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ABSTRACT

NaScMo2O8:RE3? (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) phosphors were suc-

cessfully synthesized by surfactant-free hydrothermal method and post-calci-

nation treatment. The energy transfer (ET) of MoO4
2- ? Tb3? ? Eu3? was

proved by photoluminescence spectra and decay features. Multicolor emissions

(green ? yellow ? red) were obtained by adjusting the ratio of Tb3?/Eu3?

upon excitation into the MoO4
2- at 292 nm. The ET of Tb3? ? Eu3? was

demonstrated to be a resonant type via a dipole–dipole mechanism, and the

crystal distance (Rc) was calculated by the quenching concentration method.

Under 980 nm excitation, the emission of NaScMo2O8:RE3? (RE = Yb/Er, Yb/

Ho) showed strong green (Yb3?/Er3?: 4S3/2, 2H11/2 ? 4I15/2; Yb3?/Ho3?:
5S2 ? 5I8) luminescence, respectively. Moreover, the doping concentration of

the Yb3? has been optimized under a fixed concentration of Er3? and Ho3?,

respectively. The NaScMo2O8:RE3? phosphors have potential applications for

color displays and light-emitting devices due to a variety of luminous colors.

Introduction

Inorganic luminescent materials have more excellent

property such as low photobleaching, longer lumi-

nescent lifetimes and narrow emission bands than

organic fluorescent dyes and semiconductor

quantum dots [1–4]. Among various materials

reported, rare-earth (RE)-doped molybdates have

attracted considerable attention and been a signifi-

cant research topic not only for the basic scientific

interest but also for their remarkable photoelectronic

performances in fields such as negative thermal

expansion materials, photocatalysis, phosphors,
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solid-state lasers and catalysis [5, 6]. As a fascinating

group of molybdates, double alkaline rare-earth

molybdates ARE(MoO4)2 (A = Na, K; RE = trivalent

rare-earth cations) with tetragonal and monoclinic

symmetries have been widely reported owing to their

high chemical durability, large rare-earth ions

admittance and large absorption cross sections for

luminescent hosts [7–9]. Particularly, they have a

relatively low lattice phonon energy which would be

conducive to prevent concentration quenching effect

and increase the possibility of radiative transitions. It

is beneficial to a high quantum yield of down/up

conversion (DC/UC) process. Therefore, great

endeavors have been devoted to prepare tetragonal

NaRE(MoO4)2 (RE = Y, Gd, La, Eu, Ce) nano-/mi-

crostructured host materials which share the scheel-

ite-like (CaMoO4) iso-structure [2, 7–11]. However,

lanthanide ion-doped NaRE(MoO4)2 with monoclinic

phase have rarely been reported in previous work

and there is no systematic research about the lumi-

nescent properties of monoclinic NaScMo2O8:RE3?

[12].

Rare-earth elements played an important role in

modern lighting and display fields due to their spe-

cial electronic structure and profuse energy levels

(4fn5s25p6, 0 B n B14) [13, 14]. Among various RE3?

ions, Eu3? is an important activator for red emission

because of its intrinsic characteristic transition

(5D0 ? 7F2 at around 615 nm) [15, 16], which has

already started commercial applications as red

phosphors for decades (like Y2O3:Eu3?), but it has

weak-line absorption of f–f transitions in the near-

ultraviolet (NUV) region [17, 18]. It is very significant

to improve the luminescence efficiency of Eu3? and

the ratio of red emission (610–620 nm, 5D0 ? 7F2) to

orange emission (590–600 nm, 5D0 ? 7F1) in Eu3?.

The energy transfer (ET) from sensitizers to activators

in a proper host is an effective way to solve the above

problem [19, 20]. Tb3? ion, as a good sensitizer for the

Eu3? ion, not only enhance the luminescence effi-

ciency of Eu3? ions but also broaden the absorption

region in NaY(MoO4)2 [12], Na3Gd(PO4)2 [21],

SrMg2LaW2O12 [22] and CaYAlO4 [23] phosphors

owing to introduction of more impurity energy levels

in the host. Furthermore, the emission color of

phosphors can be regulated by changing the ratio of

Tb3? to Eu3? ions. The UC emission is anti-Stokes

emission process which has been the focus of much

research due to the merits of the high photochemical

stability, large anti-Stokes shifts, partially filled 4f

orbitals, the absence of autofluorescence of biotissues

and sharp emission lines [24]. Therefore, they were

applied to the fields of biotechnologies, three-di-

mensional displays, optical temperature sensors,

solar cells and optical amplifiers [25–27]. The UC

process can be divided into three broad classes:

excited-state absorption (ESA), energy transfer (ET)

and photon avalanche (PA) [24]. The efficient UC

phosphors is usually doped with rare-earth ions

which has a unique set of energy levels and generally

exhibits a set of sharp emission peaks with distin-

guishable spectroscopic fingerprints [28]. Yb3? ions

have a much larger near-infrared (NIR) absorption

cross section, which are often co-doped as excellent

sensitizers along with Er3? or Ho3? to yield strong

red or green UC emissions [29]. The ET between RE3?

ions via the nonradiative process would result in

tunable multicolor emissions.

In this paper, NaScMo2O8 phosphors have been

proven to be an excellent host matrix for the lumi-

nescence of RE3? (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/

Ho), which were successfully synthesized by surfac-

tant-free hydrothermal method and subsequent cal-

cination at 800 �C. The obtained phosphors exhibited

good emission properties when activated with RE3?

(RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho). It was found

that multicolor emissions (green ? yellow ? red)

were acquired due to the effective ET of

MoO4
2- ? Tb3? ? Eu3?. Furthermore, the energy

transfer from Tb3? to Eu3? was dominant by dipole–

dipole interaction. The efficient ET from Yb3? to Er3?

(Ho3?) also took place in NaScMo2O8 host to get UC

luminescence.

Experimental section

Synthesis

In a typical process, 1 mmol of ScCl3, appropriate

stoichiometric RECl3 and 35 ml deionized water were

added into a 100-ml beaker firstly. After vigorous

agitation for 10 min, 6 mmol Na2MoO4�2H2O was

dissolved in the above solution with strong magnetic

stirring; then, a white colloidal suspension was

obtained. The pH value was subsequently adjusted to

7 by dropwise adding NaOH solution. Under strong

stirring for 30 min, the suspension was transferred

into a 50-ml Teflon-lined autoclave sealed in a stain-

less steel vessel and maintained at 180 �C for 24 h.
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After natural cooling, the hydrothermal products

were washed with distilled water and alcohol several

times and then dried at 60 �C for 12 h. Finally, the

final products were collected after further calcination

at 800 �C for 2 h (Fig. S1 in Supporting Information).

Characterization

Powder X-ray diffraction (XRD) was performed on a

Purkinje General Instrument MSALXD3 using Cu Ka
radiation (k = 0.15406 nm) with a scanning rate of

10� min-1 in the 2h range from 10� to 60� at 20 mA

and 36 kV. The morphologies and energy-dispersive

spectrometry (EDS) spectra of the samples were

observed by means of a field emission-scanning

electron microscope (FESEM, XL30, Philips) operated

at an accelerating voltage of 10 kV. The DC fluores-

cence spectra were obtained using a Hitachi F-7000

spectrophotometer equipped with a 150-W xenon

lamp as the excitation source, and the lifetime decays

were measured on FLSP920 fluorescence spec-

trophotometer and Shimidazu R9287 photomultiplier

(200–900 nm) equipped with a liquid-nitrogen-cooled

InGaAs (800–1700 nm) as detector. The UC lumines-

cence spectra were measured using a 980-nm laser

with MDL-N-980-8 W as the excitation source and

detected using a LS 55 (PerkinElmer) from 400 to

750 nm. All the measurements were performed at

room temperature.

Results and discussion

Phase and morphology

The XRD pattern of the sodium scandium molybdate

precursor sample is shown in Fig. S2 (Supporting

Information). Compared with all the standard XRD

patterns in JCPDS cards, the precursor cannot be

indexed to a certain compound because the product

produced by the hydrothermal method probably

contains some hydrous compounds from the solution

medium [6]. Figure 1 displays the XRD patterns of

NaScMo2O8 and NaScMo2O8:RE3? (RE = Tb, Eu, Tb/

Eu, Yb/Er, Yb/Ho) samples annealed at 800 �C as

well as the JCPDS card (No. 32-1150) for NaScMo2O8,

respectively. All the patterns match well with the

pure monoclinic phase (JCPDS#32-1150), and no

additional peaks or other phases can be found,

revealing that the doped RE3? (RE = Tb, Eu, Tb/Eu,

Yb/Er, Yb/Ho) ions have been effectively dissolved

in the NaScMo2O8 host matrix. Notably, when the

Sc3? was substituted by the RE3? with bigger radius,

the corresponding XRD peaks shift to lower angle

direction due to the Vegard law [1]. The relative peak

intensity of [001] for the samples doped with RE3? is

visibly enhanced, implying that the prismatic struc-

tures of the NaScMo2O8:RE3? (RE = Tb, Eu, Tb/Eu,

Yb/Er, Yb/Ho) samples grow preferentially along

the [001] direction. The strong and sharp diffraction

peaks indicate good crystallinity of the as-prepared

samples, which is good for luminescence.

The morphology and chemical element of the

sodium scandium molybdate precursor samples

(Fig. 2a, c) and the corresponding NaScMo2O8 sam-

ples annealed at 800 �C for 2 h (Fig. 2b, d) were

inspected by using SEM and EDS test, respectively.

As shown in Fig. 2a, the SEM image of sodium

scandium molybdate precursor sample consists of

nonuniform rectangular sheets with size in micron

level. After annealing at 800 �C for 2 h (Fig. 2b), the

obtained NaScMo2O8 sample becomes irregular

blocks with larger size due to the decomposition of

the sodium scandium molybdate precursor sample

during calcination process. This phenomenon can be

proved by the EDS of the precursor in Fig. 2c, and the

sodium scandium molybdate precursor may contain

elements of C, Na, Sc, Mo and O (Table S1 in Sup-

porting Information). The EDS in Fig. 2d suggests

Figure 1 XRD patterns of the NaScMo2O8 and NaScMo2O8:

RE3? (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) samples. The

standard data for NaScMo2O8 (JCPDS#32-1150) are also pre-

sented in the figure for comparison.
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that the calcined products are composed of Na, Sc,

Mo and O elements with corresponding atomic ratio

of 1.06:1.00:2.16:7.75, which is similar to the theoret-

ical value (1:1:2:8) of the NaScMo2O8 crystals without

considering the instrument error (Table S2 in Sup-

porting Information).

Downconversion luminescence and energy
transfer

The excitation and emission spectra of the NaSc(1-x)

Mo2O8:xTb3? (x = 0.01–0.15) and NaSc(1-x)Mo2O8:

xEu3? (x = 0.01–0.15) samples are shown in Fig. 3,

respectively. The Tb3? ions could be used as an

activator for green-emitting materials owing to their
5D4 ? 7F5 transition, and the Eu3? ions can be

investigated as a red-emitting conversion phosphor

due to their 5D0 ? 7F2 transition, respectively. As

shown in Fig. 3a, upon excitation into the MoO4
2- at

292 nm (Fig. S3 in Supporting Information), the

emission spectrum (right) of Tb3? consists of

5D4 ? 7F6 (492 nm) in the blue region, 5D4 ? 7F5

(549 nm, strongest peak) in the green region and
5D4 ? 7F4 (589 nm)/5D4 ? 7F3 (625 nm) in the red

region, which are much stronger than that of MoO4
2-

[6]. When monitored at 549 nm (5D4 ? 7F5 of Tb3?),

there are two parts in the range of 200–500 nm, which

are ascribed to the charge-transfer (C–T) transitions

of Mo6?–O2- from 200 to 350 nm [9, 30–32] and the

typical intraconfigurational f–f transitions of Tb3?

ions from 350 to 500 nm, respectively. Obviously, the

characteristic excitation spectrum of Tb3? becomes

unapparent compared to that of MoO4
2-. The above

results illustrate that the energy transfer from

MoO4
2- to Tb3? took place [33, 34]. Figure 3b dis-

plays the excitation spectrum (left) monitored at

618 nm (5D0 ? 7F2 of Eu3?), which consists of a

broad and strong charge-transfer band of MoO4
2-

ranging from 200 to 350 nm with a maximum at

around 292 nm and a series of typical f–f transitions

of Eu3? ions at 367 nm (7F0 ? 5D4), 382 nm

(7F0 ? 5L7), 395 nm (7F0 ? 5L6), 417 nm (7F0 ? 5D3)

Figure 2 SEM images and EDS spectrum of the sodium scandium molybdate precursor sample (a, c) and the corresponding NaScMo2O8

sample annealed at 800 �C for 2 h (b, d).
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and 465 nm (7F0 ? 5D2), respectively. It is worth

noting that the emission of Eu3? under 292 nm exci-

tation was mainly composed of the 5D0 ? 7F1

(596 nm) magnetic dipole transition and the
5D0 ? 7F2 (618 nm) electric dipole transition,

respectively. The asymmetry ratio of I(5D0 ? 7F2)/

I(5D0 ? 7F1) was equal to 7.8 which indicates that the

Eu3? ions have no inversion center in NaScMo2O4

host and the NaScMo2O4:Eu3? product is beneficial to

improve the color purity of the red phosphor. The

energy transfer from MoO4
2- to Eu3? is similar to

that from MoO4
2- to Tb3?. The doping concentration

of the luminescent center has a significant impact on

the performance of phosphors [35]. With increasing

concentration of RE3? ions, the resonance energy

transfer is allowed because the distance of the

luminescent centers becomes short enough to bring

about concentration quenching of RE3?. So, it is very

important to find the optimum doping concentration.

Obviously, the quenching concentration of Tb3? or

Eu3? in NaScMo2O8 host both is 10% (Fig. 3), indi-

cating that NaScMo2O8 is a good matrix for lumi-

nescent materials like GdY(MoO4)3:RE3? (RE = Eu,

Dy, Sm, Tb) [30], NaGd(MoO4)2:Eu3?,Tb3? [31],

CaMoO4:Eu3? [32], AgRE(WO4)2:Ln3? (RE = Y, La,

Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm) [36]

and Gd2(WO4)3:Tb3?/Eu3? [37] phosphors with

excitation wavelength at around 292 nm.

The ET from Tb3? to Eu3? in molybdates has been

reported in previous studies [2, 6, 33]. In this paper, a

series of experiments were done to demonstrate the ET

process between Tb3? and Eu3? in the NaScMo2O8

host. Figure 4 shows the excitation (a) and emission

(b) spectra of the NaSc(0.975-y)Mo2O8:0.025Eu3?, yTb3?

(y = 0–0.075) sample. The excitation spectra recorded

at 618 nm (5D0 ? 7F2) of Eu3? are all composed of a

broad and strong charge-transfer band of MoO4
2-with

peak at 292 nm and a series of typical f–f transitions of

Eu3? and Tb3? ions at 395 nm (7F0 ? 5L6 of Eu3?),

465 nm (7F0 ? 5D2 of Eu3?) and 488 nm (7F6 ? 5D4 of

Tb3?), except for the excitation intensity (Fig. 4a). The

presence of the excitation peak of Tb3? (488 nm,
7F6 ? 5D4) in the excitation spectrum monitored with

Eu3? emission (618 nm, 5D0 ? 7F2) clearly indicates

that an energy transfer has occurred from Tb3? to Eu3?

in the NaScMo2O8 host. As shown in Fig. 4b, under

292 nm excitation (the characteristic peak of MoO4
2-),

the emission intensity of Eu3? at 618 nm in NaSc0.965

Mo2O8:0.025Eu3?, 0.01 Tb3? (blue line) is much

stronger than that of single-doped Eu3? in NaSc0.975

Mo2O8:0.025Eu3? (black line). With increase in Tb3?

concentrations, the emission intensity of Eu3? at

618 nm increases gradually and then slowly decreases

due to concentration quenching [6]. The emission

spectra in Fig. 4b directly support that the ET of

MoO4
2- ? Tb3? ? Eu3? can take place in the

NaScMo2O8 host. Also taking into account the excita-

tion spectrum in Fig. 4a, if Tb3? ion was excited from
7F6 ? 5D4 (488 nm), there should be energy transfer

from the excited 5D4 level of Tb3? to the 5D0 level of

Eu3? in the NaSc(0.975-y)Mo2O8:0.025Eu3?, yTb3?

(y = 0.01–0.075) samples. Upon excitation into the
7F6 ? 5D4 transition of Tb3? at 488 nm, the emission

spectra of the NaSc0.9Mo2O8:0.05Tb3?, 0.05Eu3?,

NaSc0.95Mo2O8:0.05Tb3? and NaSc0.95Mo2O8:0.05Eu3?

are presented in Fig. 4c for comparison. The emission

Figure 3 Excitation (left) and emission spectra (right) of the

NaSc(1-x)Mo2O8:xTb
3? (x = 0.01–0.15) samples (a) and the

NaSc(1-x)Mo2O8:xEu
3? (x = 0.01–0.15) samples (b).
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spectrum of NaSc0.95Mo2O8:0.05Tb3? (green line)

exhibits the f ? f transitions of Tb3?with a strong peak

at 549 nm (5D4 ? 7F5); there is no obvious emission

peak in the NaSc0.95Mo2O8:0.05Eu3? sample (black

one), but the emission spectrum of NaSc0.9Mo2

O8:0.05Tb3?, 0.05Eu3? presents much stronger char-

acteristic peaks of Eu3? at 596 nm (5D0 ? 7F1) and

618 nm (5D0 ? 7F2) than that of Tb3? at 549 nm

(5D4 ? 7F5). This phenomenon further demonstrates

that the energy can be effectively transferred from Tb3?

to Eu3?.

Figure 5a shows the multicolor luminescence

based on the ET of MoO4
2- ? Tb3? ? Eu3? by

changing Eu3? concentration in the NaSc(0.95-x)Mo2

O8:0.05Tb3?, xEu3?. Upon excitation into the MoO4
2-

at 292 nm, the NaSc0.95Mo2O8:0.05Tb3? only emits its

characteristic emissions without doping Eu3?; when

doped with a small amount of Eu3? (x = 0.001), the

characteristic emission of Eu3? can be observed apart

from Tb3? emission. With increase in Eu3? doping

concentrations, the emission intensity of Tb3? at

549 nm (5D4 ? 7F5) gradually decreases and that of

Eu3? at 618 nm (5D0 ? 7F2) and 596 nm (5D0 ? 7F1)

increases simultaneously because of the energy

transfer from Tb3? to Eu3?. And then, the emission

spectra of Eu3? gradually become the dominant one

with maximum value at x = 0.1; with further

increasing Eu3?, the emission of Eu3? decreases due

to the Eu3?–Eu3? internal concentration quenching

effect. The results above further reflect that the

energy of the red emission of Eu3? is derived from

Tb3? and the multicolor luminescence can be tuned

by adjusting the relative ratio of Tb3? to Eu3?. The

CIE chromaticity coordinates (Fig. 5b) of

NaSc(0.95-x)Mo2O8:0.05Tb3?, xEu3? vary from green

region (0.27, 0.58) to red region (0.62, 0.34) via yellow

region (0.42, 0.47) by altering Eu3? concentration,

which can be seen clearly from the corresponding

bFigure 4 Excitation (a) and emission (b) spectra of the NaSc0.975
Mo2O8:0.025Eu

3?, yTb3? (y = 0–0.075) samples. c Emission

spectra of the NaSc0.9Mo2O8:0.05Tb
3?, 0.05Eu3?, NaSc0.95Mo2

O8:0.05Tb
3? and NaSc0.95Mo2O8:0.05Eu

3? samples upon excita-

tion to the 7F6 ?
5D4 transition of Tb3? at 488 nm, respectively.
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luminescence photographs excited by a 254-nm UV

lamp (inset in Fig. 5b).

The energy transfer also can be confirmed by the

luminescence decay curves of Tb3?, as shown in

Fig. 6a. According to Dexter theory [38], the nonra-

diative energy transfer can shorten the lifetime of

Tb3?. The decay time of Tb3? (excited at 292 nm and

monitored at 549 nm) as a function of the Eu3?

doping concentrations in NaSc(0.95-x)Mo2O8:0.05Tb3?,

xEu3? can be obtained from equation:

It ¼ I0 expð�t=sÞ ð1Þ

where It and I0 are the luminescence intensities at

time t and t = 0, respectively, and s is the decay time.

The values of Tb3? for NaSc(0.95-x)Mo2O8:0.05Tb3?,

xEu3? are determined to be 0.433 and 0.065 ls at

x = 0 and 2.5, respectively. We can conclude that

with the increase in Eu3? concentration, the fluores-

cence lifetime of Tb3? (5D4) state decreases due to the

strong energy transfer from Tb3? to Eu3? via

nonradiative process in NaSc(0.95-x)Mo2O8:0.05Tb3?,

xEu3? phosphors.

In general, there are two ways for the energy

transfer from Tb3? to Eu3? in a phosphor: One is

exchange interaction, and the other is electric multi-

polar interaction. If the critical distance (Rc) between

Tb3? and Eu3? is less than 4 Å, the energy transfer

takes the exchange interaction; otherwise, it takes the

electric multipole interaction. The distance Rc can be

calculated using the crystal structure data method

through the following equation [39]:

Rc ¼ 2
3V

4pXCN

� �1=3
ð2Þ

where N is the number of molecules in the unit cell,

V the cell volume and Xc the total concentration of

Tb3? and Eu3? ions. For NaScMo2O8 host

(N = 2,V = 370.3 Å3), with increasing Eu3? concen-

tration (x = 0.002, 0.025, 0.05 and 0.1) in the

NaSc(0.95-x)Mo2O8:0.05Tb3?, xEu3? sample, the Rc

was calculated to be 18.9, 16.8, 15.2 and 13.3 Å at total

concentration (Xc) of 0.052, 0.075, 0.10 and 0.15,

respectively. All these Rc values are far greater than

Figure 5 a Emission spectra of NaSc(0.95-x)Mo2O8:0.05Tb
3?,

xEu3? (x = 0–0.15); b the CIE chromaticity coordinates of

NaSc(0.95-x)Mo2O8:0.05Tb
3?, xEu3? (x = 0–0.025) phosphors

under 292 nm excitation and the corresponding luminescence

photographs excited by a 254-nm UV lamp.

Figure 6 a Decay curves of Tb3? for the NaSc(0.95-x)Mo2
O8:0.05Tb

3?, xEu3? (x = 0 and 0.025) phosphors. b The

dependence of IS0/IS of Tb3? on CðTb3þþEu3þÞn=3 .
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4 Å, which indicates that the energy transfer mecha-

nism of Tb3? ? Eu3? is governed by electric multi-

polar interaction in NaScMo2O8 host [40].

The energy transfer mechanism for multipolar

interactions can be further discussed by the following

equation [41]:

gS0=gS 1Cn=3 ð3Þ

Many studies have reported that the value of gso/gs

can be approximately estimated by the luminescence

intensity ratio (IS0/IS) of Tb3? as follows:

IS0=IS 1Cn=3 ð4Þ

where C is the total concentration of Tb3? and Eu3?

and n = 6, 8 and 10 are dipole–dipole, dipole–quad-

rupole and quadrupole–quadrupole interactions,

respectively. IS and IS0 are the emission intensity of

Tb3? in the presence and absence of Eu3?. The rela-

tionships between IS0/IS and CðTb3þþEu3þÞ
n=3 are pre-

sented in Fig. 6b. When n = 6, the linear behavior

fitting value R2 is 0.986 which is better than others

(n = 8, R2 = 0.977 and n = 10, R2 = 0.94). The fitting

results illustrate that the energy transfer mechanism

between Tb3? and Eu3? in NaScMo2O8 host is dom-

inated by dipole–dipole electric multipolar

interaction.

Figure 7 shows detailed schematic for the ET pro-

cesses of MoO4
2- ? Tb3? ? Eu3? in NaScMo2O8

host. Firstly, upon UV irradiation, the energy is

absorbed by MoO4
2-. The electrons in the ground

state (1A1) of MoO4
2- shift to its 1B (1T2) level [42] and

then a very small part of them return to the lowest

excited 1B (1T1) level to emit the characteristic emis-

sion of MoO4
2- (Fig. S3 in Supporting Information);

meanwhile, other excited electrons transferred

energy to Tb3? and Eu3?. On the one hand, the Tb3?

ion shows its characteristic emissions: The energy on

Tb3? higher levels relaxes to the lowest excited

energy level 5D4 via multi-phonon relaxation [40] and

then return to the ground state, engendering the

emissions of Tb3? (5D4 ? 7F6, 5, 4, 3). On the other

hand, the energy absorbed by Tb3? be transferred to

higher excited energy level of Eu3? (5D1) via dipole–

dipole interaction. Finally, the energy on 5D1 level

relaxes to 5D0 level, giving out red emissions based

on 5D0 ? 7F0, 1, 2, 3 transitions of Eu3?.

Upconversion luminescence

In Fig. 8, under 980 nm excitation, the emission of

NaScMo2O8:RE3? (RE = Yb/Er, Yb/Ho) showed

green (Yb3?/Er3?: 4S3/2, 2H11/2 ? 4I15/2; Yb3?/Ho3?:
5S2 ? 5I8) luminescence [43]. To gain further insight

into the UC emission properties of NaScMo2O8:RE3?

(RE = Yb/Er, Yb/Ho), the concentration of Er3? (or

Ho3?) was fixed at 0.01 and the concentration of the

Yb3? was changed from 0 to 0.2 (or from 0 to 0.25).

From Fig. 8a, it can be found that the UC emission

spectra of NaSc(0.99-x)Mo2O8:xYb3?, 0.01Er3? samples

do not show an obvious difference in shape and

emission bands except for the emission intensity. All

of them exhibit three emission bands centered at

536, 556 and 662 nm, which can be ascribed to the
2H11/2 ? 4I15/2, 4S3/2 ? 4I15/2 and 4F9/2 ? 4I15/2

transitions of Er3?, respectively. Upon variation of the

Yb3? concentration from 0 to 0.2, the intensity of UC

emission spectra first increases and then decreases.

When Yb3? concentration is increased from 0 to 0.1,

more Yb3? become available to furnish and transfer

energy to the Er3?, resulting in the higher emission

intensity. Once exceeded its limit (x = 0.1), the inter-

atomic distance between Yb3? and Er3? became short

with further increase in the Yb3? concentration, which

remarkably enhances the probability of energy

migration to the quenching center caused by reso-

nance transfer and then results in the decrease in UC

emission intensity. This phenomenon is similar to that

of NaSc(0.99-x)Mo2O8:xYb3?, 0.01Ho3?, which is given

in Fig. 8b. The strong emission band centered at

541 nm, and the relatively weak emission band at

649 nm can be attributed to the 5S2 ? 5I8 and
5F5 ? 5I8 transitions of Ho3? ions, respectively. When

x = 0.2, the sample shows the strongest upconversion

luminescence (Fig. 8b).
Figure 7 Schematic for the ET processes of MoO4

2- ?
Tb3? ? Eu3? in NaScMo2O8 host.
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Conclusion

In summary, NaScMo2O8:RE3? (RE = Tb, Eu, Tb/Eu,

Yb/Er, Yb/Ho) phosphors were synthesized by a

simple surfactant-free hydrothermal route combined

with subsequent calcination at 800 �C. Various ways

are enumerated in this paper to prove the ET of

MoO4
2- ? Tb3? ? Eu3?. The NaSc(0.95-x)Mo2

O8:0.05Tb3?, xEu3? exhibit strong multicolor emis-

sions from green to red due to the effective ET from

Tb3? to Eu3? by dipole–dipole interaction. Upon

980 nm excitation, Yb3?/Er3?- and Yb3?/Ho3?

-doped NaScMo2O8 both exhibit strong green emis-

sion. Besides, the Yb3? concentration doped in the

NaSc(0.99-x)Mo2O8:xYb3?, 0.01Er3? and NaSc(0.99-x)

Mo2O8:xYb3?, 0.01Ho3? phosphors have been opti-

mized at x = 0.1 and 0.2, respectively. Owing to their

excellent DC/UC luminescence properties, the

NaScMo2O8:RE3? (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/

Ho) phosphors have great potential application in the

fields of color displays and light-emitting devices.
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