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ABSTRACT

In this research, samples of the H13 steel, a commonly used hot work tool steel

in the die/mould manufacturing industry, were additively manufactured using

selective laser melting (SLM). Their as-built microstructures were characterised

in detail using transmission electron microscopy (TEM) and compared with that

of the conventionally manufactured H13 (as-supplied). SLM resulted in the

formation of martensite and also its partial decomposition into fine a-Fe and

Fe3C precipitates along with retained austenite. TEM analyses further revealed

that the lattice of the resulting a-Fe phase is slightly distorted due to enhanced

Cr, Mo and V contents. Substantially high residual stresses in the range of

940–1420 MPa were detected in the as-built H13 samples compared with its

yield strength of *1650 MPa. In addition, it was identified that the high

residual stress existed from just about two additive layers (100 lm) above the

substrate along the build direction. The high residual stresses were mainly

attributed to the martensitic transformation that occurred during SLM. The

research findings of this study suggest that the substantially high residual

stresses can be easily problematic in the AM of intricate H13 dies or moulds by

SLM.

Introduction

H13 is a typical hot work tool steel that is alloyed

with elements of Cr, V, Mo, Mn and Si to enable its

superior thermal strength, good red hardness and

excellent resistance to thermal fatigue and wear. It

resists softening up to 540 �C and is widely used to

make dies for hot forging, hot extrusion or high-

pressure casting of low-melting point metals and

alloys such as aluminium and magnesium alloys [1].

Additive manufacturing (AM) builds parts from

three-dimensional (3D) digital models typically by a
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layer additive process. The availability of affordable

C400 W fibre laser since 2007 has significantly stim-

ulated the development and application of metal AM

over the last decade [2–4]. Die or mould making is a

costly and time-consuming process. AM, however,

has the potential to transform the die-making

industry. Firstly, the lead time for mould making can

be greatly shortened, from months to days as quality

moulds can be printed directly from 3D design

models [5, 6]. Secondly, the metallurgical bonding

that forms between layers of metallic materials dur-

ing AM can ensure nearly full density and good

mechanical properties for mould applications [7–12].

Finally, the advantage to realise conformal cooling is

a unique and unrivalled attribute of AM to the mould

making industry [13, 14]. Consequently, AM of hot

work steels including H13 has attracted increasing

attention [15–23].

Selective laser melting (SLM) is a powder-bed-fu-

sion-based AM process. Aside from being able to

produce intricate moulds with a nearly full density,

SLM is often accompanied by a fast cooling rate,

which, on the one hand, can produce a refined

microstructure [8, 24, 25]. This, however, can entail

large residual stresses or distortion due to steep

thermal gradients and/or significant phase transfor-

mation stresses [26–28]. For example, Lu et al. [14]

found that the residual stress in SLM-fabricated

Inconel 718 alloy samples was about 200 MPa,

affected by the laser scanning strategy. Griffith et al.

[29] used a holographic-hole drilling technique to

determine the magnitude and distribution of residual

stress in H13 steel samples fabricated by a laser

engineered net shaping technology and reported that

the residual stress was up to 260 MPa. Li et al. [30]

studied the residual stress issue during SLM using a

coupled thermo-mechanical model. They found that

the residual stress on the top layer of the sample was

related to the laser scanning strategy adopted: lon-

gitudinal residual stress (* 350 MPa) was greater

than that was measured crosswise in the vertical

sequential scanning mode; the residual stress

decreased more or less linearly when moving

downwards along the built direction. Apart from

these studies, high compressive residual stresses

(*800 MPa) were measured from spray-formed (a

rapid solidification-based AM process) H13 steel

samples [31]. The process is similar to SLM in some

ways: both processes are solidification-based layer

AM processes with a high cooling rate.

From the aforementioned studies, it can tentatively

be concluded that the residual stress arising from laser

processing is both material and laser scanning strategy

dependent, and the stress level can be significant, e.g.

close to or even greater than half the yield stress of the

material. The potential consequences include (a) de-

creased geometrical accuracy and stability achievable

by the printed material [32]; (b) distortion, cracking

or even breakage of parts during SLM or post-pro-

cessing [14, 33–35]; (c) (if the stress is in tensile)

decreased fatigue strength and resistance to stress

corrosion [36, 37]. In particular, distortion caused by

residual stresses can be a major concern in the AM of

intricate dies or moulds by SLM. As such, the steel

substrate used in the SLM process often needs to be

sufficiently thick and strong in order to counter the

potential distortion of the part being built. Also, the as-

built parts need to be annealed for stress relief. Owing

to the stringent requirement for dimensional accuracy,

it is important to understand the magnitude and state

of residual stresses in the as-built dies or moulds.

In this study, nearly full dense H13 steel samples

were made using the SLM technique. High-angle X-ray

radiation (XRD) was then used to characterise the

residual stress in the as-built H13 samples. Optical

microscopy (OM), scanning electron microscopy (SEM)

and TEM were used to understand the microstructural

details. We found that the residual stress in some

samples exceeded even 1000 MPa. The corresponding

stress relief heat treatment therefore may have to have

both the microstructure of the as-built H13 and the high

residual stress discovered thoroughly considered.

Experimental

SLM of the H13 tool steel

Spherical, gas-atomised H13 steel powder in the size

range 25–44 lm was used. Its chemical composition

is listed in Table 1. An SLM Solutions 250 HL facility

(400 W Yb:YAG laser) was used. Cubic samples

(10 9 10 9 10 mm3) were produced at a laser power

of 150 W, a scan speed of 300 mm/s using an

Table 1 Chemical composition of the H13 powder used in this

study

Element Fe Cr Mo Si V Mn C

wt % Bal. 5.20 1.23 1.12 1.10 0.41 0.41
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alternate raster pattern and a hatch spacing of 50 lm
under argon (Ar). A detailed study of the SLM pro-

cess of this alloy can also be found in [18]. A 316L

stainless steel substrate was used and kept at 200 �C
during SLM. For comparative analysis, convention-

ally produced H13 supplied by the UDDEHOLM

ORVAR�SUPREME was analysed, referred to as ‘as-

supplied H13’ hereafter. It was austenitised at

1025 �C for 30 min, followed by air cooling, and then

tempered at 610 �C for 2 h.

Characterisation of residual stress,
microstructure and microhardness

Residual stress can be assessed using a hole drilling

approach, neutron diffraction and X-ray diffraction

(XRD). We used the high-angle XRD approach, which

is reliable, rapid and non-destructive with a mea-

surement uncertainty of *5% [38]. The experiments

were conducted on an XRD instrument (at 20 kV and

4 mA) purposely designed for the stress measure-

ment. The target material is Cr Ka with a wavelength

of 2.291 Å. Peak from the (211) plane of the a-Fe
phase was measured by centring at the 2h value of

156.4�. Slice samples (*0.5 mm thick) were prepared

from as-built cubes using a high-precision low-speed

diamond saw. They were analysed without polishing

to ensure minimised external influences on the as-

built microstructure as well as residual stress.

Detailed locations of the high-angle XRD sample

slices are indicated in Fig. 7a. The analysis was

focused on the central region of each sample slice

using a /2 mm XRD beam aperture.

The phase constitutions of both the as-supplied

and as-built H13 samples were investigated using a

lab XRD (Rigaku SmartLab) equipped with a high-

flux X-ray copper source (9 kW power). The scan rate

was 1.5 �min-1 in the 2h angular range of (20–100)o.

The microstructure was characterised using scanning

electron microscopy (SEM, Merlin, ZEISS, Germany;

10 kV) and TEM (JEM-2010F, 200 kV). TEM samples

were prepared by twin jet electropolishing at -30 �C,
in a solution of 5% HClO4 ? 95% C2H5OH (vol.%). A

thin layer of gold coating (* 5 nm thick) was applied

Figure 1 XRD spectra of the as-supplied (i.e. as-purchased) and

as-built H13 steel samples. In this figure, A0 stands for the retained

austenite phase and m denotes the martensite phase. Figure insets

are OM micrographs of the as-supplied and as-printed H13 steel

samples.

Figure 2 a SEM image for the as-supplied H13 showing a-Fe and
cementite (Fe3C), and b TEM image reveals that there is an

additional carbide phase, i.e. the (Cr,Fe)7C3 phase, except the Fe3C

phase.
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on top of each TEM sample using a Q150T sputter

coater for calibrating the camera length of the TEM as

an internal standard. Digital Micrograph version 3.7.4

was used to analyse the TEM results. Density of the

as-built H13 was measured by the Archimedes

method. Hardness was measured using an HXD-

1000TMC/LCD microhardness tester, with a dwell

time of 10 s at a load of 500 gf.

Results

Preliminary characterisation by XRD
and optical microscopy

Figure 1 shows the XRD results for both the as-sup-

plied and the as-built H13 with insets showing their

optical microstructures. The as-supplied H13 con-

tains dispersed secondary particles, while the

microstructure of the as-built SLM H13 is featured by

fine strips. An analysis of the XRD data indicates that

the as-supplied H13 consists of the bcc-structured a-
Fe (a = 2.87 Å) as the dominating phase, and the

cementite Fe3C phase (orthorhombic structure, with

a = 5.09 Å, b = 6.74 Å and c = 4.52 Å), where the

strongest peak from the (031)Fe3C overlaps the

diffraction from the (110)a-Fe. In contrast, the as-built

H13 was found to further contain retained austenite

(face-centred-cubic structure, with a = 3.62 Å),

denoted as the ‘A"’ phase in Fig. 1, and martensite

phase (Fe1.86C0.14, tetragonal structure with

a = 2.85 Å and c = 3.05 Å), marked out as the ‘m’

phase in Fig. 1.

The relative density of the as-built H13 reached

99.7 ± 0.1%, which is essentially pore-free and is

consistent with microscopic observations. Aside from

the microstructure, there is another clear difference in

terms of hardness between the as-built H13 and the

as-supplied. It was measured to be 57 ± 1 HRC for

the as-built H13 versus 45 ± 1 HRC for the as-sup-

plied H13.

Figure 3 SEM and TEM images for the as-built H13: a SEM

image for the topmost surface, b TEM-BF image for the sample

position located at the bottom of the build, c TEM-BF image for

the sample position located at the middle of the build, and d TEM-

BF image for the sample that was taken along the build direction

and from centre of the build.
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Detailed characterisation of the as-supplied
H13 by SEM and TEM

Figure 2(a) shows an SEM image of the as-supplied

H13. Together with the TEM analysis shown in

Fig. 2b, c and the XRD spectrum shown in Fig. 1, it

can be concluded that matrix of the as-supplied H13

is composed of overwhelmingly a-Fe phase. As

pointed out earlier, the secondary phases shown in

Fig. 2a are predominantly cementite Fe3C particles

according to the XRD spectrum. TEM characterisa-

tion, however, revealed that there is also the

(Cr,Fe)7C3 carbide phase existing in the matrix. The

selected area electron diffraction (SAED) patterns of

the phases shown in Fig 2b are presented in Fig. 2c.

The SAED patterns recorded are complicated. A

detailed analysis confirmed that they can be decom-

posed into diffraction patterns of two phases, i.e. the

matrix a-Fe phase, and the (Cr,Fe)7C3 carbide phase,

as shown in Fig. 2c. In addition, it can also be seen

from Fig. 2b that both the Fe3C phase and the

(Cr,Fe)7C3 carbide phase are spherical precipitates of

a few hundred nanometers in size.

Detailed characterisation of the as-built H13
by SEM and TEM

Figure 3(a) shows an SEM image of the top layer of

the as-built H13. Distinctly different microstructural

features from those of the as-supplied H13 were

observed. TEM was employed to detail the

microstructures in slice samples prepared from the

bottom (i.e. close to the substrate, Fig. 3b), and mid-

dle (Fig. 3c) of an as-built H13 cube, as well as a

sample sliced along the build direction of the cube

(Fig. 3d). Theses TEM bright field (BF) images sug-

gest that there is a low level of preferred orientation

of grain growth in the x–y plane, while a strong ori-

entation exists along the build direction (z direction).

Further TEM microstructural observations of the

as-built H13 are shown in Fig. 4a–d, along with insets

to show corresponding SAED results of each phase

Figure 4 TEM BF and/or DF images and corresponding SAED results for the major phases observed in the as-built H13: a the a-Fe
phase, b the cementite Fe3C phase (DF image here), c the martensite phase and d the retained austenite phase.
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included. These SAED results are recognised to be

diffracted from the a-Fe phase (Fig. 4a), the Fe3C

phase (Fig. 4b), the martensite phase (Fig. 4c) and the

retained austenite phase (c-Fe, fcc with a = 3.66 Å;

Fig. 4d). The results are consistent with the XRD

analyses shown in Fig. 1.

TEM characterisation has also revealed that the

lattice of the a-Fe phase in the as-built H13 is slightly

distorted. Figure 5 provides the corresponding SAED

results to compare the lattice parameters of the

matrix phase in the as-supplied (Fig. 5a) and the as-

built (Fig. 5b) H13 samples, where a thin layer of Au

was used as the internal standard (plane distance of

the (111) plane of the Au is known to be 2.35 Å). We

found that, in the SAED patterns recorded, the ratio

between the (211)a-Fe diffraction spot and the radius

of the Au diffraction ring (111)Au is slightly lower for

the as-built H13 than that obtained for the as-sup-

plied, which is 1.958 versus 1.960 (error bar estimated

to be ± 0.0005). This indicates that the lattice

parameter of the a-Fe phase in the as-built H13 is

higher than the as-supplied according to the estab-

lished relationship of R�d = L�k. We further found

that Cr, Mo and V elements are enriched in the a-Fe
phase in the as-built H13, see Table 2. This can be

attributed to the high cooling rates encountered

during SLM. In other words, the a-Fe phase in the as-

built H13 is not in an equilibrium state.

Residual stress measurements of the as-built
H13

The normal residual stress (rx or ry where x and y are

orthogonal; see Fig. 7) can be calculated from

r = m�(E/1 ? m), where E is Young’s modulus, v is

Poisson’s ratio, and m is the slope of the d versus sin2w
curve [39, 40]. A plot of d versus sin2w is shown in

Fig. 6 based on the experimental data obtained. The

slope is -0.00309. H13 has typical value of E = 210 GPa

and m = 0.3 [18, 41]. A high, compressive residual

stress of * 1000 MPa was obtained from this slice

sample. Six similar slice samples were analysed, with

their locations in the as-built H13 cube being specified

in Fig. 7a. The detailed results are listed in Table 3.

Figure 7b summarises the residual stress versus build

distance from the substrate, suggesting that residual

stress builds up almost immediately after the first two

layers during SLM (the stress-free thickness is limited

to *100 lm). It is also noted that the residual stress is

distributed almost across the entire as-built material,

Figure 5 TEM-SAED patterns for the a-Fe phase in the as-

supplied H13 a and as-built b H13 samples. A thin film of Au

(*5 nm thick), whose diffraction was used as an internal standard,

was coated on each sample.

Figure 6 Plot of d versus sin2w measured for the as-built H13

using high-angle XRD.
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ranging from *940 to *1420 MPa, compared to the

yield strength of about 1650 MPa for the as-supplied

H13 [18, 41] (Fig. 8).

Discussion

The experimental results and analyses presented

above have indicated that: (1) AM by SLM enabled

the formation of martensite and also its partial

decomposition into a-Fe and Fe3C in the as-built H13;

and (2) the SLM-fabricated H13 has a high-level

residual stress in the as-built condition (Table 3).

Research has shown that the cooling rate during

laser powder deposition of the H13 steel can reach

*1.83 9 104 K/s (which is similarly (1.2–4.0) 9

104 K/s for laser powder deposition of Ti-6Al-4 V)

[42]. The critical cooling rate for martensitic trans-

formation in the H13 steel is *20 K/s, while its Ms

temperature is about 613 K (=350 �C) and its Mf

temperature is about 323 K (=50 �C) [18, 41]. The

observation of the martensite phase in the as-built

H13 is therefore understandable. In fact, the signifi-

cantly higher hardness of the as-built H13 (= 57 ± 1

HRC) versus that of the as-supplied H13 (=45 ± 1

HRC) also supports the martensitic structure

observed in the in the as-built H13 (a marginal

Table 2 Chemical composition of the a-Fe phase in the as-built

and the as-supplied H13 measured by TEM–EDX (data in at.%;

error bar ±0.2 at.%)

Fe Cr Mo Si V Mn C

As-built 84.6 5.4 0.6 1.8 0.9 0.9 5.8

As-forged 93.0 3.4 0.3 0.4 – 0.1 2.8

Figure 7 a Schematic illustration of the locations of sample slices analysed using high-angle XRD and b residual stress distribution along

the build direction (z axis) of the as-built H13.

Table 3 Residual stress of the as-built H13 measured using high-

angle XRD (error bar ±5%)

Sample Stress (u = 0�, MPa) Stress (u = 90�, MPa)

1 -1030 -940

2 -1420 -1220

3 -1180 -1230

4 -1280 -1160

5 -1060 -1050

6 -100 6

Figure 8 Schematic illustration of the cooling conditions pro-

posed for the as-built H13; the actual cooling rate at different

locations can vary over a wide range due to the cyclic thermal

conditions that occur during SLM. The Ms and Mf temperatures of

the H13 steel are indicated in the figure.
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increase in hardness can be attributed to the refined

microstructure). Owing to different cooling rates in

different regions of the cube and the cyclic thermal

effects from successively build layers, some of the

martensite structures may have decomposed into a-
Fe and carbides (i.e. Fe3C).

With regard to the residual stress, the total strain

(De) developed during the cooling stage can be

expressed as a combination of thermal (T), elastic (e),

plastic (p) and phase transformation (Tr) factors:

De = DeT ? Dee ? Dep ? DeTr [43]. The H13 steel has

yield strength (r0.2) of *1650 MPa [18, 41]. The high-

level residual stress detected in the as-built H13 is

thus still in the elastic deformation range. If we

assume that the elastic strain is fully recovered (i.e.

zero) in the as-built H13 and no plastic deformation

has occurred, then the overall residual stress level can

be regarded as a balanced result between the strain

(DeTr) which is induced by phase transformation and

the strain (DeT) which is induced by the thermal

gradient. The former normally leads to compressive

residual stress via the relationship Dr = E�DeTr, but
the latter normally corresponds to tensile stress.

Murakawa et al. [44] and Francis et al. [45] have

shown that if the martensitic phase transformation

temperature (e.g.Ms) is lower than 400 �C, the overall
residual stress can be a large, compressive one. Since

the Ms temperature of the H13 steel is merely 350 �C,
it can be concluded that the martensitic phase trans-

formation is the key reason for the high-level com-

pressive residual stress detected, which is in good

agreement with Refs. [44, 45].

Normally the high residual stress detected in the

as-built metallic materials should be relieved. Stress

relieving of the as-supplied H13 is typically carried

out in the range of 600–650 �C for 2 h. SLM-fabri-

cated H13 may need a different annealing treatment

to accommodate both its microstructural features

and the high residual stress detected. These require

another detailed, specific study to make a good

investigation.

Conclusions

Detailed microstructural characterisation and resid-

ual stress measurements have been conducted for the

SLM-fabricated H13 in the as-built condition, using

the as-supplied H13 as a reference. The following

conclusions can be drawn from this research.

1. High-angle XRD has been used to measure the

residual stress in the as-built H13, which shows

rather high compressive residual stresses that

vary in the range of 940–1420 MPa. The residual

stress exists almost throughout the as-built H13.

The martensitic transformation that occurs dur-

ing the SLM of the H13 steel is proposed to be the

main contributing factor to the high compressive

residual stress detected.

2. Detailed microstructural analysis has shown that

the major crystalline phases in the as-built H13

are a-Fe, Fe3C, retained austenite (c-Fe) and

martensitic phase. In comparison, a-Fe, Fe3C

and (Cr,Fe)7C3 are the three detectable phases in

the as-supplied H13. The a-Fe phase in the as-

built H13 has a slightly higher lattice parameter

than that in the as-supplied H13 due to higher

contents of Cr, Mo and V.
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