ij if jj� ij[
pj
2

8
><

>:
: ð7Þ

For fourfold symmetry hi;j ranges from �45� to þ45�.

The minimum interfacial energy ratio ER ¼ 0:06

corresponds to the boundaries with the lowest

misorientation angle ð� 0:18�Þ. The corresponding

boundary energies ri;j ¼ rgbðhi;jÞ are obtained,

assuming the Read–Shockley dependence for low

misorientations, using Eq. (8) [26], giving

rgbðhÞ ¼
rm

jhj
hm

1� ln
jhj
hm

� �� �
if jhj\hm

rm if jhj � hm

8
<

: ; ð8Þ

where jhj\hm and jhj � hm correspond to the low-

angle and high-angle boundaries. In the presented

simulation, hm ¼ 15� and rm ¼ 0:25 J/m2 are

Figure 1 The selected interface energies, expressed as r=rmax

with rmax ¼ 0:25 J/m2 for the considered structures with

ER ¼ 1:78, ER ¼ 0:566 and 0:06\ER� 1. Each color or symbol

represents one phase and the given values represent the interface

energy between the first selected grain of each phase (namely

grains with types 0, 500 and 1000) and the other grains in the

system.
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assumed. The grain boundary energy varied between

r ¼ 0:016 J/m2 (hi;j ¼ 0:18) and r ¼ 0:25 J/m2

(hi;j � 15). The ci;j parameters reproducing this Read–

Shockley dependence were calculated using the

MATLAB script given in the additional material.

For all grain boundaries between grains of a same

phase, a grain boundary mobility lgb ¼ 2:25�
10�12 m2s/kg was assumed, giving Lgb ¼ 10�5 m3/Js

for the grain boundaries with rgb ¼ 0:25 J/m2 and

Lgb ¼ 0:56� 10�5 m3/Js for boundaries with rgb ¼
0:14 J/m2 for the kinetic coefficients in the Ginzburg–

Landau equations. The Lgbðhi;jÞ for the system with

misorientation-dependent grain boundary energy

was calculated such that the grain boundary mobility

was the same and equal to lgb ¼ 2:25� 10�12 m2s/kg

for all misorientations using the MATLAB script

given in the additional material. The grain boundary

mobility of materials can vary over orders of mag-

nitude, depending on among others temperature, the

amount of solutes segregated to the boundary and

boundary orientation. In the present study, the grain

boundary mobility was chosen based on computa-

tional considerations, namely sufficiently large to

reach the steady-state regime with growth controlled

by long-range bulk diffusion within the accessible

simulation time, however not larger to allow for a

reasonably large time step.

The kinetic coefficients for boundaries between

grains of different phases were taken from previous

work [12] and estimated to approach diffusion-con-

trolled phase boundary movement [19]. The kinetic

coefficient for a boundary between grains of the

phases 1 and 2 was taken as L12 ¼ L21 ¼ 4:7�
10�5 m3/Js, between the phases 1 and 3 as L13 ¼ L31 ¼
2:2� 10�5 m3=Js and between the phases 2 and 3 as

L23 ¼ L32 ¼ 3:7� 10�5 m3=Js.

For all simulations, a threshold value for the

bounding box of � ¼ 10�5, a system size of 256�
256� 256 grid points with grid size Mx ¼ 6� 10�8 m

and Mt ¼ 1:8� 10�4 s were chosen.

Initial microstructure

To generate initial polycrystalline three-phase

microstructures, the following steps were taken. First,

for every phase-field variable gi, a grid point Ci was

chosen according to a uniform distribution over the

domain of the microstructure. Second, a spherical

grain region with small radius was defined around

each center Ci. Next, for every spherical grain region,

the corresponding phase-field variable gi was ini-

tialized such that gi equals 1 inside and 0 outside the

respective grain region. Then, the phase-field equa-

tions for grain growth of a single-phase material were

solved using the bounding-box algorithm as

explained in [21]. Once the polycrystalline

microstructure was fully developed, it was used as the

initial microstructure for the three-phase system sim-

ulation by distributing the grains among the phases

based on their numbers, namely 1–499 to phase 1,

500–999 to phase 2 and 1000–1499 to phase 3. Finally,

the composition variables at each grid point were set

equal to the equilibrium composition of the phase

present at that point. Figure 2a represents such an

initial microstructure composed of phases 1, 2 and 3.

Large-scale simulations were performed for a cubic

system containing three solid phases each with vol-

ume fraction fp � 0:333 for a total simulation time of

t ¼ 300� 103Dt. During the simulation time, the

number of grains decreases from approximately 1500

to approximately 150–200 grains, which is a consid-

erable number of grains and evolution time. Con-

sidering the recent findings from normal grain

growth simulations [15, 27, 28], however, a larger

initial structure may be required to draw firm con-

clusions on the true steady-state characteristics. Since

three-phase coarsening may be affected by several

processes (not only grain boundary movement, but

also diffusion-controlled phase boundary move-

ment), we can expect that an even longer time and

substantially more grains will be required to obtain

true steady-state behavior. It is possible, for example,

that the systems pass several regimes with close to

self-similar behavior before true steady-state is

reached depending on the relative kinetics of grain

boundary and interphase boundary movement. With

the current knowledge on multi-phase multi-com-

ponent coarsening, it is impossible to predict how

large the compute power required to investigate such

a scenario is. Therefore, we have chosen the initial

number of grains as large as possible but such that

the simulations can be performed with the available

compute power within a reasonable time. For all

considered systems, we find an extended regime

where the average grain size as a function of time

evolves according to the power growth law with

growth coefficient 3, which makes it anyway
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interesting to compare the growth behavior within

this regime for different system properties.

To improve the statistical relevance of the con-

clusions, all simulations were performed for three

different initial structures, each containing an initial

number of 1500 grains, and the measured properties

of the grain structures were averaged over the three

simulations for identical system properties but with

different initial grain structure, every 2000 time

steps.

Figure 2 3D images with 2D

cross section of the evolved

microstructures for a ER ¼
1:78 at time t ¼ 200� 103Dt,

b ER ¼ 0:566 at time t ¼
150� 103Dt and c

0:06\ER� 1 at time

t ¼ 150� 103Dt. The white

squares indicate

stable quadruple junctions.

The red square indicates an

unstable triple junction of the

type 111 penetrated by another

phase.

13858 J Mater Sci (2017) 52:13852–13867



Results

Microstructural features

Figure 2 presents 3D images and 2D sections of the

simulated microstructures for ER ¼ 1:78 (a), ER ¼
0:566 (b) and 0:06�ER� 1 (c) at time t ¼ 150� 103Dt.
From Fig. 2a, it is evident that grains of different

phases evolve next to each other in an alternating

pattern for ER ¼ 1:78. On the other hand, the

microstructure attained for ER ¼ 0:566 is character-

ized by a continuous clustering of grains of a same

phase (see Fig. 2b). In the simulation with misorien-

tation-dependent grain boundaries (0:06�ER� 1),

there is clearly tendency to form clusters of grains of

a similar phase, as well (Fig. 2c). Moreover, the

elongated and curvy boundaries are characteristic for

this microstructure. We even observe isolated grains.

Quadruple junctions consisting of two grain and

two phase boundaries, persisting for a considerable

time are seen in the simulations for ER ¼ 1:78 (indi-

cated with the white boxes in the 2D section in

Fig. 2a), but not in the simulations for the other ER

conditions considered in this study. In the system

with misorientation-dependent grain boundary

energy (0:06\ER� 1), quadruple junctions formed of

four grain boundaries can be observed.

Grain coarsening

The mean grain radius as obtained from the simula-

tions as a function of time was fitted with a power

growth law,

hrpðtÞin � hrpð0Þin ¼ Kt ð9Þ

where hri, n and K denote the average grain radius,

growth rate exponent and rate constant, respectively.

For all three systems a constant growth exponent

n ¼ 3:01	 0:02 is obtained over an extended simu-

lation time. The rate constants K varied with the

interfacial energy conditions: K ¼ 60� 10�21 	 2�
10�21 was obtained for ER ¼ 1:78, K ¼ 121� 10�21 	
6� 10�21 for ER ¼ 0:566 and K ¼ 135� 10�21 	 3�
10�21 for 0:06\ER� 1. The error indicates the maxi-

mum deviation from the mean value over the three

simulations performed for each interfacial energy

condition. For ER ¼ 1 and all system properties the

same as in the current simulations, K ¼ 102� 10�21 	
1� 10�21 was found in previous work [12]. As shown

in Fig. 3, the simulation for ER ¼ 1:78; where rpb ¼
0:14 and with alternating phases, shows a clearly

lower growth rate than the other systems, for which

rpb ¼ 0:25. The K-value obtained for ER ¼ 1:78 is also

considerably lower than those obtained for the other

conditions.

Comparison of the growth rate of the individual

phases over the time interval, where n ¼ 3 (Fig. 4),

shows that phase 3 has the highest growth rate of the

three phases for all considered interfacial energy

conditions. When grains of different phases alternate

(ER ¼ 1:78), phase 1 and phase 2 grow at a fairly

similar rate, while in the case of clustering

(ER ¼ 0:566, 0:06\ER� 1), phase 2 has a higher

growth rate than phase 1. The different growth rates

of the phases are related to the different diffusion

mobilities in the different phases.

The grain size distributions obtained for the dif-

ferent interfacial energy conditions, always normal-

ized with the average grain size, are presented in

Fig. 5. They are obtained by averaging the distribu-

tions measured between t ¼ 100� 103Dt and t ¼
200� 103Dt and averaging over the three simulations

for each ER-value. Over this time interval, the grain

Figure 3 Mean grain radius as a function of time as obtained in

the different simulations within the time frame 105 � Dt to

3� 105 � Dt: curve 1 was obtained in previous work for ER ¼ 1

[12] and is added for comparison with the curves obtained in this

work, curve 2 is obtained for ER ¼ 1:78, curve 3 for ER ¼ 0:566;

and curve 4 for 0:06\ER� 1. Broken lines are the least-square fits

of the power growth law with hRi the mean grain radius and n the

growth rate exponent, as fitted to the data points over a time frame

where n ¼ 3 is constant. For curve 2, this constant growth rate

coefficient is reached at approximately 105 � Dt. For curves 1, 3
and 4, the constant growth rate coefficient was obtained at a

slightly later time; therefore, the earliest data points in this figure,

which were not included in the fit, deviate slightly from the linear

line for these curves.
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growth exponent is close to 3 and almost constant,

the normalized grain size distributions tend to be

self-similar and topologically self-similar evolution is

found for the three interfacial energy conditions

considered in the figure (see ‘Topology evolution’

section), while there are still sufficient grains

remaining in the system to obtain meaningful results.

Since no topologically self-similar evolution was

found for 0:06\ER� 1, where grain boundary ener-

gies are misorientation dependent, the grain size

distribution was not included in this figure. For all

three cases, the grain size distributions are found to

be symmetrical around their mean, as also found for

3D simulations of two-phase coarsening for equal

volume fractions of the two phases [7, 10]. There are

no significant differences between the grain size

distribution curves obtained for ER ¼ 1, ER ¼ 1:78

and ER ¼ 0:566. It is possible, however, that smaller

deviations in the shape of the grain size distributions

may become clear if considerably larger grain struc-

tures can be considered. For comparison, the grain

size distributions obtained from 3D simulations for

two-phase coarsening with equal volume fraction of

the two phases (fp ¼ 50%) of Poulsen et al. [7] and

from experimental data of two-phase coarsening with

fp ¼ 52% and fp ¼ 78% from Rowenhorst et al. [29] for

Sn-rich particles dispersed in a Pb-Sn eutectic matrix

are added in Fig. 5, showing that the shape and range

of the steady-state normalized grain size distributions

obtained for two- and three-phase coarsening in

conserved systems are very similar.

Figure 6 shows for ER ¼ 1:78 and ER ¼ 0:566 the

grain size distribution of each phase normalized with

respect to the mean grain size of that phase. They are

also obtained by averaging the distributions mea-

sured between t ¼ 100� 103Dt and t ¼ 200� 103Dt
and averaging over the three simulations for the

same ER-value. Although the statistics obtained for

the individual phases are much lower than those for

the whole system, it seems that for the considered

systems with equal volume fractions of the three

Figure 5 Steady-state normalized overall (including all phases)

grain size distribution obtained from the simulations for ER ¼ 1

(taken from [12] for comparison), ER ¼ 1:78 and ER ¼ 0:566.

For each system, the grain size is normalized with respect to its

mean grain size. For comparison, the distribution obtained from a

simulation of two-phase coarsening with 50% volume fraction of

each phase [7] and experimental data [29] obtained for two-phase

structures with volume fraction of one of the phases 52 and 78%,

respectively, are added.

Figure 4 Mean grain size evolution obtained in the simulations

for the three individual phases and for the overall microstructure

for ER ¼ 1:78, ER ¼ 0:566 and 0:06\ER� 1.
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phases, the normalized grain size distributions of the

individual phases have a similar shape as the overall

normalized grain size distribution.

Topology evolution

Figure 7 shows the evolution of the mean number of

grain faces for all simulations over the total simu-

lation time (the curves in the upper part of the

graphs). For ER ¼ 1:78 and ER ¼ 0:566, the average

number of grain faces evolves toward a constant

value which is measured to be hFi ¼ 14:12	 0:1. The

measured values are averaged over the last 105 time

steps of the simulations. A same value was found in

our previous work for ER ¼ 1 [12]. For 0:06\ER� 1,

the average number of faces increases from hFi ¼
14:29 to hFi ¼ 18:94 during the considered simula-

tion time, indicating that the evolution is topologi-

cally not self-similar, although fitting of the growth

curve gave n ¼ 3 over a considerable simulation

time. The curves in the lower part of the graphs

represent the average values of faces shared

between grains of the same phase and shared with

grains of a different phase. When comparing the

average number of grain faces for the different

Figure 6 Steady-state normalized grain size distributions of the

individual phases 1, 2 and 3 and the overall microstructure for

a ER ¼ 1:78 and b ER ¼ 0:566. The grain sizes of an individual

phase are normalized with respect to the mean grain size of that

phase.

Figure 7 Evolution of the mean number of grain faces for phase

1, 2 and 3 and the overall microstructure obtained in the

simulations for a ER ¼ 1:78, b ER ¼ 0:566, and c 0:06�ER

� 1. The curves in the lower part of the figures represent the

average number of faces shared between the grains of each phase

with grains of the same phase or grains of other phases. For

example, F11 is the average number of faces shared between grains

of phase 1 and F12 is the average number of faces shared between

grains of phase 1 and phase 2. For ER ¼ 1:78 (a), hF11i ¼
3:92\hF13i ¼ 4:46\ hF12i ¼ 5:19; hF22i ¼ 3:70\hF23i ¼ 4:51

\hF21i ¼ 5:36 and hF33i ¼ 3:60\hF32i ¼ 6:11\hF31i ¼ 6:25.

For ER ¼ 0:566 (b), hF11i ¼ 4:17\hF13i ¼ 4:61\hF12i ¼
4:73; hF22i ¼ 4:07\hF23i ¼ 4:80\hF21i ¼ 5:48 and hF33i ¼
4:04\hF32i ¼ 5:03\hF31i ¼ 5:61. For 0:06\ER� 1 (c), no

topologically self-similar evolution was found.
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phases, it is clear that phase 3 has the highest

number of faces in all cases.

For ER ¼ 1:78, the average number of faces for

phase 1 and phase 2 hF1i ¼ hF2i ¼ 13:50	 0:03 are

equal and considerably smaller than that of phase 3

hF3i ¼ 15:92. Furthermore, it is noted that the mean

numbers of faces of phase 3 shared with phases 1 and

2 are almost equal and the most frequent types of

interface, while the mean number of faces shared

between grains of phase 3 are lowest. In addition, the

number of grain faces which are shared between

phase 1 and phase 2 are almost equal (see Fig. 4),

which is expected as they exhibit fairly similar

growth behavior. These observations are very similar

to our previous findings for ER ¼ 1 [12].

For ER ¼ 0:566, the average number of faces for

phase 1 hF1i ¼ 13:46, phase 2 hF2i ¼ 14:26 and phase

3 hF3i ¼ 14:64 are obtained. Here, phase 2 shows a

higher average number of faces than phase 1, but still

lower compared to that of phase 3. This can be cor-

related with the results of the average grain size

evolution of the different phases which shows that

phase 2 grows at a higher rate than phase 1 for

ER ¼ 0:566. The mean number of faces shared

between grains of the same phase is also higher than

for ER ¼ 1 and ER ¼ 1:78. This is in good agreement

with the clustering feature of the evolved

microstructure seen for ER ¼ 0:566.

Finally, for 0:06�ER� 1, the maximum increase in

average number of faces is seen for phase 3, while the

least increase is seen for phase 1. A more detailed

study on the evolution of the average number of faces

for each phase reveals that the largest increase is seen

for boundaries shared between grains of phase 3,

namely F33.

Figure 8 shows the normalized grain size in the

different topological classes for the simulated

microstructures with different interfacial energy con-

ditions at t ¼ 250� 103Dt. It should be noted that the

normalization for each simulation ismadewith respect

to the average grain size in that particular simulation. It

is evident that for most of the topological classes, the

normalized grain size associated with each class is

smaller for the simulation with 0:06�ER� 1 than that

of the other simulations. The average number of faces

for grains with a size equal to the average grain size is

15.5, 15.9 and 15.8 for ER ¼ 1, ER ¼ 1:78 and

ER ¼ 0:566, respectively, and 17 for the system with

varying grain boundary energies 0:06\ER� 1.

Evolution of the grain boundary characteristics

for misorientation-dependent grain boundary energy

For 0:06\ER� 1, the area-weighted misorientation

distribution function continues to evolve during the

simulation. In the initial microstructure, grain orien-

tations were assigned randomly and consequently

the initial misorientation distribution is close to uni-

form. During grain evolution, the fraction of low

misorientation boundaries (those with the lowest

energy) increases in time, while the fractions of

boundaries with another misorientation decreases in

time. The area-weighted misorientation distribution

obtained at t ¼ 250� 103Dt is shown in Fig. 9. Since

the applied boundary energy skim is symmetric, the

grain boundary properties can be studied within the

range of h 2 ½0; 45�
with Dh ¼ 0:18�. Similar evolution

was observed in single-phase systems with misori-

entation-dependent grain boundary energies [30–32].

It is unclear from the present simulations whether the

evolution of the misorientation distribution function

was stagnated by the end of the simulation time.

Discussion

Microstructural features

The presented simulation results show clearly that

the characteristics of the evolved microstructures are

affected by the interfacial energy ratios. For ER ¼

Figure 8 Normalized grain size as a function of the number of

grain faces obtained for the four considered interfacial energy

ratios (the data for ER ¼ 1 were taken from [12]). Individual

values are marked with small symbols and the average values over

each topological class are marked with large symbols for the

simulations with different interfacial energy conditions.
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0:566 and 0:06\ER� 1, grains of a same phase tend

to cluster, while for ER ¼ 1:78, grains of different

phases tend to alternate in the microstructure. Fur-

thermore, in our previous study [12] on the coars-

ening of a similar three-phase system with ER ¼ 1,

we also found that grains of different phases have the

tendency to alternate. These findings are in essence

similar to those obtained in several studies on two-

phase coarsening in 2D [14, 16, 33] and 3D [7, 10]. For

example, for 2D grain structures, Holm et al. [16]

observed that for ER\1, the microstructure favors

interfaces shared between grains of the same phase

while for ER[ 1, it favors the interfaces shared

between grains of dissimilar phases. Furthermore, for

3D two-phase systems, Poulsen et al. [7] found for

ER ¼ 0:8 a tendency for clustering, and Yadav et al.

[10] found for ER ¼ 1 that phases rather have the

tendency to alternate. The fact that the same obser-

vations are made about the tendency to cluster or to

alternate for conserved and non-conserved systems

and two- and three-phase systems indicates that this

feature is determined by the ER-value (i.e., the

interphase boundary and grain boundary energies),

while the chemical and diffusion properties of the

individual phases seem not to have an important

effect on the mutual spatial arrangement of the

phases.

Extending Cahn’s [33] analysis and the findings

from other studies [14–16] on the stability of triple

and quadruple junctions for two-phase systems to

three-phase systems, gives that

(i) for ER\
ffiffiffi
2

p
u 1:41 only triple junctions are

stable,
(ii) quadruple junctions are stable for ER�

ffiffiffi
2

p
,

(iii) type111 (this is a triple junction inwhich3grain

boundaries between grains of a same phase,

here phase 1, end), 222 and 333 triple junctions

are only stable for ER�
ffiffiffi
3

p
u 1:73, and

(iv) for ER[
ffiffiffi
3

p
triple junctions (other than type

111, 222 and 333) coexist with quadruple

junctions,

which are all confirmed by our simulation results.

Analysis of the 2D sections of the simulated

microstructures in Fig. 2 namely shows that while for

ER ¼ 0:566 and ER ¼ 1 (see [12]), triple lines are the

only stable type of junctions, for ER ¼ 1:78, both tri-

ple and quadruple lines exist, as marked with white

boxes in the 2D section in Fig. 2a. Moreover, for

ER ¼ 1:78, triple lines of type 111, 222 and 333 are not

stable, and when occurring, were penetrated by

another phase, as can be observed in Fig. 2a, where a

triple line of type 111 is destabilized and being pen-

etrated by another phase (indicated with the red box).

In the simulations for 0:06\ER� 1, the grain

boundary energy varies over a sufficiently large

range, so that quadruple junctions formed of two

high-angle grain boundaries and two low-angle grain

boundaries can be stable, namely when

rhigh=rlow [
ffiffiffi
2

p
, which is also observed in the

simulations.

Furthermore, in the evolved microstructure for

0:06�ER� 1 (Fig. 2c), an interesting feature is found

where the formation of one grain inside another one

occurs, as marked by the white frames. This is

devoted to the fact that all grain boundaries have the

same mobility in this simulation study, as the grain

boundaries with low energy move consequently rel-

atively slow. In reality, low-angle grain boundaries

have typically also a lower mobility and will thus

migrate even slower, increasing the frequency of this

feature in the microstructure.

Coarsening mechanism

The grain growth exponent n � 3 measured for the

different simulations shows that for all considered

interfacial energy conditions, grain coarsening is

mainly controlled by long-range diffusion (Ostwald

Figure 9 Area-weighted misorientation distribution obtained in

the simulation with 0:06�ER� 1 after t ¼ 250� 103Dt. The

displayed area fraction on the vertical axis is the ratio of the total

boundary area associated with the misorientation angle corre-

sponding to each bin with respect to the total grain boundary area.
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ripening) and that a reduction of the boundaries

between different phases is the controlling driving

force for coarsening. Since all simulations consider

phases with a similar thermodynamic behavior

around the equilibrium composition (i.e., the second

derivative of the free energy is equal for all phases,

namely equal to A in Eq. 2) and equal volume frac-

tions, the coarsening rates of the individual phases

are determined by the diffusion mobilities in the

different phases and the phase arrangement devel-

oped during coarsening.

In [12], where only the condition ER ¼ 1 was con-

sidered, a difference in diffusion mobility in the dif-

ferent phases was found to be the responsible for the

different growth rates of the different phases. Phase

3, the phase with the lowest diffusivity, i.e., 0.2 of that

of phase 2 and 0.4 of that of phase 1, was shown to

have the highest growth rate, while the phases 1 and

2 were growing at a nearly equal rate. This was

explained by the rate-controlling effect of long-range

diffusion. The growth rate of the phases 1 and 2 is

namely determined by the long-range diffusion of

elements through phase 3, the phase with the slowest

diffusivity. The growth of phase 1 requires long-

range diffusion through phases 2 and 3; however, as

the diffusion through phase 3 is slower, diffusion

through phase 3 is rate limiting; and similar for phase

2. The growth rate of phase 3 is determined by the

diffusion rate of the elements through phase 1, which

has a lower diffusivity than phase 2, but a higher than

phase 3.

In the current study, we have added the effect of

phase arrangement, by changing the ER-value, while

keeping the diffusivities of the three phases the same.

While phase 3 still shows the highest growth rate for

all considered interfacial energy conditions, the

growth rate of phases 1 and 2 are found to be equal

only for ER ¼ 1 and ER ¼ 1:78, namely when grains of

a different phase tend to alternate. In the simulations

with ER ¼ 0:566 and 0:06\ER� 1, where grains of a

same phase tend to form chains and clusters, the

growth rate of phase 2 is found to be higher than that of

phase 1. These results show that the spatial arrange-

ment of the phases has an important effect on the long-

range diffusion of atoms and the growth behavior of

the different phases. One explanation for this effect

could be that the disappearance of another type grain

within a cluster of grains of a similar type is controlled

by diffusion through the major type grains in the

cluster. Therefore, a type 1 or 3 grain within a type 2

cluster will disappear faster than a type 2 or 3 grain

within a type 1 cluster, resulting in a faster growth of

type 2 grains in the case of clustering.

Comparing the growth rate obtained in the differ-

ent simulations (see Fig. 3) reveals that the

microstructure with ER ¼ 1:78 shows by far the

lowest growth rate and the microstructure with

0:06\ER� 1 grows at the highest rate. The differ-

ences in the overall growth rate between the different

systems can be related to the different values of the

energy of the boundaries between different phases

rpb and the different phase arrangements in the dif-

ferent simulations. The energy of the boundaries

between different phases is the lowest in the simu-

lation with ER ¼ 1:78, while it has a same value for

the three other cases ER ¼ 1, ER ¼ 0:566 and

0:06\ER� 1 (see Fig. 1). The smaller differences in

coarsening rate between simulations with ER ¼ 1,

ER ¼ 0:566 and 0:06\ER� 1 are mainly attributed to

the different diffusion patterns introduced by the

different phase arrangement in these microstructures.

Note that although the grain boundaries in the sim-

ulation with ER ¼ 1 had a higher energy than those

in the simulation with ER ¼ 0:566, and the low-en-

ergy grain boundaries when 0:06\ER� 1, a higher

growth rate is obtained for ER ¼ 0:566 and

0:06\ER� 1, where grains of a same phase tend to

form clusters. This shows that the phase arrangement

has a more important effect on the overall growth

rate than the grain boundary energy itself.

In the current study considering only systems with

equal volume fractions of the three phases, we did

not find a significant difference between the grain

size distributions for ER ¼ 1, ER ¼ 1:78 and

ER ¼ 0:566. Phase-field simulations [7, 10] of coars-

ening in two-phase systems, with equal diffusivities

in the two phases, have shown however that the peak

of the grain size distribution shifts toward lower

grain sizes and the distribution seems to be slightly

wider for systems where the volume fractions of the

two phases is different. If the volume fraction of one

of the two phases is very low, e.g., a volume fraction

of 10%, the distribution becomes bimodal. Similar

effects can be expected for the grain size distribution

of three-phase systems with different volume frac-

tions of the phases. The current modeling approach

would be particularly suited to study in the future

the influence of different volume fractions of the
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different phases on the coarsening behavior and

grain size distribution in two- and three-phase sys-

tems and the effect of different diffusivities in the

different phases on this.

Topological evolution

The evolution of the mean number of grain faces in

the microstructures with ER ¼ 1 (see [12]), ER ¼ 1:78

and ER ¼ 0:566 reveals that the mean number of faces

does not change in time over de considered regime,

for the overall microstructures as well as for the

individual phases. In all three cases with constant

grain boundary energy within the phases, the aver-

age value of grain faces is found to be

hFi ¼ 14:12	 0:01, which is almost similar to the

average number of grain faces obtained from 3D

simulations for dual-phase materials with hFi ¼
14:09	 0:05 as determined by Poulsen et al. [7] and

hFi ¼ 14:13	 0:14 for 50–50 percent volume fractions

of the two phases by Yadav et al. [10]. This is a

slightly higher value than the average number of

grain faces typically obtained for single-phase mate-

rials by Rowenhorst et al. [29] and Krill and Chen

[34], where hFi ¼ 13:7. Since Yadav et al. obtained

hFi ¼ 13:7 for non-conserved growth and hFi ¼
14:09	 0:05 for conserved growth under similar

simulation conditions, we conclude that the average

number of phases is different for conserved and non-

conserved growth, but is not affected by the number

of phases involved or the diffusion properties of the

phases.

Conclusion

In this study, three-dimensional phase-field simula-

tions were performed to study the coarsening

behavior of ternary three-phase materials. The effects

of the diffusivities of the individual phases and of the

spatial arrangement of the phases were analyzed.

Different phase arrangements were obtained using

different interfacial energy ratios ER, defined as the

ratio of the energy of the interphase boundaries and

grain boundaries. A microstructure with the phase

boundary energy smaller than the grain boundary

energy (ER ¼ 1:78), a microstructure with the phase

boundary energy larger than the grain boundary

energy (ER ¼ 0:566) and a microstructure with

misorientation-dependent grain boundary energy

within the phases with the maximum grain boundary

energy equal to the phase boundary energy

(0:06\ER� 1) were considered. The results from this

work were also compared with results from previous

work considering a microstructure with equal energy

for the phase boundaries and grain boundaries (i.e.,

ER ¼ 1) and the same thermodynamic and diffusion

properties as the systems considered in this work.

We found that for the interfacial energy ratios ER ¼
1:78 and ER ¼ 1, different phases tend to alternate in

the microstructure and for ER ¼ 0:566 and

0:06\ER� 1 grains of a same phase tend to cluster.

For all cases, a growth rate exponent of n � 3 was

obtained, indicating long-range diffusion-controlled

growth, but different average growth rates were

found, which was attributed to the different values of

the energy of the phase boundaries and the different

phase arrangements. In all cases, the phase with the

lowest diffusivity had the highest growth rate and on

average a larger number of grain faces. The growth

rate of the other two phases was equal in the cases

where different phases tend to alternate and different

in the cases where grains of a same phase tend to

cluster, showing the effect of phase arrangement on

the coarsening kinetics of a microstructure.

In the microstructures with ER ¼ 1, ER ¼ 1:78 and

ER ¼ 0:566, the mean number of grain faces evolved

toward a value that is constant in time and close to

the mean number of faces found in three-dimensional

two-phase coarsening simulations, revealing topo-

logically self-similar growth behavior. However, in

the microstructure with misorientation-dependent

grain boundary energy, 0:06\ER� 1, the average

number of grain faces continued to increase. A longer

simulation time using a substantially larger domain

and higher number of grains is required to further

verify this effect.

The presented results show that the applied mod-

eling approach is particularly suited to study the

effect of various parameters on the coarsening

behavior of three-phase systems. In particular, inter-

esting for further work is an investigation of the

combined effects of different volume fractions and

different diffusivities for the different phases on the

growth characteristics of the individual phases and

the overall grain structure, as well as, a study of the

effect of the grain boundary mobility on the grain

structure evolution and coarsening characteristics
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during initial transient growth, i.e., in the time before

steady-state diffusion-controlled growth is reached.

Furthermore, the model has the possibility to include

more than three phases.
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