
COMPUTATION

Effect of micro-cracks on plastic zone ahead

of the macro-crack tip

Li Xiaotao1,*, Li Xu1, Yang Hongda1, and Jiang Xiaoyu1

1School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Received: 19 June 2017

Accepted: 27 July 2017

Published online:

3 August 2017

� Springer Science+Business

Media, LLC 2017

ABSTRACT

From the macroscopic point of view, the plastic zone (PZ) is obtained based on

the distributed dislocation technique (DDT) and von Mises yield criterion. From

the microscopic point of view, PZ is determined by the DDT model. The effect of

micro-cracks on PZ of the macro-crack tip is analyzed. The results show that the

micro-crack has a little amplification effect on PZ of the macro-crack tip when it

locates in front of PZ. As the micro-crack is close to the macro-crack tip, PZ of

the macro-crack tip and the micro-crack tip will join together. When the micro-

crack enters into PZ of the macro-crack tip, it has an obvious shielding effect on

PZ. When the micro-crack is behind the macro-crack tip, the width of PZ

decreases while the height increases. The dislocation distribution in PZ is in the

form of inverse pileup. The amplification and shielding regions are divided into

five strip-shaped regions, and they appear alternately. The results can provide

useful information to predict plastic behaviors near crack tip. The analysis of

amplification and shielding effect is important to materials design.

Introduction

The fatigue and fracture of materials have been

widely investigated since last century. The linear

elastic fracture mechanics (LEFM) have been a

mature tool to solve many crack problems. According

to LEFM, the behaviors of materials are linear elastic,

so the stresses at the crack tip are singular. In fact, the

material will yield and generate a PZ when the stress

near the crack tip exceeds the yield limit of the

material. When it is small-scale yielding, LEFM can

be still applied to analyze behaviors of the materials

containing cracks. For the brittle fracture and fatigue

crack problem, a little plastic deformation will occur.

The stress intensity factor is an important mechanical

parameter to study these problems. However, PZ will

increase as the external load increases. LEFM cannot

be applied to solve crack problems when PZ size is

relatively large and it is large-scale yielding. In this

case, the mechanical parameters J integral [1] and

crack tip open displacement were proposed to be the

fracture criterions. There is a positive correlation

among J integral, crack tip open displacement and PZ

size [1–4]. So it is necessary to investigate PZ at the

crack tip.

From the macroscopic point of view, PZ is pre-

dicted by the yield criterions, such as von Mises,

Tresca, Hill yield criterion and so on. Considering
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T-stress or complete stress field, Sousa et al. [5] cal-

culated PZ of the crack tip based on von Mises yield

criterion. Vasco-Olmo et al. [6] studied the shape and

size using both von Mises yield criterion and Tresca

yield criterion and analyzed the influence of PZ on the

crack tip shielding. Xin et al. [7] investigated PZ of the

crack tip based on Hill yield criterion for orthotropic

materials and isotropic materials. Nazarali and Wang

[8] analyzed the effect of T-stress on PZ of the crack

tip based on von Mises yield criterion. Based on the

finite element method, Caputo et al. [9] investigated

the effect of the loading conditions, the yield limit, the

crack length and the thickness on PZ size. Chen et al.

[10] analyzed the relationship between cyclic PZ size

and the maximum crack opening displacement.

Bouiadjra et al. [11, 12] studied the effect of micro-

cracks and microcavities on PZ shape and size of the

macro-crack tip. Paul [13] analyzed the influence of

the inclusion on PZ of the crack tip. Based on exper-

imental method, Korda et al. [14] observed cyclic PZ

by in situ scanning electron microscope for high-

strength steels. Mishra and Parida [15] studied PZ at a

center crack tip in a thin sheet by the photostress

coating method.

From the microscopic point of view, actually, the

plastic deformation at the crack tip is due to dislo-

cations emitted from the crack tip. Ding et al. [16],

Saka and Agata [17], Goswami and Pande [18] and

Ohr el al. [19–22] observed the dislocations at the

crack tip by experiments. Some theoretical disloca-

tion models were proposed to explain the micro-

mechanism of PZ. Bilby et al. [23] proposed the

famous BCS model that the yield zone was repre-

sented by continuously distributed dislocations along

the crack line. Chang and Ohr [24] improved BCS

model and proposed the dislocation-free zone model.

The model considered that there was an elastic zone

between the crack tip and PZ, which was observed by

transmission electron microscope fracture experi-

ments [18, 19, 22]. Lung and Xiong [25] proposed a

negative dislocation model to modify BCS model.

Atkinson and Kanninen [26, 27] proposed an inclined

strip yield super-dislocation model. Chen and Take-

zono [28] and Lee and Chung [29] presented the

inclined strip yield continuous dislocation model.

The results [23–26] shown that these dislocation

models have certain limitations to represent the

shape of PZ, but they are valid to calculate PZ size

and the crack tip open displacement.

It is difficult to avoid generating micro-cracks in

the process of material manufacture and application.

So the interaction problem between the micro-cracks

and the macro-crack was widely investigated.

Kachanov [30–32] proposed a simple solution to

crack problems that the actual tractions on individual

cracks were replaced approximately by the average

tractions. Gong et al. [33–35], Horiand and Nemat-

Nasser [36] and Meguid et al. [37] studied the inter-

action between micro-cracks and the macro-crack

based on the complex potentials method. Ibbett et al.

[38] investigated the effect of the particles on the

crack propagation by the extended finite element

method. In order to analyze complex crack problems

effectively, DDT was proposed and it was introduced

in detail by the book [39]. Its core idea was that the

cracks and boundaries could be replaced by the

continuously distributed dislocations. Based on DDT,

Han and Dhanasekar [40], Zhang et al. [41] and Li

et al. [42] presented the solution of a finite plane

containing cracks. Jin and Keer [43] studied interac-

tion among multiple edge cracks. Li et al. [44] con-

sidered the effect of the micro-crack on the macro-

crack propagation in an infinite plane. The influence

of the defects on PZ ahead of the crack tip was

investigated by some researchers based on DDT, and

Chang and Kotousov [45] presented a strip yield

model for two collinear cracks. Hoh et al. [46]

investigated the effect of a circular inclusion on the

crack tip plasticity.

The fore-mentioned works investigated the inter-

action between the macro-crack and micro-cracks by

theoretical method, but they did not consider the

plasticity of the crack tip. When the plasticity was

considered, they utilized only the finite element

method to analyze interaction problem between the

macro-crack and micro-cracks. In this way, the micro-

mechanism of interaction between the micro-cracks

and PZ ahead of the macro-crack tip cannot be

understood clearly. In the paper, the influence of the

micro-cracks on PZ of the macro-crack tip is investi-

gated based on DDT and the Gauss–Chebyshev

quadrature method. PZ is determined based on von

Mises yield criterion, and the effect of the micro-crack

on PZ shape and size is analyzed. On the other hand,

the DDT model is established to model PZ. The dis-

location density is obtained, and the influence of the

micro-crack on PZ size of the macro-crack tip is

analyzed.
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Formulation

In the paper, PZ of the macro-crack tip in the pres-

ence of the micro-crack is determined by von Mises

yield criterion and the DDT model.

PZ based on von Mises yield criterion

Problem description

As shown in Fig. 1, an infinite plane contains an

arbitrarily oriented micro-crack and a macro-crack

under uniaxial tension load.

The infinite plane is assumed to be elastic. The

cracks can be replaced by the continuously dis-

tributed dislocations based on DDT. The problem can

be equivalent to two subproblems. The first one is

that an infinite plane without the cracks is subjected

to remote uniaxial tension load. The second is that an

infinite plane contains continuously distributed dis-

locations in the crack regions without external load.

So the stresses at an arbitrary location can be

obtained. Based on von Mises yield criterion, the

yield zone can be determined. h and a are shown in

Fig. 1, and the positive values are defined in the

anticlockwise direction. h and a are called as the

micro-crack orientation and the micro-crack angle,

respectively.

Solution scheme

As described in ‘‘Problem description’’ section, the

problem shown in Fig. 1 can be equivalent to two

subproblems. Firstly, the solution to the second sub-

problem will be presented. An edge dislocation with

the components of Burgers vector bx and by is located

at the position (n, 0) in an infinite plane. The stress

components at the position (x, y) due to the disloca-

tion can be given by

�rijðn; x; yÞ ¼ c bxGxijðn; x; yÞ þ byGyijðn; x; yÞ
� �

ij ¼ xx; xy or yy
ð1Þ

where c ¼ 2l=pðjþ 1Þ. l is shear modulus. j is

Kolosov’s constant and j = (3 - v)/(1 ? v) in plane

stress, v being Poisson’s ratio. G(n, x, y) is the dislo-

cation influence function. The first subscript on G(n,
x, y) denotes the Burgers vector, and the last two

denote the associated tractions. The expressions of

G(n, x, y) can be obtained by the book [39].

In order to convenient statement, the macro-crack

is called as crack A and the micro-crack is called as

crack B. The stresses in the global coordinate system

x–o–y at the point (x1 ? n, y1) induced by the dislo-

cation can be given by

�rijðx0; y0; nÞ ¼ c bxGAB
xij ðx1; y1Þ þ byGAB

yij ðx1; y1Þ
n o

ij ¼ xx; xy or yy
ð2Þ

where

x1 ¼ d cos h� nþ x0 cos a� y0 sin a;
y1 ¼ d sin hþ x0 sin aþ y0 cos a

ð3Þ

The tractions in the local coordinate system x0–o0–y0

can be obtained by

�rijðx0; y0; nÞ ¼ c bxGAB
xij ðx0; y0; nÞ þ byGAB

yij ðx0; y0; nÞ
n o

ij ¼ x0y0 or y0y0
ð4Þ

where

GAB
iy0y0 ðx0; y0; nÞ ¼ GAB

ixxðx1; y1Þ sin2 aþ GAB
iyyðx1; y1Þ cos2 a

� GAB
ixyðx1; y1Þ sin 2a

GAB
ix0y0 ðx0; y0; nÞ ¼ GAB

iyyðx1; y1Þ � GAB
ixxðx1; y1Þ

h i
sin a cos a

þ GAB
ixyðx1; y1Þ cos 2a i ¼ x or y

ð5Þ

For formula (4), setting y0 = 0, the associated trac-

tions on crack B due to the dislocation along crack A

can be obtained. Setting y0 = 0, d = 0 and h = a = 0,

the associated tractions on crack A due to the dislo-

cation along crack A can be obtained. In the same

way, the associated tractions on crack A due to the

dislocation along crack B can be obtained, and the
Figure 1 An infinite plane containing a micro-crack and a macro-
crack under uniaxial tension load.
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associated tractions on crack B due to the dislocation

along crack B can be obtained.

Numerical solution of integral equations

Based on the DDT, the micro-crack and the macro-

crack can be modeled by continuously distributed

dislocations. So the tractions along crack B induced

by the total dislocations along crack A and crack B

can be given by

�rB
ijðx0Þ ¼ c

Z aA

�aA

BA
x ðnÞGAB

xij ðx0; nÞ þ BA
y ðnÞGAB

yij ðx0; nÞ
h i

dn

þ c

Z aB

�aB

BB
x ðnÞGBB

xij ðx0; nÞ þ BB
y ðnÞGBB

yij ðx0; nÞ
h i

dn

ij ¼ x0y0 or y0y0

ð6Þ

where BA(n) and BB(n) are the dislocation density of

crack A and crack B, respectively. aA and aB are the

half length of crack A and crack B, respectively. In the

same way, the tractions components on crack A due

to the total dislocations along crack B and crack A can

be obtained.

The first subproblem shown is that an infinite

plane without cracks is subjected to remote uniaxial

tension load r?. It must ensure that the crack face is

traction-free, so the integral equations can be estab-

lished based on the superposition principle.

rA
ij ðxÞ þ �rA

ij ðxÞ ¼ 0 � aA\x\ aA; ij ¼ yy or xy

rB
ijðx0Þ þ �rB

ijðx0Þ ¼ 0 � aB\x0\ aB; ij ¼ y0y0 or x0y0

ð7Þ

where

rA
yyðxÞ ¼ r1; rA

xyðxÞ ¼ 0; rB
y0y0 ðx0Þ ¼ r1 cos2 a;

rB
x0y0 ðx0Þ ¼ r1 sin a cos a

ð8Þ

The analytical solution of singular integral Eq. (7)

is difficult to obtain, but the numerical solution can

be obtained by Gauss–Chebyshev quadrature

method [47, 48]. The cracks are ‘singular at both

ends,’ so the form of dislocation density function may

be given by

BðsÞ ¼ /ðsÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� s2Þ
q

ð9Þ

where /ðsÞ is an unknown function. And then Eq. (7)

can be replaced approximately by a series of alge-

braic equations. It can be written as

� p
c
r1ij ðxÞ ¼

1

N

XN

I¼1

aA /A
x ðsIÞGAA

xij ðtk; sIÞ þ /A
y ðsIÞGAA

yij ðtk; sIÞ
h in

þ aB /B
x0 ðsIÞGBA

x0ijðtk; sIÞ þ /B
y0 ðsIÞGBA

y0ijðtk; sIÞ
h io

ij ¼ yy or xy

� p
c
r1ij ðx0Þ ¼

1

N

XN

I¼1

aA /A
x ðsIÞGAB

xij ðtk; sIÞ þ /A
y ðsIÞGAB

yij ðtk; sIÞ
h in

þ aB /B
x0 ðsIÞGBB

x0ijðtk; sIÞ þ /B
y0 ðsIÞGBB

y0ijðtk; sIÞ
h io

ij ¼ y0y0 or x0y0

ð10Þ

where

sI ¼ cos pð2I � 1Þ=2N½ � I ¼ 1; 2; . . .;N

tk ¼ cos pk=N½ � k ¼ 1; 2; . . .;N � 1
ð11Þ

The extra equations must be established to solve

Eq. (10). Notice that, on the crack, there is no net

dislocation.

XN

I¼1

/A
x ðsIÞ ¼

XN

I¼1

/A
y ðsIÞ ¼

XN

I¼1

/B
x0 ðsIÞ ¼

XN

I¼1

/B
y0 ðsIÞ ¼ 0

ð12Þ

So Eq. (10) can be solved and /ðsIÞ can be obtained.

Further, the stress components at an arbitrary point

(x, y) can be given by

rijðx; yÞ ¼ 1

N
c
XN

I¼1

aA /A
x ðsIÞGxijðx; yÞ þ /A

y ðsIÞGyijðx; yÞ
h in

þ aB /B
x0 ðsIÞGx0ijðx; yÞ þ /B

y0 ðsIÞGy0ijðx; yÞ
h io

þ r1ij ij ¼ xx; xy or yy

ð13Þ

where r1yy ¼ r1 and r1xx ¼ r1xy ¼ 0. PZ can be

obtained by yield criterion. Considering the case of

plane stress, the von Mises yield criterion is given by

ðr1 � r2Þ2 þ ðr2Þ2 þ ðr1Þ2 ¼ 2r2f ð14Þ

where rf is the yield limit and

r1;2 ¼
1

2
rxxðx; yÞ þ ryyðx; yÞ
� �

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxxðx; yÞ � ryyðx; yÞ
� �2þ 4r2xyðx; yÞ

q
ð15Þ

Substituting Eqs. (13) and (15) into (14), the

boundary of PZ can be obtained.

PZ based on the DDT model

Problem description

In the section, PZ is modeled by the distributed dis-

location technique, which is called as the DDT model.
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As shown in Fig. 2, an infinite plane contains a finite

macro-crack, a pair of symmetric micro-cracks and

two plastic strips under uniaxial tension load r?. The

edge dislocations are emitted from the macro-crack

tip. And PZ will be generated at the macro-crack tip

under remote uniform tension load. In order to solve

the problem, some assumptions and simplifications

are made as follows:

1. The material is assumed to be elastic–perfectly

plastic, namely that the tensile stress ryy in PZ is

equal to the yield limit.

2. The plasticity at the micro-cracks tip is neglected,

because PZ at the micro-cracks tip is relatively

small.

3. The edge dislocations in PZs are distributed

continuously along the line of the macro-crack.

The cracks can be replaced by the continuously dis-

tributed dislocations based on DDT. In order to narrate

conveniently, PZs, the macro-crack and the micro-

cracks are marked as ‘1,’ ‘2,’ ‘3,’ ‘4’ and ‘5,’ respectively,

as shown in Fig. 2. The problem can be equivalent to

two subproblems. The first one is that an infinite plane

without the macro-crack and the micro-cracks is sub-

jected to remote uniform tension load. The second is

that an infinite plane contains continuously distributed

dislocations in five regions without external load.

Solution scheme

Firstly, the solution to the second subproblem will be

presented. The stresses at point (xi, 0) in region ‘i’

induced by the dislocation at location (nj, 0) along

region ‘j’ can be given by

�rji
nmðxiÞ ¼ c bxj

G
ji
xjmnðnj; xiÞ þ byj

G
ji
yjmnðnj; xiÞ

n o

mn ¼ xy or yy
ð16Þ

Based on the principle of superposition, the stres-

ses along region ‘i’ induced by the all dislocations in

five regions can be given by

�ri
mnðxiÞ ¼ c

X5

j¼1

Z Rj

�Rj

Bxj
ðnjÞG

ji
xjmnðnj; xiÞ þ Byj

ðnjÞG
ji
yjmnðnj; xiÞ

n o
dnj

mn ¼ xy or yy

ð17Þ

where Rj is the half length of the region ‘j.’ R1 = 0.5p1,

R2 = 0.5p2, R3 = a1 and R4 = R5 = a2. B(nj) is the dis-

location density function of the region ‘j.’ For two

arbitrarily oriented and located cracks, the dislocation

influence functions G(d, h, a) have been given by ‘‘PZ

based on von Mises yield criterion’’ section. So the

dislocation influence function Gji(nj, xj) in this problem

can be obtained by substituting the parameters d, h and
a into dji, hji and aji. Gji(nj, xj) = Gji(nj, xj, Rj, dji, hji, aji),

and the parameters dji, hji and aji are given in Table 1.

Where p1 is PZ size of the left tip of the macro-crack

and p2 is PZ size of the right tip. a1 and a2 are the half

length of the macro-crack and the micro-cracks,

respectively. The definition of the parameters d, h and
a is same to Fig. 1. d is the distance between the

macro-crack center and the micro-crack center.

Numerical solution of integral equations

For the problem shown in Fig. 2, the cracks face must

be ensured traction-free. And the tensile stress ryy in

Figure 2 An infinite plane containing a finite macro-crack and a
pair of symmetric micro-cracks under uniaxial tension load.

Table 1 Parameters dji, hji and aji in this model

Ji aji dji hji

11 0 0 0
12 0 0.5p1 ? 0.5p2 ? 2a1 0
13 0 0.5p1 ? a1 0
14 a [(d13)

2 ? d2 ? 2d d13cosh]
0.5 sin-1[dsinh/d41]

15 -a [(d13)
2 ? d2 ? 2d d13cosh]

0.5 -sin-1[dsinh/d41]
22 0 0 0
23 0 0.5p2 ? a1 p
24 a [(d23)

2 ? d2-2d d23cosh]
0.5 p-sin-1[dsinh/d42]

25 -a [(d23)
2 ? d2-2d d23cosh]

0.5 sin-1[dsinh/d42]-p
33 0 0 0
34 a d h
35 -a d -h
44 0 0 0
45 -2a dsinh a ? 0.5p
55 0 0 0

13494 J Mater Sci (2017) 52:13490–13503



PZs is equal to the yield limit. So the integral equa-

tions can be established as follows.

� p
c
ri

mnðxÞ ¼
1

p

X5

j¼1

Z Rj

�Rj

Bxj
ðnjÞG

ji
xjmnðnj; xiÞ þ Byj

ðnjÞG
ji
yjmnðnj; xiÞ

n o
dnj

mn ¼ xy or yy

ð18Þ

where

r1yyðxÞ ¼ r2yyðxÞ ¼ r1 � rf ; r
3
yyðxÞ ¼ r1;

r4yyðxÞ ¼ r5yyðxÞ ¼ r1 cos2ðaÞ
r1xyðxÞ ¼ r2xyðxÞ ¼ r3xyðxÞ ¼ 0;

r4xyðxÞ ¼ r5xyðxÞ ¼ r1 cos a sin a

ð19Þ

where r? and rf are the remote tension load and the

yield limit, respectively. The analytical solution of

Eq. (18) is difficult to be obtained, but its numerical

solution can be obtained by Gauss–Chebyshev quadra-

ture method [47, 48]. For the macro-crack and the micro-

crack, they are singular at their both ends. So the form of

the dislocation density functions can be given by

BjðsÞ ¼ /ðsjÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� s2j Þ
q

j ¼ 3; 4; 5 ð20Þ

For the PZs, they are bounded at their both ends. So

the form of the dislocation density functions can be

given by

BjðsÞ ¼ /ðsjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s2j Þ

q
j ¼ 1; 2 ð21Þ

where /ðsjÞ is the unknown function. Equation (18)

can be replaced approximately by a series of alge-

braic equations based on Gauss–Chebyshev quadra-

ture method. It can be written as

�p
c
ri

mnðtiKÞ ¼
X5

j¼1

XN

I¼1

WjRj /xj
ðsjIÞGji

xjmnðsjI ;tiKÞþ/yj
ðsjIÞGji

yjmnðsjI ;tiKÞ
n o

mn¼xyoryy

ð22Þ

where

s1I ¼ s2I ¼ cos pI=ðN þ 1Þ½ � I ¼ 1; 2; . . .;N

s3I ¼ s4I ¼ s5I ¼ cos pð2I � 1Þ=2N½ � I ¼ 1; 2; . . .;N

t1K ¼ t2K ¼ cos pð2K � 1Þ=ð2N þ 2Þ½ � K ¼ 1; 2; . . .;N þ 1

t3K ¼ t4K ¼ t5K ¼ cos pK=N½ � K ¼ 1; 2; . . .;N � 1

W3 ¼ W4 ¼ W5 ¼ 1=N; W1 ¼ W2 ¼ ð1� s22Þ
�
ðN þ 1Þ

ð23Þ

The extra equations must be established to solve

Eq. (22). Notice that there is no net dislocation on the

macro-crack and the micro-cracks.

XN

I¼1

/xj
ðsjIÞ ¼

XN

I¼1

/yj
ðsjIÞ ¼ 0 j ¼ 3; 4; 5 ð24Þ

So Eq. (22) can be solved. PZ size p1 and p2 can be

obtained and /ðsjIÞ can be known. Further, the dis-

location density functions B(s) of PZ can be obtained

by Eq. (21) where

/ðsjÞ ¼
2

N þ 1

XN

I¼1

XN�1

h¼0

sin
Ip

N þ 1

	 

sin

Ip
N þ 1

ðh þ 1Þ
	 
"

sin½ðh þ 1Þ arccosðsÞ�
sin½arccosðsÞ�



/ðsjIÞ

ð25Þ

Results and discussion

In this section, PZ of the right macro-crack tip is only

analyzed. The results of macroscopic analysis and

microscopic analysis are shown as follows.

Macroscopic analysis of PZ

Comparison between theoretical and experimental results

In this section, the case is considered that an infinite

plane contains only a center crack without micro-

cracks under uniaxial tensile load. The comparison

between theoretical and experimental results is shown

in Fig. 3. The crack is located in �1� x=a� 1. The

parameter a is the half length of the crack. Due to the

symmetry, only the upper half part of PZ is shown.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Theoretical PZ in the paper
 Experimental PZ [22]

crack

x/a

y
a

Figure 3 Comparison between theoretical PZ in this paper and
experimental PZ.
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The experimental result was obtained under the

conditions of 2024-T3 Alclad specimen of size

(420 9 410 9 1 mm) containing a center crack sub-

jected to uniaxial tensile load. The crack length to

sheet width ratio is 0.25. The applied stress to the

yield limit ratio is 0.6. The experimental result of PZ

boundary was determined based on Tresca yield

criterion. Compared with the experimental condi-

tions, the theoretical result in Fig. 3 is obtained by

Tresca yield criterion. And r?/rf is also taken as 0.6.

The results show that the shape of PZ in the paper

is similar to the experimental result, and the size of

PZ is slightly smaller than the experimental result. So

the method in the paper can be applied to predict PZ.

The effect of the micro-crack on PZ

The stress field can be obtained by Eq. (13), and PZ is

determined by von Mises yield criterion. r?/rf is

taken as 0.5. a is half length of the macro-crack. Half

length of the micro-crack is taken as 0.1a.

The variation of PZ shape and size versus the

location of the micro-crack is shown in Figs. 4 and 5.

The red line denotes the boundary of PZ in the case

that an infinite plane contains only the macro-crack

without the micro-crack, and the thick black line

denotes the boundary in the case that an infinite

plane contains a micro-crack and a macro-crack.

In order to explain the results in Figs. 4 and 5

clearly, the case is considered that an infinite plane

contains only a center crack. The contour repre-

sentation of the normalized stress ryy/r
? is shown

in Fig. 6. The white region denotes the stress

shielding, and the gray region denotes the stress

amplification.

The results in Figs. 4 and 5 show that the micro-

crack has a little amplification effect on PZ of the

macro-crack tip when it locates in front of PZ of the

macro-crack tip. This is because the macro-crack

locates in the stress amplification regions of the

micro-crack. As the micro-crack is close to PZ of the

macro-crack tip, PZ of the macro-crack tip and the

Figure 4 Variation of PZ
versus the location of the
parallel micro-crack (a = 0�).
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micro-crack tip will join together. PZ of the macro-

crack tip increases drastically. When the micro-crack

enters into PZ of the macro-crack tip, it has an

obvious shielding effect on the plasticity of the

macro-crack tip. This is because the macro-crack tip

locates in the stress shielding regions of the micro-

crack. The stress field near the macro-crack tip is

relaxed by the micro-crack. When the micro-crack is

behind the macro-crack tip, it decreases the width of

PZ but increases the height. On the whole, in the case,

the micro-crack has a little effect on PZ size of the

macro-crack tip. Comparing Figs. 4 and 5, it can be

observed that the micro-crack angle has a little effect

on PZ of the macro-crack tip.

For LEFM, the stress field near the crack tip is

obtained based on Williams [49] expansion, and the

first-order term of Williams expansion is considered

only. But some recent works [50–53] shown that the

high-order terms of Williams expansion had a sig-

nificant effect on the stress field and the crack prop-

agation. The stress field based on DDT is the

complete stress field, so the results of PZ in the paper

are more precise. However, the stresses will redis-

tribute as the plasticity generates due to stress

relaxation. So PZ in this paper by the yield criterion is

an approximate value.

Figure 5 Variation of PZ
versus the location of the
inclined micro-crack
(a = 30�).
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Microscopic analysis of PZ

Comparison and analysis about PZ size

Considering the case that an infinite plane contains a

center crack under uniform tensile load, the results of

PZ size are obtained by different methods, as shown

in Fig. 7.

The variation of normalized PZ size p/a versus the

applied stress level under remote uniform tensile

load is depicted, and the comparison between the

theoretical results and the experiment results is

shown in Fig. 7. The results obtained by Dugdale

model are same as BCS model, and the formula for

calculating PZ size is given by

p ¼ a sec
pr1

2rf

� �
� 1

	 

ð26Þ

The experimental results were obtained under the

conditions of 2024-T3 Alclad specimen of size

(420 9 410 9 1 mm) containing a center crack sub-

jected to uniaxial tensile load. PZ size by experiments

is the distance from the crack tip to the farthest point

of PZ boundary.

The stresses are obtained by DDT, as shown in

Fig. 6. PZ size along the crack line can be calculated

based on von Mises yield criterion under plane stress

condition. The results in this paper are obtained by

von Mises yield criterion without considering stress

relaxation, so it is smaller than other results.

The results in Fig. 7 show that the results are very

close among Dugdale model, BCS model, the exper-

iments and the DDT model. So it is reasonable that

the DDT model is applied to calculate PZ size. The

following results are obtained by the DDT model.

Influence of micro-cracks on dislocation distribution

at the macro-crack tip

In order to view clearly, the schematic diagram of the

micro-cracks and the macro-crack is shown in Fig. 8.

As analyzed above, PZs are modeled as an array of

continuously distributed edge dislocations. The dis-

location density function can show the status of dis-

location distribution in PZ, and it is plotted as

follows.

The variation of normalized dislocation density

versus the position x/a1 under remote uniform ten-

sile load for different applied stress level is depicted

in Fig. 9. The other parameters are d/a1 = 3, a2/

a1 = 0.3, a = 0� and h = 30�. The results show that

the dislocations are in the form of inverse pileup,

which is consistent with previous observations by

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

 Dugdale's model and BCS model [23]
 Irwin's model
 Long's model [14]
 Experiments by Mishra [22]
 PZ size based on von Mises yield 

          criterion in the paper
 PZ size by the DDT model in the paper

p
a

fσ σ

Figure 7 Comparison about PZ size obtained by different
methods.

Figure 8 Schematic diagram of the micro-cracks parameters.

1.0 1.1 1.2 1.3 1.4
0.0

0.3

0.6

0.9

1.2

1.5

1x a

σ∞/σf =0.2
σ∞/σf =0.3
σ∞/σf =0.4
σ∞/σf =0.5

Figure 9 Normalized dislocation density function in PZ for
different applied stress level.
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experiments [18, 22]. The crack tip piles up a large

amount of dislocations. As the applied stress increa-

ses, PZ size will increase dramatically, and the dis-

locations piled at the macro-crack tip will increase.

The variation of normalized dislocation density

versus the location x/a1 under remote uniform tensile

load for different distance d/a1 is depicted in Fig. 10.

The other parameters are r?/rf = 0.3, a2/a1 = 0.3,

a = 0� and h = 60�. The results show that the micro-

cracks decrease PZ size. PZ size of the macro-crack

tip decreases with the distance d/a1 decreasing. In

this case, the micro-cracks have a hindering effect on

the dislocations omitted from the macro-crack tip.

The variation of normalized dislocation density

versus the location x/a1 under remote uniform tensile

load for different micro-crack orientation h is depic-

ted in Fig. 11. The other parameters are r?/rf = 0.4,

a2/a1 = 0.3, a = 0� and d/a1 = 3. The results show

that the micro-cracks have an amplification effect on

PZ size at h = 20�, while they have a shielding effect

at h = 60� and h = 80�. The micro-crack orientation h
has a little effect on the dislocation pileup of the

macro-crack tip.

The results in Figs. 9, 10 and 11 show that the

dislocations are in the form of inverse pileup and the

dislocation density at the both end of PZ are boun-

ded, which is similar to dislocation distribution of the

dislocation-free zone model. The dislocation density

obtained by BCS model is infinite at the crack tip,

which is not in conformity with the truth. So it is

more proper that the DDT model is applied to ana-

lyze the dislocation distribution in PZ. However, for

many materials, it is possible that several glide planes

at the crack tip are activated simultaneously, and

then a broad PZ is formed. In this case, the disloca-

tions are not distributed along the line of the macro-

crack, and the DDT model cannot be applied to

represent the shape of PZ, but it is still valid to cal-

culate PZ size.

Influence of the micro-crack angle on PZ size

The variation of normalized PZ size versus the micro-

crack angle under remote uniform tensile load for

different micro-crack orientation is depicted in

Fig. 12. The other parameters are d/a1 = 2, a2/

a1 = 0.2 and r?/rf = 0.4. p0 is PZ size of the macro-

crack tip without micro-cracks. The results show that

the micro-cracks have a little effect on PZ size of the

macro-crack tip at 60�\ a\ 120�. In this case, the

inclination of the micro-cracks is relatively large, so
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0.0
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Figure 10 Normalized dislocation density function in PZ for
different distance d/a1.
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Figure 11 Normalized dislocation density function in PZ for
different micro-crack orientation h.
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the tractions on the micro-cracks face are relatively

small. Hence, the micro-cracks have a little effect on

the macro-crack. The effect of the micro-cracks on PZ

size will get stronger as the inclination of the micro-

cracks decreases at 0�\ a\ 60� and 120�\ a\ 180�.

Influence of the micro-crack length on PZ size

The variation of normalized PZ size versus the micro-

crack length under remote uniform tensile load for

different micro-crack orientation is depicted in

Fig. 13. The other parameters are d/a1 = 2, a = 0�
and r?/rf = 0.4. The results show that the effect of

the micro-cracks on PZ size of the macro-crack tip

will get stronger as the micro-cracks length increases.
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Figure 13 Normalized PZ size versus the micro-crack length.
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Figure 14 Contour chart of normalized PZ size p2/p0.
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The micro-cracks increase PZ size at h = 15�, while

they have a shielding effect on PZ size at h[ 30�.
Next, the amplification and shielding effect of the

micro-cracks on PZ size will be analyzed in detail.

Influence of the micro-crack location (x0/a1, y0/a1) on PZ

size

The variation of normalized PZ size p2/p0 versus the

micro-crack location (x0/a1, y0/a1) under remote

uniform tensile load for different micro-crack angle is

depicted in Fig. 14. The macro-crack is located in

�1� x0=a1 � 1. The other parameters are a2/a1 = 0.2

and r?/rf = 0.4. x0/a1 and y0/a1 are the horizontal

distance and vertical distance between the macro-

crack center and the micro-crack center, respectively,

as shown in Fig. 8.

The micro-cracks have an amplification effect on

PZ size in the cyan regions, and they have a shielding

effect on PZ size in the gray regions. The results show

that the amplification and shielding regions are

divided into five strip-shaped regions, which are

amplification, shielding, amplification, shielding and

amplification region from left to right, respectively.

The size and shape of shielding and amplification

regions are different for the different micro-crack

angle a. Considering the case of an infinite plane

containing a center crack under uniaxial tension load,

as shown in Fig. 6. Figure 6 shows that the stress

concentration is produced near the crack tip and the

stress shielding is produced in the bottom or top of

the crack face, which is the reason that there are

shielding regions when the micro-cracks are located

in the bottom or top of the macro-crack. There are

amplification regions when the micro-cracks are

located in front of or behind the macro-crack. It can

be observed that the micro-cracks have a little

amplification effect on PZ size at about x0/a1\-1

and x0/a1[ 2. This is because that the distance

between the micro-cracks and the macro-crack is

relatively large. At about -1\ x0/a1\ 1 and

0.2\ y0/a1\ 0.6, the micro-cracks has a relatively

large effect on PZ size.

Conclusion

In the paper, the problem of an infinite plane con-

taining a macro-crack and micro-cracks is studied. PZ

is determined based on macroscopic and microscopic

methods. The dislocation density function in PZ is

obtained. The effect of the micro-crack on PZ of the

macro-crack tip is analyzed. Some conclusions can be

summarized as follows.

1. When the micro-crack locates in front of PZ of the

macro-crack tip, it has a little amplification effect

on PZ of the macro-crack tip.

2. As the micro-crack is close to the macro-crack tip,

PZ of the macro-crack tip and the micro-crack tip

will join together.

3. When the micro-crack enters into PZ of the

macro-crack tip, it has an obvious shielding effect

on PZ of the macro-crack tip.

4. When the micro-crack is behind the macro-crack

tip, it decreases the width of PZ but increases the

height. On the whole, it has a little effect on PZ

size.

5. The dislocation distribution in PZ is in the form

of inverse pileup.

6. The effect of micro-cracks on PZ size will get

stronger as the inclination of the micro-cracks

decreases.

7. The effect of micro-cracks on PZ size will get

stronger as the micro-cracks length increases.

8. The amplification and shielding regions are

divided into five strip-shaped regions. And they

appear alternately from left to right. The size and

shape of the shielding and amplification regions

are different for the different micro-crack angle.

The results in the paper can provide some useful

information to predict the plastic behaviors in the

macro-crack tip for the materials containing micro-

cracks. What is more, the analysis of amplification and

shielding regions is important to materials design.
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