Electronic materials

NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) phosphors: hydrothermal synthesis, energy transfer and multicolor tunable luminescence

Dingyi Shen¹, Bei Zhao¹, Shunrong Yang¹, Shanshan Hu¹, Jianfeng Tang², Xianju Zhou³, and Jun Yang^{1,*}

¹ School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, People's Republic of China

² Faculty of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China

³ School of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065,

People's Republic of China

Received: 12 April 2017 Accepted: 14 July 2017 Published online: 11 September 2017

© Springer Science+Business Media, LLC 2017

ABSTRACT

NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) phosphors were successfully synthesized by surfactant-free hydrothermal method and post-calcination treatment. The energy transfer (ET) of MoO₄^{2−} → Tb³⁺ → Eu³⁺ was proved by photoluminescence spectra and decay features. Multicolor emissions (green → yellow → red) were obtained by adjusting the ratio of Tb³⁺/Eu³⁺ upon excitation into the MoO₄^{2−} at 292 nm. The ET of Tb³⁺ → Eu³⁺ was demonstrated to be a resonant type via a dipole–dipole mechanism, and the crystal distance (*R*_c) was calculated by the quenching concentration method. Under 980 nm excitation, the emission of NaScMo₂O₈:RE³⁺ (RE = Yb/Er, Yb/Ho) showed strong green (Yb³⁺/Er³⁺: ⁴S_{3/2}, ²H_{11/2} → ⁴I_{15/2}; Yb³⁺/Ho³⁺: ⁵S₂ → ⁵I₈) luminescence, respectively. Moreover, the doping concentration of the Yb³⁺ has been optimized under a fixed concentration of Er³⁺ and Ho³⁺, respectively. The NaScMo₂O₈:RE³⁺ phosphors have potential applications for color displays and light-emitting devices due to a variety of luminous colors.

Introduction

Inorganic luminescent materials have more excellent property such as low photobleaching, longer luminescent lifetimes and narrow emission bands than organic fluorescent dyes and semiconductor quantum dots [1–4]. Among various materials reported, rare-earth (RE)-doped molybdates have attracted considerable attention and been a significant research topic not only for the basic scientific interest but also for their remarkable photoelectronic performances in fields such as negative thermal expansion materials, photocatalysis, phosphors,

Address correspondence to E-mail: jyang@swu.edu.cn

solid-state lasers and catalysis [5, 6]. As a fascinating group of molybdates, double alkaline rare-earth molybdates $ARE(MoO_4)_2$ (A = Na, K; RE = trivalent rare-earth cations) with tetragonal and monoclinic symmetries have been widely reported owing to their high chemical durability, large rare-earth ions admittance and large absorption cross sections for luminescent hosts [7-9]. Particularly, they have a relatively low lattice phonon energy which would be conducive to prevent concentration quenching effect and increase the possibility of radiative transitions. It is beneficial to a high quantum yield of down/up conversion (DC/UC) process. Therefore, great endeavors have been devoted to prepare tetragonal $NaRE(MoO_4)_2$ (RE = Y, Gd, La, Eu, Ce) nano-/microstructured host materials which share the scheelite-like (CaMoO₄) iso-structure [2, 7–11]. However, lanthanide ion-doped NaRE(MoO₄)₂ with monoclinic phase have rarely been reported in previous work and there is no systematic research about the luminescent properties of monoclinic NaScMo₂O₈:RE³⁺ [12].

Rare-earth elements played an important role in modern lighting and display fields due to their special electronic structure and profuse energy levels $(4f^{n}5s^{2}5p^{6}, 0 \le n \le 14)$ [13, 14]. Among various RE³⁺ ions, Eu³⁺ is an important activator for red emission because of its intrinsic characteristic transition $({}^{5}D_{0} \rightarrow {}^{7}F_{2}$ at around 615 nm) [15, 16], which has already started commercial applications as red phosphors for decades (like Y_2O_3 :Eu³⁺), but it has weak-line absorption of f-f transitions in the nearultraviolet (NUV) region [17, 18]. It is very significant to improve the luminescence efficiency of Eu³⁺ and the ratio of red emission (610–620 nm, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) to orange emission (590–600 nm, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) in Eu³⁺. The energy transfer (ET) from sensitizers to activators in a proper host is an effective way to solve the above problem [19, 20]. Tb^{3+} ion, as a good sensitizer for the Eu³⁺ ion, not only enhance the luminescence efficiency of Eu³⁺ ions but also broaden the absorption region in NaY(MoO₄)₂ [12], Na₃Gd(PO₄)₂ [21], SrMg₂LaW₂O₁₂ [22] and CaYAlO₄ [23] phosphors owing to introduction of more impurity energy levels in the host. Furthermore, the emission color of phosphors can be regulated by changing the ratio of Tb³⁺ to Eu³⁺ ions. The UC emission is anti-Stokes emission process which has been the focus of much research due to the merits of the high photochemical stability, large anti-Stokes shifts, partially filled 4f orbitals, the absence of autofluorescence of biotissues and sharp emission lines [24]. Therefore, they were applied to the fields of biotechnologies, three-dimensional displays, optical temperature sensors, solar cells and optical amplifiers [25–27]. The UC process can be divided into three broad classes: excited-state absorption (ESA), energy transfer (ET) and photon avalanche (PA) [24]. The efficient UC phosphors is usually doped with rare-earth ions which has a unique set of energy levels and generally exhibits a set of sharp emission peaks with distinguishable spectroscopic fingerprints [28]. Yb^{3+} ions have a much larger near-infrared (NIR) absorption cross section, which are often co-doped as excellent sensitizers along with Er³⁺ or Ho³⁺ to yield strong red or green UC emissions [29]. The ET between RE^{3+} ions via the nonradiative process would result in tunable multicolor emissions.

In this paper, NaScMo₂O₈ phosphors have been proven to be an excellent host matrix for the luminescence of RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/ Ho), which were successfully synthesized by surfactant-free hydrothermal method and subsequent calcination at 800 °C. The obtained phosphors exhibited good emission properties when activated with RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho). It was found that multicolor emissions (green \rightarrow yellow \rightarrow red) were acquired due to the effective ET of MoO₄²⁻ \rightarrow Tb³⁺ \rightarrow Eu³⁺. Furthermore, the energy transfer from Tb³⁺ to Eu³⁺ was dominant by dipole– dipole interaction. The efficient ET from Yb³⁺ to Er³⁺ (Ho³⁺) also took place in NaScMo₂O₈ host to get UC luminescence.

Experimental section

Synthesis

In a typical process, 1 mmol of ScCl₃, appropriate stoichiometric RECl₃ and 35 ml deionized water were added into a 100-ml beaker firstly. After vigorous agitation for 10 min, 6 mmol Na₂MoO₄·2H₂O was dissolved in the above solution with strong magnetic stirring; then, a white colloidal suspension was obtained. The pH value was subsequently adjusted to 7 by dropwise adding NaOH solution. Under strong stirring for 30 min, the suspension was transferred into a 50-ml Teflon-lined autoclave sealed in a stainless steel vessel and maintained at 180 °C for 24 h.

After natural cooling, the hydrothermal products were washed with distilled water and alcohol several times and then dried at 60 °C for 12 h. Finally, the final products were collected after further calcination at 800 °C for 2 h (Fig. S1 in Supporting Information).

Characterization

Powder X-ray diffraction (XRD) was performed on a Purkinje General Instrument MSALXD3 using Cu Ka radiation ($\lambda = 0.15406$ nm) with a scanning rate of $10^{\circ} \text{ min}^{-1}$ in the 2θ range from 10° to 60° at 20 mAand 36 kV. The morphologies and energy-dispersive spectrometry (EDS) spectra of the samples were observed by means of a field emission-scanning electron microscope (FESEM, XL30, Philips) operated at an accelerating voltage of 10 kV. The DC fluorescence spectra were obtained using a Hitachi F-7000 spectrophotometer equipped with a 150-W xenon lamp as the excitation source, and the lifetime decays were measured on FLSP920 fluorescence spectrophotometer and Shimidazu R9287 photomultiplier (200-900 nm) equipped with a liquid-nitrogen-cooled InGaAs (800-1700 nm) as detector. The UC luminescence spectra were measured using a 980-nm laser with MDL-N-980-8 W as the excitation source and detected using a LS 55 (PerkinElmer) from 400 to 750 nm. All the measurements were performed at room temperature.

Results and discussion

Phase and morphology

The XRD pattern of the sodium scandium molybdate precursor sample is shown in Fig. S2 (Supporting Information). Compared with all the standard XRD patterns in JCPDS cards, the precursor cannot be indexed to a certain compound because the product produced by the hydrothermal method probably contains some hydrous compounds from the solution medium [6]. Figure 1 displays the XRD patterns of NaScMo₂O₈ and NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/ Eu, Yb/Er, Yb/Ho) samples annealed at 800 °C as well as the JCPDS card (No. 32-1150) for NaScMo₂O₈, respectively. All the patterns match well with the pure monoclinic phase (JCPDS#32-1150), and no additional peaks or other phases can be found, revealing that the doped RE³⁺ (RE = Tb, Eu, Tb/Eu,

Figure 1 XRD patterns of the NaScMo₂O₈ and NaScMo₂O₈: RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) samples. The standard data for NaScMo₂O₈ (JCPDS#32-1150) are also presented in the figure for comparison.

Yb/Er, Yb/Ho) ions have been effectively dissolved in the NaScMo₂O₈ host matrix. Notably, when the Sc³⁺ was substituted by the RE³⁺ with bigger radius, the corresponding XRD peaks shift to lower angle direction due to the Vegard law [1]. The relative peak intensity of [001] for the samples doped with RE³⁺ is visibly enhanced, implying that the prismatic structures of the NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) samples grow preferentially along the [001] direction. The strong and sharp diffraction peaks indicate good crystallinity of the as-prepared samples, which is good for luminescence.

The morphology and chemical element of the sodium scandium molybdate precursor samples (Fig. 2a, c) and the corresponding NaScMo₂O₈ samples annealed at 800 °C for 2 h (Fig. 2b, d) were inspected by using SEM and EDS test, respectively. As shown in Fig. 2a, the SEM image of sodium scandium molybdate precursor sample consists of nonuniform rectangular sheets with size in micron level. After annealing at 800 °C for 2 h (Fig. 2b), the obtained NaScMo₂O₈ sample becomes irregular blocks with larger size due to the decomposition of the sodium scandium molybdate precursor sample during calcination process. This phenomenon can be proved by the EDS of the precursor in Fig. 2c, and the sodium scandium molybdate precursor may contain elements of C, Na, Sc, Mo and O (Table S1 in Supporting Information). The EDS in Fig. 2d suggests

Figure 2 SEM images and EDS spectrum of the sodium scandium molybdate precursor sample (\mathbf{a} , \mathbf{c}) and the corresponding NaScMo₂O₈ sample annealed at 800 °C for 2 h (\mathbf{b} , \mathbf{d}).

that the calcined products are composed of Na, Sc, Mo and O elements with corresponding atomic ratio of 1.06:1.00:2.16:7.75, which is similar to the theoretical value (1:1:2:8) of the NaScMo₂O₈ crystals without considering the instrument error (Table S2 in Supporting Information).

Downconversion luminescence and energy transfer

The excitation and emission spectra of the NaSc_(1-x) Mo_2O_8 :xTb³⁺ (x = 0.01-0.15) and NaSc_(1-x)Mo₂O₈: xEu^{3+} (x = 0.01-0.15) samples are shown in Fig. 3, respectively. The Tb³⁺ ions could be used as an activator for green-emitting materials owing to their ${}^5D_4 \rightarrow {}^7F_5$ transition, and the Eu³⁺ ions can be investigated as a red-emitting conversion phosphor due to their ${}^5D_0 \rightarrow {}^7F_2$ transition, respectively. As shown in Fig. 3a, upon excitation into the MoO₄²⁻ at 292 nm (Fig. S3 in Supporting Information), the emission spectrum (right) of Tb³⁺ consists of

 ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (492 nm) in the blue region, ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (549 nm, strongest peak) in the green region and $^5D_4 \rightarrow {^7F_4}$ (589 nm)/ $^5D_4 \rightarrow {^7F_3}$ (625 nm) in the red region, which are much stronger than that of MoO_4^{2-} [6]. When monitored at 549 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ of Tb³⁺), there are two parts in the range of 200-500 nm, which are ascribed to the charge-transfer (C-T) transitions of Mo⁶⁺–O^{2–} from 200 to 350 nm [9, 30–32] and the typical intraconfigurational f-f transitions of Tb³⁺ ions from 350 to 500 nm, respectively. Obviously, the characteristic excitation spectrum of Tb³⁺ becomes unapparent compared to that of MoO_4^{2-} . The above results illustrate that the energy transfer from MoO_4^{2-} to Tb^{3+} took place [33, 34]. Figure 3b displays the excitation spectrum (left) monitored at 618 nm (⁵D₀ \rightarrow ⁷F₂ of Eu³⁺), which consists of a broad and strong charge-transfer band of MoO_4^{2-} ranging from 200 to 350 nm with a maximum at around 292 nm and a series of typical f-f transitions of Eu³⁺ ions at 367 nm (${}^{7}F_{0} \rightarrow {}^{5}D_{4}$), 382 nm $({}^{7}F_{0} \rightarrow {}^{5}L_{7})$, 395 nm $({}^{7}F_{0} \rightarrow {}^{5}L_{6})$, 417 nm $({}^{7}F_{0} \rightarrow {}^{5}D_{3})$

Figure 3 Excitation (*left*) and emission spectra (*right*) of the $NaSc_{(1-x)}Mo_2O_8:xTb^{3+}$ (x = 0.01-0.15) samples (**a**) and the $NaSc_{(1-x)}Mo_2O_8:xEu^{3+}$ (x = 0.01-0.15) samples (**b**).

and 465 nm (⁷F₀ \rightarrow ⁵D₂), respectively. It is worth noting that the emission of Eu³⁺ under 292 nm excitation was mainly composed of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (596 nm) magnetic dipole transition and the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (618 nm) electric dipole transition, respectively. The asymmetry ratio of $I({}^{5}D_{0} \rightarrow {}^{7}F_{2})/$ $I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ was equal to 7.8 which indicates that the Eu³⁺ ions have no inversion center in NaScMo₂O₄ host and the NaScMo₂O₄:Eu³⁺ product is beneficial to improve the color purity of the red phosphor. The energy transfer from MoO_4^{2-} to Eu^{3+} is similar to that from MoO_4^{2-} to Tb^{3+} . The doping concentration of the luminescent center has a significant impact on the performance of phosphors [35]. With increasing concentration of RE^{3+} ions, the resonance energy transfer is allowed because the distance of the

luminescent centers becomes short enough to bring about concentration quenching of RE^{3+} . So, it is very important to find the optimum doping concentration. Obviously, the quenching concentration of Tb^{3+} or Eu^{3+} in NaScMo₂O₈ host both is 10% (Fig. 3), indicating that NaScMo₂O₈ is a good matrix for luminescent materials like GdY(MoO₄)₃:RE³⁺ (RE = Eu, Dy, Sm, Tb) [30], NaGd(MoO₄)₂:Eu³⁺,Tb³⁺ [31], CaMoO₄:Eu³⁺ [32], AgRE(WO₄)₂:Ln³⁺ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm) [36] and Gd₂(WO₄)₃:Tb³⁺/Eu³⁺ [37] phosphors with excitation wavelength at around 292 nm.

The ET from Tb^{3+} to Eu^{3+} in molybdates has been reported in previous studies [2, 6, 33]. In this paper, a series of experiments were done to demonstrate the ET process between Tb³⁺ and Eu³⁺ in the NaScMo₂O₈ host. Figure 4 shows the excitation (a) and emission (b) spectra of the NaSc_(0.975- ν)Mo₂O₈:0.025Eu³⁺, ν Tb³⁺ (y = 0-0.075) sample. The excitation spectra recorded at 618 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) of Eu $^{3+}$ are all composed of a broad and strong charge-transfer band of MoO₄²⁻ with peak at 292 nm and a series of typical f-f transitions of Eu^{3+} and Tb^{3+} ions at 395 nm (⁷F₀ \rightarrow ⁵L₆ of Eu^{3+}), 465 nm (⁷F₀ \rightarrow ⁵D₂ of Eu³⁺) and 488 nm (⁷F₆ \rightarrow ⁵D₄ of Tb^{3+}), except for the excitation intensity (Fig. 4a). The presence of the excitation peak of Tb^{3+} (488 nm, ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$) in the excitation spectrum monitored with Eu^{3+} emission (618 nm, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) clearly indicates that an energy transfer has occurred from Tb^{3+} to Eu^{3+} in the NaScMo₂O₈ host. As shown in Fig. 4b, under 292 nm excitation (the characteristic peak of MoO_4^{2-}), the emission intensity of Eu^{3+} at 618 nm in NaSc_{0.965} $Mo_2O_8{:}0.025Eu^{3+},\ 0.01\ Tb^{3+}$ (blue line) is much stronger than that of single-doped Eu³⁺ in NaSc_{0.975} $Mo_2O_8:0.025Eu^{3+}$ (black line). With increase in Tb^{3+} concentrations, the emission intensity of Eu³⁺ at 618 nm increases gradually and then slowly decreases due to concentration quenching [6]. The emission spectra in Fig. 4b directly support that the ET of $MoO_4^{2-} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$ can take place in the NaScMo₂O₈ host. Also taking into account the excitation spectrum in Fig. 4a, if Tb^{3+} ion was excited from ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$ (488 nm), there should be energy transfer from the excited ${}^{5}D_{4}$ level of Tb^{3+} to the ${}^{5}D_{0}$ level of Eu^{3+} in the $NaSc_{(0.975-1)}Mo_2O_8:0.025Eu^{3+}$, ν/Tb^{3+} (y = 0.01-0.075) samples. Upon excitation into the ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$ transition of Tb³⁺ at 488 nm, the emission spectra of the NaSc_{0.9}Mo₂O₈:0.05Tb³⁺, 0.05Eu³⁺, NaSc_{0.95}Mo₂O₈:0.05Tb³⁺ and NaSc_{0.95}Mo₂O₈:0.05Eu³⁺ are presented in Fig. 4c for comparison. The emission

◄ Figure 4 Excitation (**a**) and emission (**b**) spectra of the NaSc_{0.975} Mo₂O₈:0.025Eu³⁺, yTb³⁺ (y = 0–0.075) samples. **c** Emission spectra of the NaSc_{0.9}Mo₂O₈:0.05Tb³⁺, 0.05Eu³⁺, NaSc_{0.95}Mo₂O₈:0.05Tb³⁺ and NaSc_{0.95}Mo₂O₈:0.05Eu³⁺ samples upon excitation to the ⁷F₆ → ⁵D₄ transition of Tb³⁺ at 488 nm, respectively.

spectrum of NaSc_{0.95}Mo₂O₈:0.05Tb³⁺ (green line) exhibits the f \rightarrow f transitions of Tb³⁺ with a strong peak at 549 nm (⁵D₄ \rightarrow ⁷F₅); there is no obvious emission peak in the NaSc_{0.95}Mo₂O₈:0.05Eu³⁺ sample (black one), but the emission spectrum of NaSc_{0.9}Mo₂O₈:0.05Tb³⁺, 0.05Eu³⁺ presents much stronger characteristic peaks of Eu³⁺ at 596 nm (⁵D₀ \rightarrow ⁷F₁) and 618 nm (⁵D₀ \rightarrow ⁷F₂) than that of Tb³⁺ at 549 nm (⁵D₄ \rightarrow ⁷F₅). This phenomenon further demonstrates that the energy can be effectively transferred from Tb³⁺ to Eu³⁺.

Figure 5a shows the multicolor luminescence based on the ET of $MoO_4^{2-} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$ by changing Eu^{3+} concentration in the NaSc_(0.95-x)Mo₂ $O_8:0.05Tb^{3+}$, *x*Eu³⁺. Upon excitation into the MoO₄²⁻ at 292 nm, the $NaSc_{0.95}Mo_2O_8:0.05Tb^{3+}$ only emits its characteristic emissions without doping Eu³⁺; when doped with a small amount of Eu^{3+} (x = 0.001), the characteristic emission of Eu³⁺ can be observed apart from Tb³⁺ emission. With increase in Eu³⁺ doping concentrations, the emission intensity of Tb³⁺ at 549 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) gradually decreases and that of Eu³⁺ at 618 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) and 596 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) increases simultaneously because of the energy transfer from Tb^{3+} to Eu^{3+} . And then, the emission spectra of Eu³⁺ gradually become the dominant one with maximum value at x = 0.1; with further increasing Eu³⁺, the emission of Eu³⁺ decreases due to the $Eu^{3+}-Eu^{3+}$ internal concentration quenching effect. The results above further reflect that the energy of the red emission of Eu³⁺ is derived from Tb^{3+} and the multicolor luminescence can be tuned by adjusting the relative ratio of Tb^{3+} to Eu^{3+} . The CIE chromaticity coordinates (Fig. 5b) of $NaSc_{(0.95-x)}Mo_2O_8:0.05Tb^{3+}$, xEu^{3+} vary from green region (0.27, 0.58) to red region (0.62, 0.34) via yellow region (0.42, 0.47) by altering Eu^{3+} concentration, which can be seen clearly from the corresponding

Figure 5 a Emission spectra of $NaSc_{(0.95-x)}Mo_2O_8:0.05Tb^{3+}$, xEu^{3+} (x = 0-0.15); **b** the CIE chromaticity coordinates of $NaSc_{(0.95-x)}Mo_2O_8:0.05Tb^{3+}$, xEu^{3+} (x = 0-0.025) phosphors under 292 nm excitation and the corresponding luminescence photographs excited by a 254-nm UV lamp.

luminescence photographs excited by a 254-nm UV lamp (inset in Fig. 5b).

The energy transfer also can be confirmed by the luminescence decay curves of Tb^{3+} , as shown in Fig. 6a. According to Dexter theory [38], the nonradiative energy transfer can shorten the lifetime of Tb^{3+} . The decay time of Tb^{3+} (excited at 292 nm and monitored at 549 nm) as a function of the Eu³⁺ doping concentrations in $\text{NaSc}_{(0.95-x)}\text{Mo}_2\text{O}_8:0.05\text{Tb}^{3+}$, $x\text{Eu}^{3+}$ can be obtained from equation:

$$I_t = I_0 \exp(-t/\tau) \tag{1}$$

where I_t and I_0 are the luminescence intensities at time *t* and t = 0, respectively, and τ is the decay time. The values of Tb³⁺ for NaSc_(0.95-x)Mo₂O₈:0.05Tb³⁺, *x*Eu³⁺ are determined to be 0.433 and 0.065 µs at x = 0 and 2.5, respectively. We can conclude that with the increase in Eu³⁺ concentration, the fluorescence lifetime of Tb³⁺ (⁵D₄) state decreases due to the strong energy transfer from Tb³⁺ to Eu³⁺ via

Figure 6 a Decay *curves* of Tb³⁺ for the NaSc_(0.95-x)Mo₂ O₈:0.05Tb³⁺, xEu³⁺ (x = 0 and 0.025) phosphors. **b** The dependence of I_{S0}/I_S of Tb³⁺ on $C_{(Tb^{3+}+Eu^{3+})^{n/3}}$.

nonradiative process in $NaSc_{(0.95-x)}Mo_2O_8:0.05Tb^{3+}$, xEu^{3+} phosphors.

In general, there are two ways for the energy transfer from Tb^{3+} to Eu^{3+} in a phosphor: One is exchange interaction, and the other is electric multipolar interaction. If the critical distance (R_c) between Tb^{3+} and Eu^{3+} is less than 4 Å, the energy transfer takes the exchange interaction; otherwise, it takes the electric multipole interaction. The distance R_c can be calculated using the crystal structure data method through the following equation [39]:

$$R_{\rm c} = 2 \left[\frac{3V}{4\pi X_{\rm C} N} \right]^{1/3} \tag{2}$$

where *N* is the number of molecules in the unit cell, *V* the cell volume and X_c the total concentration of Tb³⁺ and Eu³⁺ ions. For NaScMo₂O₈ host ($N = 2, V = 370.3 \text{ Å}^3$), with increasing Eu³⁺ concentration (x = 0.002, 0.025, 0.05 and 0.1) in the NaSc_(0.95-x)Mo₂O₈:0.05Tb³⁺, *x*Eu³⁺ sample, the R_c was calculated to be 18.9, 16.8, 15.2 and 13.3 Å at total concentration (X_c) of 0.052, 0.075, 0.10 and 0.15, respectively. All these R_c values are far greater than

4 Å, which indicates that the energy transfer mechanism of $\text{Tb}^{3+} \rightarrow \text{Eu}^{3+}$ is governed by electric multipolar interaction in NaScMo₂O₈ host [40].

The energy transfer mechanism for multipolar interactions can be further discussed by the following equation [41]:

$$\eta_{\rm S0}/\eta_{\rm S} \propto C^{n/3} \tag{3}$$

Many studies have reported that the value of η_{so}/η_s can be approximately estimated by the luminescence intensity ratio (I_{S0}/I_s) of Tb³⁺ as follows:

$$I_{\rm S0}/I_{\rm S} \propto C^{n/3} \tag{4}$$

where *C* is the total concentration of Tb^{3+} and Eu^{3+} and n = 6, 8 and 10 are dipole–dipole, dipole–quadrupole and quadrupole-quadrupole interactions, respectively. $I_{\rm S}$ and $I_{\rm S0}$ are the emission intensity of Tb^{3+} in the presence and absence of Eu^{3+} . The relationships between I_{S0}/I_S and $C_{(Tb^{3+}+Eu^{3+})}^{n/3}$ are presented in Fig. 6b. When n = 6, the linear behavior fitting value R^2 is 0.986 which is better than others $(n = 8, R^2 = 0.977 \text{ and } n = 10, R^2 = 0.94)$. The fitting results illustrate that the energy transfer mechanism between Tb³⁺ and Eu³⁺ in NaScMo₂O₈ host is domdipole-dipole electric inated bv multipolar interaction.

Figure 7 shows detailed schematic for the ET processes of $MoO_4{}^{2-} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$ in $NaScMo_2O_8$ host. Firstly, upon UV irradiation, the energy is absorbed by $MoO_4{}^{2-}$. The electrons in the ground state (¹A₁) of $MoO_4{}^{2-}$ shift to its ¹B (¹T₂) level [42] and then a very small part of them return to the lowest excited ¹B (¹T₁) level to emit the characteristic emission of $MoO_4{}^{2-}$ (Fig. S3 in Supporting Information);

Figure 7 Schematic for the ET processes of $MoO_4^{2-} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$ in NaScMo₂O₈ host.

meanwhile, other excited electrons transferred energy to Tb^{3+} and Eu^{3+} . On the one hand, the Tb^{3+} ion shows its characteristic emissions: The energy on Tb^{3+} higher levels relaxes to the lowest excited energy level ${}^{5}D_{4}$ via multi-phonon relaxation [40] and then return to the ground state, engendering the emissions of Tb^{3+} (${}^{5}D_{4} \rightarrow {}^{7}F_{6, 5, 4, 3}$). On the other hand, the energy absorbed by Tb^{3+} be transferred to higher excited energy level of Eu^{3+} (${}^{5}D_{1}$) via dipole–dipole interaction. Finally, the energy on ${}^{5}D_{1}$ level relaxes to ${}^{5}D_{0}$ level, giving out red emissions based on ${}^{5}D_{0} \rightarrow {}^{7}F_{0, 1, 2, 3}$ transitions of Eu^{3+} .

Upconversion luminescence

In Fig. 8, under 980 nm excitation, the emission of $NaScMo_2O_8:RE^{3+}$ (RE = Yb/Er, Yb/Ho) showed green $(Yb^{3+}/Er^{3+}: {}^{4}S_{3/2}, {}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}; Yb^{3+}/Ho^{3+}:$ ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$) luminescence [43]. To gain further insight into the UC emission properties of NaScMo₂O₈:RE³⁺ (RE = Yb/Er, Yb/Ho), the concentration of Er^{3+} (or Ho^{3+}) was fixed at 0.01 and the concentration of the Yb^{3+} was changed from 0 to 0.2 (or from 0 to 0.25). From Fig. 8a, it can be found that the UC emission spectra of $NaSc_{(0.99-x)}Mo_2O_8:xYb^{3+}$, 0.01Er³⁺ samples do not show an obvious difference in shape and emission bands except for the emission intensity. All of them exhibit three emission bands centered at 536, 556 and 662 nm, which can be ascribed to the $^{2}H_{11/2} \rightarrow ^{4}I_{15/2}, \ ^{4}S_{3/2} \rightarrow ^{4}I_{15/2} \ \text{ and } \ ^{4}F_{9/2} \rightarrow ^{4}I_{15/2}$ transitions of Er^{3+} , respectively. Upon variation of the Yb^{3+} concentration from 0 to 0.2, the intensity of UC emission spectra first increases and then decreases. When Yb^{3+} concentration is increased from 0 to 0.1, more Yb³⁺ become available to furnish and transfer energy to the Er³⁺, resulting in the higher emission intensity. Once exceeded its limit (x = 0.1), the interatomic distance between Yb³⁺ and Er³⁺ became short with further increase in the Yb^{3+} concentration, which remarkably enhances the probability of energy migration to the quenching center caused by resonance transfer and then results in the decrease in UC emission intensity. This phenomenon is similar to that of $NaSc_{(0.99-x)}Mo_2O_8:xYb^{3+}$, 0.01Ho³⁺, which is given in Fig. 8b. The strong emission band centered at 541 nm, and the relatively weak emission band at 649 nm can be attributed to the ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ and ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ transitions of Ho³⁺ ions, respectively. When x = 0.2, the sample shows the strongest upconversion luminescence (Fig. 8b).

13875

Figure 8 UC emission spectra of **a** the NaSc_(0.99-x)Mo₂O₈: xYb^{3+} , 0.01Er³⁺ (x = 0-0.2) and **b** the NaSc_(0.99-x)Mo₂O₈: xYb^{3+} , 0.01Ho³⁺ (x = 0-0.25) under 980 nm excitation, respectively.

Conclusion

In summary, NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) phosphors were synthesized by a simple surfactant-free hydrothermal route combined with subsequent calcination at 800 °C. Various ways are enumerated in this paper to prove the ET of $MoO_4^{2-} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$. The $NaSc_{(0.95-x)}Mo_2$ O₈:0.05Tb³⁺, xEu^{3+} exhibit strong multicolor emissions from green to red due to the effective ET from Tb³⁺ to Eu³⁺ by dipole–dipole interaction. Upon 980 nm excitation, Yb³⁺/Er³⁺- and Yb³⁺/Ho³⁺-doped NaScMo₂O₈ both exhibit strong green emission. Besides, the Yb³⁺ concentration doped in the NaSc_(0.99-x)Mo₂O₈:xYb³⁺, 0.01Er³⁺ and NaSc_(0.99-x)

 $Mo_2O_8:xYb^{3+}$, 0.01Ho³⁺ phosphors have been optimized at x = 0.1 and 0.2, respectively. Owing to their excellent DC/UC luminescence properties, the NaScMo₂O₈:RE³⁺ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/ Ho) phosphors have great potential application in the fields of color displays and light-emitting devices.

Acknowledgements

This project is financially supported by the National Natural Science Foundation of China (51302229 and 51302228), the Fundamental Research Funds for the Central Universities (XDJK2016C147 and XDJK2015B019) and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China (46th).

Electronic supplementary material: The online version of this article (doi:10.1007/s10853-017-1396-8) contains supplementary material, which is available to authorized users.

References

- [1] Wang F, Han Y, Lim CS, Lu YH, Wang JA, Xu J, Chen HY, Zhang C, Hong MH, Liu XJ (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065
- [2] Li Y, Wang GF, Pan K, Zhou W, Wang C, Fan NY, Chen YJ, Feng QM, Zhao BB (2012) Controlled synthesis and luminescence properties of rhombic NaLn(MoO₄)₂ submicrocrystals. CrystEngComm 14:5015–5020
- [3] Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M (2001) Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce, Tb nanocrystals. Angew Chem Int Ed 40:573–576
- [4] Wang GF, Qin WP, Zhang JS, Zhang JS, Wang Y, Cao CY, Wang LL, Wei GD, Zhu PF, Kim RJ (2008) Synthesis, growth mechanism, and tunable upconversion luminescence of Yb³⁺/Tm³⁺-codoped YF₃ nanobundles. J Phys Chem C 112:12161–12167
- [5] Huang J, Xu J, Luo H, Xu X, Li Y (2011) Effect of alkalimetal ions on the local structure and luminescence for double tungstate compounds $AEu(WO_4)_2$ (A = Li, Na, K). Inorg Chem 50:11487–11492
- [6] Zhao B, Yuan L, Hu SS, Zhang XM, Zhou XJ, Tang JF, Yang J (2016) One-step hydrothermal synthesis of Sc_2Mo_{3-} $O_{12}:Ln^{3+}$ (Ln = Eu, Tb, Dy, Tb/Eu, Dy/Eu) nanosheets and

their multicolor tunable luminescence. New J Chem 40:9211–9222

- Hou L, Cui SB, Fu ZL, Wu ZJ, Fu XH, Jeong JH (2014)
 Facile template free synthesis of KLa(MoO4)2:Eu³⁺, Tb³⁺
 microspheres and their multicolor tunable luminescence.
 Dalton Trans 43:5382–5392
- [8] Cui SB, Zhu YS, Xu W, Zhou PW, Xia L, Chen X, Song HW, Han W (2014) Self-assembly and modified luminescence properties of NaY(MoO₄)₂:Tb³⁺, Eu³⁺ inverse opals. Dalton Trans 43:13293–13298
- [9] Zheng H, Chen BJ, Yu HQ, Sun JS, Lia XP, Zhang JS, Zhong H, Wu ZL, Xia HP (2015) Influence of microwave hydrothermal reaction factor on the morphology of NaY(MoO₄)₂ nano-/micro-structures and luminescence properties of NaY(MoO₄)₂:Tb³⁺. RSC Adv 5:56337–56347
- [10] Xu L, Yang XY, Zhai Z, Chao X, Zhang ZH, Hou WH (2011) EDTA-mediated hydrothermal synthesis of NaEu(MoO₄)₂ microrugbies with tunable size and enhanced luminescence properties. CrystEngComm 13:4921–4929
- [11] Yang XX, Fu ZL, Liu GF, Zhang CP, Wei YL, Wu ZJ, Sheng TQ (2015) Controlled morphology and EDTA-induced pure green upconversion luminescence of Er³⁺/Ho³⁺–Yb³⁺ codoped NaCe(MoO₄)₂ phosphor. RSC Adv 5:70220–70228
- [12] Xu ZH, Li CX, Li GG, Chai RT, Peng C, Yang DM, Lin J
 (2010) Self-assembled 3D urchin-like NaY(MoO₄)₂:Eu³⁺/ Tb³⁺ microarchitectures: hydrothermal synthesis and tunable emission colors. J Phys Chem C 114:2573–2582
- [13] Katelnikovas A, Plewa JL, Sakirzanovas S, Dutczak D, Enseling D, Baur F, Winkler H, Kareiv A, Jüstel T (2012) Synthesis and optical properties of Li₃Ba₂La₃(MoO₄)₈:Eu³⁺ powders and ceramics for pcLEDs. J Mater Chem 22:22126–22134
- [14] Zhou J, Xia ZG (2014) Multi-color emission evolution and energy transfer behavior of $La_3GaGe_5O_{16}$:Tb³⁺, Eu³⁺ phosphors. J Mater Chem C 2:6978–6984
- [15] Wang Y, Brik MG, Dorenbos P, Huang Y, Tao Y, Liang H (2014) Enhanced green emission of Eu²⁺ by energy transfer from the ⁵D₃ level of Tb³⁺ in NaCaPO₄. J Phys Chem C 118:7002–7009
- [16] Zhang Y, Geng D, Kang X, Shang M, Wu Y, Li X, Lian H, Cheng Z, Lin J (2013) Rapid, large-scale, morphologycontrollable synthesis of YOF:Ln³⁺ (Ln = Tb, Eu, Tm, Dy, Ho, Sm) nano-/microstructures with multicolor-tunable emission properties. Inorg Chem 52:12986–12994
- [17] Atabaev TS, Lee JH, Han DW, Hwang YH, Kim HK (2012) Cytotoxicity and cell imaging potentials of submicron colortunable yttria particles. J Biomed Mater Res A 100:2287–2294
- [18] Wen DW, Feng JJ, Li JH, Shi JX, Wu MM, Su Q (2015) $K2Ln(PO4)(WO4):Tb^{3+}$, Eu^{3+} (Ln = Y, Gd and Lu)

phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes. J Mater Chem C 3:2107–2114

- [19] Guo N, Song Y, You H, Jia G, Yang M, Liu K, Zheng Y, Huang Y, Zhang H (2010) Optical properties and energy transfer of NaCaPO₄:Ce³⁺, Tb³⁺ phosphors for potential application in light-emitting diodes. Eur J Inorg Chem 29:4636–4642
- [20] You H, Wu X, Hong G, Tang J, Hu H (2003) A new type of highly efficient luminescent material the system Al_2O_3 – B_2O_3 containing Ce^{3+} and Tb^{3+} ions. Chem Mater 15:2000–2004
- [21] Wang D, Wang Y, He JW (2012) Investigation of energy absorption and transfer process of Tb^{3+} or Eu^{3+} excited Na₃Gd(PO₄)₂ in the VUV region. Mater Res Bull 47:142–145
- [22] Pavani K, Suresh Kumar J, Rama Moorthy L (2014) Photoluminescence properties of Tb³⁺ and Eu³⁺ ions co-doped SrMg₂La₂W₂O₁₂ phosphors for solid state lighting applications. J Alloys Compd 586:722–799
- [23] Geng DQ, Li GG, Shang MM, Peng C, Zhang Y, Cheng ZY, Lin J (2012) Nanocrystalline CaYAlO₄:Tb³⁺/Eu³⁺ as promising phosphors for full-color field emission displays. Dalton Trans 41:3078–3086
- [24] Zhu Y, Xu W, Cui S (2015) Controlled size and morphology, and phase transition of YF3:Yb³⁺, Er³⁺ and YOF:Yb³⁺, Er³⁺ nanocrystals for fine color tuning. J Mater Chem C 4:331–339
- [25] Zhang C, Zhou HP, Liao LY, Feng W, Sun W, Li ZX, Xu CH, Fang CJ, Sun LD, Zhang YW, Yan CH (2010) Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv Mater 22:633–637
- [26] Pichaandi J, Boyer JC, Delaney KR (2011) Two-photon upconversion laser (scanning and wide-field) microscopy using Ln³⁺-doped NaYF₄ upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging. J Phys Chem C 115:19054–19064
- [27] Li CX, Yang DM, Ma PA, Chen YY, Wu Y, Hou ZY, Dai YL, Zhao JH, Sui CP, Lin J (2013) Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 9:4150–4159
- [28] Liao J, Nie L, Wang Q (2016) NaGd(WO₄)₂:Yb³⁺/Er³⁺ phosphors: hydrothermal synthesis, optical spectroscopy and green upconverted temperature sensing behavior. RSC Adv 6:35152–35159
- [29] Wang Z, Feng J, Pang M, Pan SH, Zhang HJ (2013) Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Trans 42:12101–12108

- [30] Wang DM, Fan J, Shang MM, Li K, Zhang Y, Lian HZ, Lin J
 (2016) Pechini-type sol–gel synthesis and multicolor-tunable emission properties of GdY(MoO₄)₃:RE³⁺ (RE = Eu, Dy, Sm, Tb) phosphors. Opt Mater 51:162–170
- [31] Li AM, Xu DK, Lin H, Yang SH, Shao YZ, Zhang YL, Chen ZQ (2015) Facile morphology-controllable hydrothermal synthesis and color tunable luminescence properties of NaGd(MoO4)2:Eu³⁺, Tb³⁺ microcrystals. RSC Adv 5:45693–45702
- [32] Rama Raju GS, Pavitra E, Ko YH, Yu JS (2012) A facile and efficient strategy for the preparation of stable CaMoO₄ spherulites using ammonium molybdate as a molybdenum source and their excitation induced tunable luminescent properties for optical applications. J Mater Chem 22:15562–15569
- [33] Fu ZL, Xia WW, Li QS (2012) Highly uniform NaLa(MoO₄)₂:Ln³⁺(Ln = Eu, Dy) microspheres: template-free hydrothermal synthesis, growing mechanism, and luminescent properties. CrystEngComm 14:4618–4624
- [34] Zhao B, Yuan L, Hu SS, Zhang XM, Zhou XJ, Tang JF, Yang J (2016) Controllable synthesis of Sc₂Mo₃O₁₂ microcrystals with exposed 001 facets and their remarkable tunable luminescence properties by doping lanthanides. CrystEngComm 18:8044–8058
- [35] Tian Y, Qi XH, Wu XW, Hua RN, Chen BJ (2009) Luminescent properties of Y₂ (MoO₄)₃:Eu³⁺ red phosphors with flowerlike shape prepared via coprecipitation method. J Phys Chem C 113:10767–10772
- [36] Zhou Y, Yan B, He XH (2014) Controlled synthesis and up/down-conversion luminescence of self-assembled

hierarchical architectures of monoclinic $AgRE(WO_4)_2:Ln^{3+}$ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/ Tm). J Mater Chem C 2:848–855

- [37] Zeng YB, Li ZQ, Wang LM, Xiong YJ (2012) Controlled synthesis of Gd₂(WO₄)₃ microstructures and their tunable photoluminescent properties after Eu³⁺/Tb³⁺ doping. CrystEngComm 14:7043–7048
- [38] Blasse G (1969) Energy transfer in oxidic phosphors. Philips Res Rep 24:131–144
- [39] Zhang Y, Gong WT, Yu JJ, Lin Y, Ning GL (2015) Tunable white-light emission via energy transfer in single-phase $LiGd(WO_4)_2:Re^{3+}$ (Re = Tm, Tb, Dy, Eu) phosphors for UV-excited WLEDs. RSC Adv 5:96272–96280
- [40] Zhang XG, Zhou LY, Pang Q, Shi JX, Gong ML (2014) Tunable luminescence and Ce³⁺ → Tb³⁺ → Eu³⁺ energy transfer of broadband-excited and narrow line red emitting Y2SiO5:Ce³⁺, Tb³⁺, Eu³⁺ phosphor. J Phys Chem C 118:7591–7598
- [41] Zhou J, Xia ZG (2015) Luminescence color tuning of Ce³⁺, Tb³⁺ and Eu³⁺ codoped and tri-doped BaY₂Si₃O₁₀ phosphors via energy transfer. J Mater Chem C 3:7552–7560
- [42] Zhang Y, Holzwarth NAW, Williams RT (1998) Electronic band structures of the scheelite materials CaMoO₄, CaWO₄, PbMoO₄, and PbWO₄. Phys Rev B 57:12738–12750
- [43] Huang SH, Zhang X, Wang LZ, Bai L, Xu J, Li CX, Yang PP (2012) Controllable synthesis and tunable luminescence properties of Y₂(WO₄)₃:Ln³⁺ (Ln = Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures. Dalton Trans 41:5634–5642