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ABSTRACT

A facile two-step hydrothermal approach is adopted to synthesize MoSe2/N-

doped RGO (NG) composites with the N/C atomic percentage changing from

1.13 to 5.16 at%. In the composites, nanoclusters of MoSe2 nanosheets are dis-

persed on plicated NG nanosheets. The electrochemical measurement suggests

that the MoSe2/NG composites exhibit enhanced electro-catalytic HER activity

as compared to MoSe2 and MoSe2/RGO. Moreover, as the N/C ratio of NG is

increased, the activity of MoSe2/NG increases firstly and then decreases. At low

N/C ratio, the impact of interfacial energy barrier between MoSe2 and NG is

negligible and the electron transfer is substantial, so the activity of the MoSe2/

NG composites increases with carrier concentration in NG. However, at high

N/C ratio, the energy barrier blocks the electron transfer from NG to MoSe2
remarkably. Consequently, the MoSe2/NG composites with an intermediate

N/C ratio have the highest activity. Owing to the synergistic effect of NG and

MoSe2, the Tafel slope of the composites is reduced from 114.69 to

78.45 mV dec-1 by 32% as compared to pure MoSe2. The results provide us

valuable information for efficient design of transition metal dichalcogenide

catalysts for electro-catalytic hydrogen evolution.

Introduction

With growing population and expanding industrial-

ization in the world, the demands for energy have

been promptly increased in recent years [1]. To date,

gigantic consumption of fossil fuel seriously threat-

ens the environmental security. So it is quite urgent to

develop eco-friendly energy sources replacing fossil

fuels. Hydrogen energy is believed to be one of

promising clean and renewable energies [2–4],
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Electro-catalytic hydrogen evolution reaction (HER)

is an effective method to produce hydrogen with

high efficiency [5]. Platinum (Pt) has been proved to

be state-of-the-art catalyst for electro-catalytic HER,

but the large-scale application is limited by its

extremely high cost [6–8]. It is very necessary to

explore cheap and efficient electro-catalysts.

MoSe2 is a typical transition metal dichalcogenides

(TMDs) with lamellar structure in which each Se-Mo-

Se sandwiched layer is held together by van der

Waals interaction [9]. Few-layer counterparts can be

fabricated by hydrothermal method [10], mechanical

exfoliation [11] and chemical vapor deposition (CVD)

[12, 13]. Recently, it was found that MoSe2 might be a

promising electro-catalyst for HER, and the unsatu-

rated Se edges in MoSe2 are electro-catalytically

active [14, 15]. According to the DFT calculations, the

hydrogen binding energy at S/Se edges of MoS2 and

MoSe2 is -34.6 and -13.1 meV/f.u., respectively. So

the binding of hydrogen atoms on Se edge is weaker

than that on S edge, and thus a higher exchange

current for hydrogen evolution was predicted for

MoSe2 [17]. Moreover, the Fermi energy (EF) of MoSe2
is more close to the normal hydrogen electrode with

respect to MoS2. As a result, 2H–MoSe2 is more active

than 2H–MoS2 for HER, which was proved by the

HER experiments [16, 17]. However, the electrical

conductivity of both MoSe2 and MoS2 is not good,

which restricts their activity to some degree [18, 19].

As well known, graphene sheets possess good elec-

trical conductivity and very large specific surface

area. If MoSe2 or MoS2 are dispersed on graphene

sheets, their conductivity should be significantly

improved. So graphene sheets are regarded as the

ideal support [19–23]. Since N-doping can effectively

regulate the electronic states and chemical features,

N-doped RGO (NG) as one of the derivatives of

graphene usually exhibits better performance than

graphene [24, 25] and has attracted intensive atten-

tion. For instance, pyrrolic nitrogen atoms in gra-

phene lattice were proved to be effective to activate

and reduce the oxygen molecules in oxygen reduc-

tion reaction (ORR), that is, N-doping might regulate

the electronic states and chemical properties of gra-

phene [26]. In addition, NG was also regarded to be

promising in HER, because nitrogen atoms in NG

have strong interaction with H? for HER [25]. For

example, CdS/NG hybrid structure showed

enhanced catalytic activity for H2 evolution. The

doped N facilitates the reaction kinetics of HER, and

further substantially improves the activity [27]. Sim-

ilar effects have been reported in other systems, such

as, Fe2P/NG nanocomposites and MoS2/NG hybrid

[28, 29]. But the optimal N component and the

mechanism is not well known.

In this paper, a facile two-step hydrothermal

approach is adopted to synthesize MoSe2/NG com-

posites with N/C ratio changing from 1.13 to

5.16 at%. It is expected that NG in the composites act

as a channel for electron transfer, and the electronic

states and conductivity are regulated by changing the

atomic ratio of N/C. X-ray photoelectron spec-

troscopy (XPS), X-ray diffraction (XRD), Raman

spectra, field emission scanning electron microscopy

(FESEM) and high-resolution transmission electron

microscopy (HRTEM) are used to characterize the

structures of MoSe2/NG composites. The depen-

dence of electro-catalytic activity on the carrier con-

centration in NG is studied, and the influence on the

HER performance is discussed in details.

Experimental

Synthesis of samples

Chemical reagents

All chemical reagents, including graphite powders,

sodium nitrate (NaNO3), sulfuric acid (H2SO4, 98%),

potassium permanganate (KMnO4), hydrogen per-

oxide (H2O2, 30%), sodium molybdate dihydrate

(Na2MoO4�2H2O), hydrazine hydrate (N2H4�H2O,

85%), selenium powder (Se), ammonia solution

(NH3�H2O, 30%), are analytical grade and are used

without further purification.

Synthesis of NG

Firstly, the GO sheets were fabricated from graphite

powders by the modified Hummer’s method [30].

Then 15 mg GO was dispersed into 30 mL distilled

water with magnetic stirring for 5 min and with

sonication for 1 h, and 100 lL 30% ammonia solution

as the nitrogen source was added into the above

solution. Subsequently, different amount of N2H4�
H2O was introduced to adjust the atomic ratio of

N/C. Finally, the homogeneous solution was trans-

ferred into a 50-mL Teflon-lined autoclave and kept

at 160 �C for 6 h. The precipitates were collected,
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washed by distilled water three times and by ethanol

two times, and then dried at 80 �C in a vacuum oven

overnight to prepare four NG samples, NG1, NG2,

NG3, and NG4. The atomic ratio of N/C was mea-

sured by XPS spectra.

Synthesis of MoSe2/NG

Five milligrams of as-synthesized NG was dispersed

into 10 mL distilled water with magnetic stirring for

5 min and with sonication for 1 h, then 0.484 g Na2
MoO4�2H2O was added into the solution with stirring

for another 5 min to form uniform solution. 0.316 g Se

powderwas dissolved into 5 ml hydrazine hydrate and

maintained in another 10-mL flask for 24 h. Finally, the

mixed solutionwas transferred into 50-mLTeflon-lined

autoclave and kept at 220 �C for 12 h. The precipitates

were collected, washed by distilled water three times

and by ethanol two times, and dried at 80 �C in a vac-

uum oven overnight. MoSe2/RGO composites and

pureMoSe2 were also prepared for comparison. To this

end, RGO rather than NG was adopted in the above

preparation route and pure MoSe2 in absence of NG.

Microstructure characterization

XRD (SHIMADZU XRD-7000S diffractometer) was

adopted to analyze the phase structure of the as-

prepared samples. FESEM (FEI Quanta 600S) and

HRTEM (JEOL JEM 2100F) were adopted to charac-

terize the morphology and microstructure of the

samples. N2 adsorption–desorption isotherms were

measured on Micromeritics ASAP2020. The specific

surface areas were determined by the Brunauer–

Emmett–Teller (BET) method. Raman spectra were

examined by a Horiba HR800 spectrometer with a

633-nm laser as the excitation light source. XPS

measurements were performed on Thermo Scientific

K-Alpha XPS spectrometer, and the binding energies

were corrected by referencing the peak of C 1s at

284.80 eV. PL spectra were detected with a PTI QM40

spectrometer using a 532-nm line from a Xenon lamp.

Electrochemical evaluation

One milligram of catalysts (MoSe2/NG, MoSe2/RGO,

and MoSe2) was suspended in solution containing

400 lL ethanol and 10 lL of 5% nafion solution by

sonication for 40 min. Then the uniform inks were

drop-casted on carbon fiber paper (CFP) with the

electrode area of 1 cm2 and dried in air for 12 h. The

electrochemical experiments were done in an Autolab

PGSTAT 128 N station via a standard three-electrode

configuration. The CFP electrode was adopted as the

working electrode, and a graphite rod and Ag/AgCl

were used as counter and reference electrodes,

respectively. Pt/C with the same amount of MoSe2/

NG loaded on the CFP was also used as working

electrode for comparison. The Ag/AgCl reference

electrode was calibrated to be -0.226 V (vs. RHE) by

E(RHE) = E(Ag/AgCl) ? 0.197 ? 0.059 pH. The

electro-catalysis was measured using linear sweep

voltammetry (LSV) from 0.2 to -0.5 V (vs. RHE) with

a scanning rate of 5 mV/s in 0.5 M H2SO4. The

electrochemical impedance spectroscopy (EIS) was

measured in the frequency range from 100 kHz to

1 Hz centered at -0.2 V (vs. RHE) with an amplitude

of 10 mV. The Ohmic loss in all the data (except for

EIS) was corrected. The Nyquist plots were employed

to fit the Rs of MoSe2, MoSe2/RGO, MoSe2/NG1,

MoSe2/NG2, MoSe2/NG3, MoSe2/NG4, and the

values were 1.30, 1.57, 1.49, 1.67, 1.64, and 1.53 X,
respectively. Cyclic voltammetry (CV) was used to

measure the electrochemical double-layer capaci-

tance at non-Faradaic potential and to estimate the

effective electrode surface area. The scan rates are 10,

20, 50, 100, and 200 mV s-1. The stability of electro-

catalysts was examined by continuous cycling

between 0 V and -0.4 V (vs. RHE) at a scanning rate

of 100 mV s-1 for 1000 cycles. Before measurement,

the electrolyte was deaerated with high-purity N2 for

30 min.

Results and discussion

Figure 1a shows the XPS spectra of the NG samples.

The peaks at 284.8 and 400.3 eV can be assigned to

the binding energies of C 1s and N 1s. Figure 1b–e

displays the high-resolution XPS (HR-XPS) spectra of

N 1s. Evidently, nitrogen dopants have been suc-

cessfully introduced into the samples; moreover, the

N 1s peak is enhanced gradually from samples NG1

to NG4, indicating the increased N component. The

atomic percentage of N/C in NG1, NG2, NG3, and

NG4 is 1.13, 1.94, 3.0, and 5.16 at%, respectively, and

the results are listed in Table 1. The HR-XPS peak of

N 1s can be resolved into three peaks at 398.4, 400.1,

and 401.3 eV corresponding to pyridinic-N, pyrrolic-

N, and graphitic-N, respectively, [31] as listed in
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Table 1. More than 50% N exists in the formation of

pyrrolic-N, about 20% in graphitic-N, and 10% in

pyridinic-N. The pyridinic-N in NG sheets might

result in new electronic states at Fermi level and

improve the electric conductivity [32].

Figure 2 shows the XRD patterns of the as-

synthesized MoSe2, MoSe2/RGO, and MoSe2/NG

composites. The diffraction peaks of MoSe2 can be

perfectly indexed to the (002), (100), (103), (105), and

(110) planes of hexagonal 2H-MoSe2 (JCPDS 29-0914)

[33]. However, no diffraction peak of RGO or NG is

observed in MoSe2/RGO and MoSe2/NG compos-

ites, and the peaks of composites are similar to those

in pure MoSe2. It indicates that the RGO or NG is not

well stacked during the hydrothermal process [34],

and RGO and NG affect the growth of MoSe2

nanosheets little. The broad diffraction peaks suggest

nanosize feature of MoSe2 sheets [10]. The full width

at half maximum (FWHM) of diffraction peaks of

MoSe2/RGO and MoSe2/NG composites is listed in

Table S1[Electronic Supplementary Information], and

it is slightly larger than that of pure MoSe2 owing to

the lowered crystallinity in the composites since RGO

and NG sheets promote the nucleation and thus

reduce the size of MoSe2 nanosheets.

Figure 3 shows the Raman spectra of the samples.

The Raman peaks at 237 and 281 cm-1 are from the

out-of-plane A1g and in-plane E1
2g vibration modes in

hexagonal MoSe2 [10] In all the samples, the intensity

of E1
2g mode is lower than that of A1g mode, charac-

teristics of edge-rich feature in MoSe2 nanosheets

Figure 1 a XPS spectrum of NG; HR-XPS spectrum of N in b NG1, c NG2, d NG3, e NG4.

Table 1 Nitrogen atomic percentage, g50, Tafel slope, and fitting results of Nyquist plots in MoSe2, MoSe2/RGO and MoSe2/NG

Samples N/C (%) N g50 (V vs. RHE) Tafel slope

(mV dec-1)

Rs (X) Rct (X)

Pyridinic-N

(%)

Pyrrolic-N

(%)

Graphitic-N

(%)

MoSe2 – – – – -0.417 114.69 1.30 14.46

MoSe2/RGO – – – – -0.345 90.87 1.57 10.68

MoSe2/NG1 1.13 10.42 63.51 26.07 -0.332 82.36 1.49 9.41

MoSe2/NG2 1.94 8.10 57.59 34.31 -0.294 78.45 1.67 6.82

MoSe2/NG3 3.00 6.15 80.54 13.31 -0.323 84.06 1.64 8.24

MoSe2/NG4 5.16 24.91 55.87 19.22 -0.327 81.57 1.53 9.30
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[35]. The peaks at 1334 and 1584 cm-1 corresponding

to the D- and G-bands of graphene can be identified

from the spectra of MoSe2/RGO and MoSe2/NG

samples [36, 37]. So the MoSe2/RGO and MoSe2/NG

composites are successfully fabricated via a two-step

hydrothermal method. The intensity ratio of ID/IG
was usually adopted to evaluate the structural dis-

order and defects in graphene [38–40]. The ID/IG ratio

of MoSe2/RGO, MoSe2/NG1, MoSe2/NG2, MoSe2/

NG3, and MoSe2/NG4 is determined as 1.03, 1.14,

1.19, 1.21, and 1.28, respectively. Obviously, the ID/IG
ratio increases with the N/C ratio gradually, that is,

N-doping leads to structural disorder in NG, which is

consistent with the reported results [41].

Figures 4a–f displays the SEM images of pure

MoSe2, MoSe2/RGO, MoSe2/NG1, MoSe2/NG2,

MoSe2/NG3 and MoSe2/NG4, respectively. As

shown in Fig. 4a, pure MoSe2 exists in nanoclusters

which are composed of nanosheets. The lamellar

RGO and NG with plicated feature are clearly

observed in MoSe2/RGO and MoSe2/NG compos-

ites; moreover, MoSe2 nanoclusters are tightly inter-

twined with RGO and NG sheets. It is worth noting

that the plicated feature becomes more remarkable in

MoSe2/NG composites, particularly, in the compos-

ites with the higher N/C ratio. N2 adsorption–

desorption isotherm curves are measured to evaluate

the specific surface area of the as-prepared samples

according to the BET method, and the results are

displayed in Figure S1. The specific surface area of

MoSe2, MoSe2/RGO, MoSe2/NG1, MoSe2/NG2,

MoSe2/NG3, and MoSe2/NG4 is 22.4, 29.5, 34.2, 29.3,

32.2, and 31.8 m2 g-1, respectively. Obviously, the

composites have much larger specific surface area as

compared to the pure MoSe2. Taking the MoSe2/NG3

composite as an example, Fig. 5a–c show the TEM

and HRTEM images, and SAED patterns. It can be

seen from Fig. 5a that the diameter of MoSe2 nan-

oclusters is 120*150 nm. Ultra-thin NG3 sheets are

distinguished from the TEM images. Lamellar struc-

tures with an interplanar spacing of 0.66 nm corre-

sponding to (002) planes of MoSe2 can be identified

from the HRTEM image (Fig. 5b). The SAED patterns

in Fig. 5c suggest that MoSe2 in MoSe2/NG3 sample

is polycrystalline, and the diffraction rings corre-

spond to (100), (103), and (110) planes of hexagonal

2H–MoSe2, as shown in XRD patterns.

The electro-catalytic HER performance of MoSe2,

MoSe2/RGO, and MoSe2/NG is evaluated by using

LSV. Commercial Pt/C catalyst on CFP is also

examined for comparison. Ohmic resistance (iR)

affects the intrinsic performance, Fig. 6a shows the

LSV data after correction. Among all the samples,

pure MoSe2 samples exhibit the smallest current

Figure 2 XRD patterns of as-prepared MoSe2, MoSe2/RGO and

MoSe2/NG.

Figure 3 Raman spectra of as-prepared MoSe2, MoSe2/RGO and

MoSe2/NG.
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density, but the current density is substantially

enhanced in MoSe2/RGO and MoSe2/NG compos-

ites. The overpotential required at a current density

of 10 mA cm-2 (g10) is usually regarded as a bench-

mark to evaluate the activity of HER catalysts. The g10
of MoSe2/RGO, MoSe2/NG1, MoSe2/NG3, and

MoSe2/NG4 is lower than that of pure MoSe2
(-0.261 V vs. RHE). In particular, MoSe2/NG2 has

the lowest g10 of -0.229 V (vs. RHE). To further check

the activity of the samples, the overpotential required

at a current density of 50 mA cm-2 (g50) is measured,

and the results are listed in Table 1. As compared to

pure MoSe2 (-0.417 V vs. RHE), the g50 of MoSe2/

RGO composites (-0.345 V vs. RHE) is lowered by

17%. That is, the synergistic effect of RGO and MoSe2
improves the activity greatly. The g50 value of the

MoSe2/NG composites is further reduced. So

N-doping into graphene could enhance the activity

further. Notably, MoSe2/NG2 exhibits the best

activity owing to the smallest g50. Tafel slope is an

important parameter describing the HER perfor-

mance [42]. The smaller Tafel slope corresponds to

the lower overpotential required for an increased

current density [43]. The Tafel plots are derived from

the polarization curves, and the linear portion is fit-

ted as following:

Figure 4 SEM images of the samples. a MoSe2, b MoSe2/RGO, c MoSe2/NG1, d MoSe2/NG2, e MoSe2/NG3, f MoSe2/NG4.

Figure 5 a TEM, b HRTEM, and c SAED patterns of MoSe2/NG3 samples.
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g ¼ b log jþ a ð1Þ

in which g is the overpotential, j is the current den-

sity, and b is the Tafel slope [15]. As shown in Fig. 6b

and Table 1, the Tafel slope of MoSe2/RGO is cal-

culated as 90.87 mV dec-1, which is smaller than that

of pure MoSe2 (114.69 mV dec-1) by 20%. The Tafel

slope is further reduced to 82.36, 78.45, 84.06, and

81.57 mV dec-1 for MoSe2/NG1, MoSe2/NG2,

MoSe2/NG3, and MoSe2/NG4 composites, respec-

tively. Among them, MoSe2/NG2 possesses the

smallest Tafel slope, indicating the best HER activity.

The results are in agreement with the above LSV

analysis. Importantly, the Tafel slope can be used to

distinguish the pathways of the reaction in the HER

process in acidic electrolyte [44, 45]. In the primary

discharge step, Volmer reaction occurs: H3O
þþ

e� ! Hads þH2O, which is followed by either an

electrochemical desorption step (Heyrovsky reaction):

Hads þH3O
þ þ e� ! H2 þH2O, or a recombination

step (Tafel reaction): Hads þHads ! H2. At the slope of

about 120 mV dec-1, Volmer reaction is indeed the

rate-limiting process for HER, but Heyrovsky or Tafel

reaction is the rate-limiting procedure at a Tafel slope

of 40 and 30 mV dec-1. According to the fitted data,

Volmer reaction seems to be the rate-limiting process

in pure MoSe2 samples, but Volmer–Heyrovsky or

Volmer–Tafel mechanism for MoSe2/RGO and

MoSe2/NG composites. Obviously, the synergistic

effect of RGO/NG and MoSe2 changes the rate-limit-

ing mechanism. For comparison, the HER perfor-

mances of various MoS2 and MoSe2 related materials

have been added in Table S2 (Electronic Supplemen-

tary Information). As compared to the reported

results, the small overpotential and Tafel slope indi-

cate good electro-catalytic activity for HER of the as-

prepared MoSe2/NG composites in this work.

The double-layer capacity, Cdl, is used to determine

the electrochemically active surface area (ECSA) of

catalyst. Figure 6c shows the Cdl calculated from the

CV curves (Figure S2). The Cdl value of MoSe2/RGO

and MoSe2/NG composites are substantially

Figure 6 a Linear sweeping voltammetry, b Tafel plots, c Double-layer capacity currents versus scan rates, d Nyquist plots of MoSe2,

MoSe2/RGO and MoSe2/NG.
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increased as compared to pure MoSe2, which can be

ascribed to the dispersed MoSe2 nanosheets and

more active sites exposed, owing to the large specific

surface area. So, they exhibit enhanced HER activity.

Nearly the same Cdl in MoSe2/RGO and MoSe2/NG

composites indicates no dependence of Cdl on the

N/C ratio. Electrochemical impedance spectroscopy

(EIS) is measured to study the reactions at the elec-

trode/solution interface and the electron transfer

kinetics in the HER process [42]. The Nyquist plots

are displayed in Fig. 6d, and a facile Randle equiva-

lent circuit is plotted in the inset of Fig. 6d to model

the impedance data [46]. The values of Rs and charge

transfer resistance (Rct) are listed in Table 1. Rs is all

about 1.5 X, and the low value indicates an intimate

contact between catalysts and CFP substrate. The Rct

derived from the low frequency zone is related to the

electro-catalytic kinetics at the interface between

electro-catalysts and electrolyte, and a lower Rct cor-

responds to a faster electron transfer [47]. As listed in

Table 1, the MoSe2/RGO and MoSe2/NG composites

have smaller Rct than pure MoSe2, among them, that

of the MoSe2/NG2 composite is the smallest one

(6.82 X). So the electron transfer at electrode/solution

interface in MoSe2/NG2 is fastest, resulting in the

best performance.

In fact, RGO and NG sheets have been adopted as

the supports to improve the electro-catalytic HER

activity. The good electrical conductivity of NG

sheets makes it more effective than RGO. Figure 7a

presents the Mott–Schottky curves. Accordingly, the

carrier concentration in NG is fitted, and the results

are listed in Table S3. The carrier concentration

gradually increases with N/C ratio owing to more

pyridinic-N-doped in NG, [32] and the activity of

MoSe2/NG should increase correspondingly. But the

experimental results deviate from this trend slightly.

As displayed in Fig. 7b, the slope of the Mott–

Schottky curve of pure MoSe2 is negative, character-

istic of p-type feature. It changes from p-type to

n-type upon N-doping, which is confirmed by the

positive slope of Mott–Schottky curve of NG (Fig. 7a).

Figure 7 a Mott–Schottky curves of NG, b Mott–Schottky curves of pure MoSe2, c Schematic diagram of depletion layer at interface

between p-MoSe2 and n-NG, d PL spectrum of MoSe2/NG.
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A p–n junction might be formed when p-MoSe2 is

stacked on n-NG. So a narrow depletion layer emer-

ges at the interface between MoSe2 and NG (Fig. 7c),

resulting in an energy barrier, which will block the

electron transfer from NG to MoSe2 during electro-

catalytic HER process. PL spectra are measured to

examine the change of energy barrier at interface. If

the energy barrier is higher, the photo-induced elec-

tron and holes will be more effectively separated

from each other and the intensity of PL peak will be

lowered. As shown in Fig. 7d, the intensity of PL

peak of MoSe2/NG decreases with increasing N/C

ratio gradually. It can be inferred that the energy

barrier between MoSe2 and NG increases with N/C

ratio, namely, the electron transfer at interface is not

efficient at high N/C ratio. So both the electrical

conductivity of NG and the energy barrier at interface

affect the HER activity. At low N/C ratio (1.13 and

1.94 at%), the activity of MoSe2/NG increases with

carrier concentration in NG because of negligible

energy barrier and enhanced electron transfer.

However, at high N/C ratio (3.0 and 5.16 at%), the

energy barrier at interface will block the electron

transfer from NG to MoSe2 substantially so that the

activity of MoSe2/NG3 and MoSe2/NG4 with high

carrier concentration, on the contrary, is lowered as

compared to MoSe2/NG2. To assess the stability of

MoSe2/NG2 composites in the HER process, [48]

continuous HER test for 1000 cycles are conducted.

The polarization curves before and after 1000 cycles

are shown in Fig. 8. The HER activity decreases only

a little after 1000 cycles, so the stability of MoSe2/

NG2 in HER is good.

Conclusion

In summary, MoSe2/NG composites are synthesized

through a facile two-step hydrothermal approach. XPS,

XRD, FESEM, TEM, and Raman spectra are adopted to

characterize the structures and morphologies. In the

composites, nanoclusters of MoSe2 nanosheets are dis-

persed on plicated NG nanosheets. As the N/C ratio is

increased, the plicated feature of NG becomes more

remarkable, and the carrier concentration in NG increa-

ses gradually. The electrochemical measurement shows

the synergistic effect ofN-doping inRGOandMoSe2 can

greatly improve the activity for HER. The activity of

MoSe2/NG depends not only on the carrier concentra-

tion in NG but also on the interfacical energy barrier

betweenMoSe2 andNG.At lowN/Cratio, the activityof

MoSe2/NG increases with carrier concentration in NG

because of the negligible energy barrier and remarkable

electron transfer.However, at highN/Cratio, the energy

barrier becomes high enough to block the electron

transfer substantially. Consequently, the highest activity

can be obtained in MoSe2/NG composites with an

intermediate N/C ratio. It suggests us that an appro-

priate N-doping is indispensible to improve the HER

activity of TMDs/RGO hybrid structures.
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