Electronic materials

Efficient red-emitting phosphor ScVO₄ doped with Bi³⁺ and Eu³⁺ for near-ultraviolet-activated solid-state lighting

Fengfeng Chi¹, Yanguang Qin¹, Fangfang Hu¹, Xiantao Wei^{1,*}, Yonghu Chen^{1,*}, Changkui Duan¹, and Min Yin¹

¹ Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China

Received: 25 April 2017 Accepted: 27 June 2017 Published online: 5 July 2017

© Springer Science+Business Media, LLC 2017

ABSTRACT

In this paper, Bi^{3+} and Eu^{3+} -co-doped ScVO₄ had been investigated as an alternative red-emitting phosphor under near-ultraviolet excitation. Structural and spectroscopic characterizations were carried out. The results show that the samples can efficiently absorb near-ultraviolet light and produce very bright red emission. In particular, the optimized sample shows much stronger emission intensity than the commercial phosphor Y₂O₂S: 5% Eu³⁺ in the excitation range of 365–395 nm, and can reach a strength 5.4 times of the latter under 385 nm excitation. It also has better CIE chromaticity coordinates. These suggest ScVO₄: Bi^{3+} , Eu^{3+} as a promising red-emitting phosphor for white light-emitting diodes based on near-ultraviolet light-emitting diode chips.

Introduction

Solid-state white light-emitting diodes (LEDs) developments have been blooming since the landmark achievement of bright-blue LEDs came out in the mid-1990s. A typical white LED, covering the broadband yellow-emitting phosphor YAG: Ce³⁺ on a blue LED chip, has been widely applied in many fields, owing to its superior properties such as high efficiency, energy-saving, friendly to the environment and long lifetime. Unfortunately, the major drawback of lacking red light component limits such white-lighting fixture to have a poor color rendering index (CRI, usually <75) and high correlated color temperature (CCT, 4000–8000 K) [1–7]. To generate a warm white light (CRI >80; CCT <4000 K), there is much room to improve. Many strategies have been proposed and that coating red–green–blue (RGB) tricolor phosphors on near-ultraviolet (NUV) LED chips (365–395 nm) is considered as one of the optimal [8].

In contrast to blue and green components, redemitting phosphors still demand great attentions to enhance their performance [9]. Divalent Eu ion (Eu^{2+}) -activated nitrides can give off very bright red light, which, however, is always quite far into deep red region where human eye is insensitive. Moreover, they could absorb visible light covering as far as the

Address correspondence to E-mail: wxt@ustc.edu.cn; yhuchen@ustc.edu.cn

red spectral scope thus may suffer from color change and lower luminous efficiency (efficiency of light conversion subject to the human eye sensitivity) [6, 10]. Trivalent Eu ion (Eu³⁺) is considered as an ideal source of red light with excitation lines at NUV region. Traditional high-efficient red-emitting phosphors activated by Eu³⁺ ions such as Y_2O_2S : Eu³⁺ and YVO₄: Eu³⁺, however, show a dramatic decrease in excitation efficiency in the NUV region and a tiny, narrow absorption around 395 nm, not suitable for NUV-activated white light applications. Therefore, host materials that can efficiently absorb NUV light and then transfer to red-emitting center is imperative.

For orthovanadates, the polarization of the oxygen ions resulting from the introduction of foreign ions in the host lattice influences the position of chargetransfer bands. By replacing Y^{3+} with trivalent cation with a smaller radius, such as Sc^{3+} and Lu^{3+} , the absorption band of $LnVO_4$ (Ln = Lu or Sc) doped with Eu³⁺ had a large red shift, which would be more significant upon introduction of Bi³⁺ ion [11, 12]. A sketch (Fig. 1) presents the energy absorption and transfer mechanism in LnVO₄: Bi³⁺, Eu³⁺. Besides the famous charge-transfer (CT) transition between O²⁻ and V^{5+} (O–V), the metal–metal CT transition between Bi³⁺ and V⁵⁺ is also taken into account in view of the 6s level of Bi³⁺ that lies above the highest filled 2p level of O^{2-} and the electron in the 6s level is apt to transfer to the empty 3d level of V^{5+} . The absorption band is accordingly extended to violet range upon introduction of Bi³⁺. Moreover, the high energy levels of Eu³⁺ are embedded into the

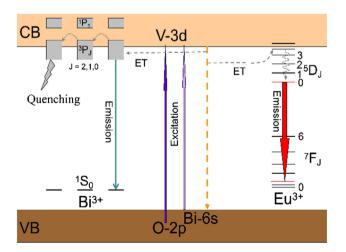


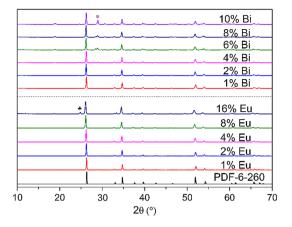
Figure 1 Sketch of probable energy absorption, transfer and relaxation processes in $SeVO_4$: Bi^{3+} , Eu^{3+} .

conduction band (V-3d states), so the energy transfer to Eu^{3+} could be highly efficient.

In this work, through a conventional high-temperature solid-state reaction, we synthesize samples of $ScVO_4$: Bi^{3+} , Eu^{3+} and optimize the doping proportion to achieve the best luminous efficiency. Under NUV light excitation, the obtained products show an excellent performance which will be discussed as follows.

Experimental

The samples of ScVO₄: Bi³⁺, Eu³⁺ were synthesized through a conventional high-temperature solid-state reaction in air. The started materials were Sc₂O₃ (99.99%), Bi₂O₃ (AR), V₂O₅ (99.99%), Eu₂O₃ (99.99%). First, the raw materials were mixed according to a stoichiometric ratio and ground in an agate mortar. Then, the mixture was transferred into a ceramic crucible. The presintering step was performed at 750 °C for 4 h in a muffle furnace. After that, the samples were ground again and sintered at 1000 °C for 5 h. Finally, the obtained samples were ground to be powders for the subsequent measurements.


The XRD data were recorded via X-ray diffractometer (MAC Science Co. Ltd MXP18AHF), using nickel-filtered Cu K_{α} radiation ($\lambda = 1.5418$ Å) in the range of $2\theta = 10-70^{\circ}$. The excitation and emission spectra were recorded with a Hitachi 850 fluorescence spectrophotometer using a 150-W xenon lamp as the excitation source. The decay curves were measured with a Tektronix TDS2024 digital storage oscilloscope under the excitation of 355 nm pulse laser yielded in a Q-switched flash-pumped Nd: YAG laser with the pulse duration of 10 ns.

Results and discussion

XRD characterization

The XRD patterns of the samples are shown in Fig. 2, along with the standard data of ScVO₄ (PDF-6-260). All the strong diffraction peaks agree well with the standard data, which belong to the zircon-type structure of space group $I4_1/amd$. Bi³⁺ and Eu³⁺ ions are supposed to occupy the Sc³⁺ sites, and because of larger ionic radii of Bi³⁺ and Eu³⁺ than Sc³⁺, the peaks shift slightly to small angle with increasing the

Figure 2 X-ray powder diffraction patterns of Eu^{3+} - and Bi^{3+} -codoped ScVO₄ samples. For the patterns in the *upper part*, the concentration of Eu^{3+} is fixed at 4%, while for those in the *lower part*, the concentration of Bi^{3+} is fixed at 2%. PDF-6-260 is the standard data for SeVO₄.

doping proportion of Bi^{3+} or Eu^{3+} . It is noteworthy that two tiny impurity peaks at 29° and 25° emerge when the doping increases to a relatively heavy level, which are, respectively, ascribed to the main diffraction peak of $BiVO_4$ and $EuVO_4$. Such impurity will shrink the expected concentration of the concerned ion in the final product, suggesting heavy doping in this host is unsuitable.

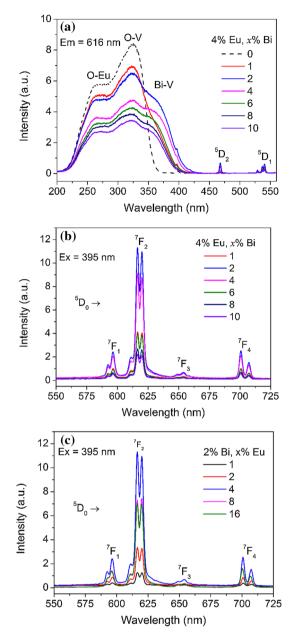
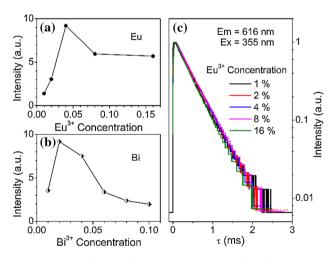

Luminescent properties

Figure 3 shows the luminescent properties of ScVO₄ doped with Eu³⁺ and Bi³⁺ samples, composed of excitation spectra (a) monitored the emission at 616 nm (Eu³⁺, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) and emission spectra under 395 nm excitation for samples with different doping concentrations of Bi^{3+} (b) and Eu^{3+} (c). In the excitation spectra, besides the weak narrow peaks from 450 to 550 nm corresponding to the Eu^{3+} 4f–4f transitions, there are intense broadbands covering from 200 to 430 nm which are attributed to the overlap of O-Eu, O-V and Bi-V CT transitions, as proposed earlier [11]. It is of significance that upon introduction of Bi³⁺ ions in the host a striking shoulder bursts from 350 to 430 nm attaching to the dominant O-V CT transition centered at 326 nm. This shoulder has been identified as the Bi-V metal-metal CT transition, ascribed to electron transfer from Bi-6s state to V-3d state [11]. It should be noted that the charge-transfer transition is allowed by the spin and parity selection rules, which is responsible for the efficient absorption of NUV light, and here

overwhelmingly outshines the parity-forbidden intra-4f transition of Eu³⁺. It should also be worthy of mention that for many Eu³⁺-activated red-emitting materials, the near-ultraviolet absorption around 395 nm is usually attributed to the transition of ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$, which is always weak unless the doping is heavy. Moreover, shielded by the filled $5s^2$ and $5p^6$ shell, the intra-4f transition is generally narrow and sharp, leading the excitation efficiency to be vulnerable to the tiny emission wavelength shift of the NUV LED chip at various temperatures. Fortunately, owing to the sensitization of Bi³⁺, the current material ScVO₄: Bi³⁺, Eu³⁺ has shown a broad excitation band covering NUV, indicating it a promising candidate for excellent NUV-excited red-emitting phosphor.

On the other hand, the presence of energy transfer from CT band to Eu³⁺ ions can be verified by the observation of the charge-transfer band in the excitation spectra of Eu³⁺ ions. When the doping concentration of Bi3+ increases, the O-V CT band decreases monotonously, while the Bi-V CT band rises to the maximum until the doping concentration of Bi³⁺ reaches 2%. As elucidated in Fig. 1, two relaxation paths are considered for the excitation energy in this material: One is quenching in Bi^{3+} ions, and the other is being emitted by Eu³⁺ ions. The decline of O–V CT band in the Eu³⁺ excitation spectra is ascribed to the increase in the energy transfer from O-V CT band to Bi³⁺, and part of the excitation energy would subsequently be quenched in Bi³⁺ ions. The excitation energy transferred to Eu^{3+} ions is thus reduced, resulting in a decline of O-V CT band in the excitation spectra.

The rising of Bi–V band is owing to the increase in the absorption of Bi-V CT band and the energy transfer possibility to Eu³⁺ ions, resulting in a stronger Eu³⁺ emission, i.e., a higher Bi–V CT band. However, when the doping concentration of Bi³⁺ exceeded 2%, energy transfer from Bi-V CT band to Eu³⁺ ions would be reduced due to the fast increase in nonradiative relaxation in Bi³⁺ ions, leading to the suppression of Bi-V CT band in the excitation spectra. So, it is conclusive that the excitation energy prefers to quench in Bi³⁺ ions rather than transfer to Eu^{3+} in high doping concentration of Bi^{3+} . In other words, the doping of Bi³⁺ should not be high in this host material for good luminescence. A similar phenomenon was also reported in Ref. 13 for Bi³⁺ singly doped ScVO₄ samples. Only in the case of very low


Figure 3 a Excitation spectra of ScVO₄: x% Bi³⁺, 4% Eu³⁺ (x = 0, 1, 2, 4, 6, 8, 10) by monitoring 616 nm from ⁵D₀ \rightarrow ⁷F₂ transition of Eu³⁺. **b** Corresponding emission spectra excited at 395 nm. **c** Emission spectra of ScVO₄: 2% Bi³⁺, x% Eu³⁺ (x = 1, 2, 4, 8, 16) under 395 nm excitation.

Bi³⁺ doping concentration (usually lower than 2 or 1%), exciting into O–V CT band could give off the Bi³⁺ broadband ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ emission centered at 635 nm. This emission drops quickly with increasing the doping concentration of Bi³⁺ because the nonradiative relaxation would dominate [13].

Under 395 nm light excitation, the samples doped with Eu³⁺ emit very bright red light, corresponding

to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺. As seen in Fig. 3b, the Eu³⁺ electric dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ is much stronger than magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$. It is because the Sc^{3+} site in $ScVO_4$ has very large deviation from centrosymmetry. Such site surrounding is desired for Eu³⁺-activated red-emitting phosphor to gain a suitable color rendering index. The samples doped with 2 and 4% Bi³⁺ yield apparently the stronger red emission, submerged by a very week broadband. In view of the V-O CT band emission has a quenching temperature far below room temperature and always locates around 465 nm, the week bands mentioned above are accordingly considered to originate from $Bi^{3+3}P_1 \rightarrow {}^{1}S_0$ transition centered at 635 nm [13], and here is too weak to significantly alter the energy distribution of emission. So, it can be concluded that the excitation energy could be efficiently transferred to Eu³⁺ when the doping concentration of Bi^{3+} is below 2%. For those with higher doping concentration, the quenching in Bi³⁺ ions grows rapidly to dominate the majority of the relaxation, resulting in much weaker Eu³⁺ emission. This is in accordance with the situation in excitation spectra.

The dependence of integrated emission intensity on the doping concentrations of Eu^{3+} or Bi^{3+} is plotted in Fig. 4a, b, respectively. The ideal doping level of Eu^{3+} is 4%. As shown in Fig. 4c, the decay lifetimes of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission of Eu^{3+} at 616 nm for

Figure 4 Dependence of integrated emission intensity on concentrations of Eu^{3+} (Bi³⁺ concentration being 2%) (**a**) and Bi³⁺ (Eu³⁺ concentration being 4%) (**b**) under the excitation of 395 nm. Decay curves of $Eu^{3+} {}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition at 616 nm of ScVO₄ doped with 2% Bi³⁺ and a series of Eu^{3+} concentrations (**c**).

2% Bi^{3+} -doped ScVO₄ samples are almost invariant for different Eu³⁺ concentrations. The above results indicate that there is no back energy transferring from Eu³⁺ to Bi³⁺. Therefore, the Eu³⁺ luminescence quenching in high doping concentration may be due to the formation of slight EuVO₄, as shown in the XRD patterns.

A comparison on luminescence performance between the optimized ScVO₄: Bi³⁺, Eu³⁺ and the commercial red-emitting phosphor Y₂O₂S: 5% Eu³⁺ is shown in Fig. 5. Distinct characteristics can be seen in both excitation and emission spectra. In the scope from 360 to 410 nm in the excitation spectra, obviously the optimized sample ScVO₄: 2% Bi³⁺, 4% Eu³⁺ with the contribution of Bi–V CT band shows more efficient excitation than Y₂O₂S: 5% Eu³⁺. Accordingly, with NUV light excitation, ScVO₄: 2% Bi³⁺, 4% Eu³⁺ shows more bright red emission than Y₂O₂S: 5%Eu³⁺ does. Concretely speaking, the former yields red emissions 4.6, 5.4, 3.1 and 1.7 times of the latter, respectively, under 395, 385, 375 and 365 nm

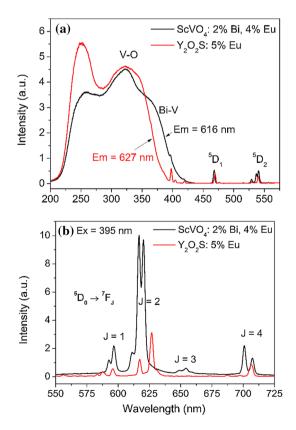


Figure 5 Comparison of **a** excitation and **b** emission spectra between ScVO₄: 2% Bi³⁺, 4% Eu³⁺ (*black curve*) and Y₂O₂S: 5% Eu³⁺ (*red curve*).

excitations. Moreover, the main emission peak of $ScVO_4$: 2%Bi³⁺, 4%Eu³⁺ is located at 616 nm, which is an ideal peak position to provide good color rendering [7], whereas Y₂O₂S: 5% Eu³⁺ gives off a relatively deep red emission mainly at 627 nm. Besides, the CIE chromaticity coordinates for ScVO₄: 2% Bi³⁺, 4% Eu³⁺ are calculated to be (0.65, 0.35), closer to the National Television System Committee standard value (0.67, 0.33) for red-emitting phosphor, compared with those of Y₂O₂S: 5% Eu³⁺ (0.64, 0.36). These results propose ScVO₄: 2% Bi³⁺, 4% Eu³⁺ to be a very competitive candidate for red component in tricolorbased white LEDs.

Conclusion

In summary, a series of ScVO₄: Bi³⁺, Eu³⁺ samples were successfully synthesized, and their luminescent properties were investigated in detail to achieve the best luminous efficiency. The experimental results show that the samples exhibit very efficient excitation in NUV range and can be excited even at 430 nm. All samples show the characteristic red emission of Eu³⁺ at 616 nm corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. And the optimized one produces an emission intensity 5.4 times of the commercial phosphor Y_2O_2S : 5%Eu³⁺ under 385 nm excitation. Moreover, it also has a better CIE chromaticity coordinates than the latter, closer to the National Television System Committee standard value for red-emitting phosphor. These results suggest that $ScVO_4$: Bi^{3+} , Eu^{3+} is promising for NUV-excited white LEDs in illumination applications.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YF0701001), the National Natural Science Foundation of China (Grants Nos. 11574298, 61635012, 11274299, 11374291) and the University Science Research Project of Anhui Province (Grant No. KJ2017A791).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- Pust P, Schmidt PJ, Schnick W (2015) A revolution in lighting. Nat Mater 14:454–458
- [2] George NC, Denault KA, Seshadri R (2013) Phosphors for solid-state white lighting. Annu Rev Mater Res 43:481–501
- [3] Sheu JK, Chen FB, Wang YC, Chang CC, Huang SH, Liu CN, Lee ML (2015) Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor. Opt Express 23:A232–A239
- [4] Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes recent advances in materials, techniques and properties. Mat Sci Eng R 71:1–34
- [5] Chen L, Lin CC, Yeh CW, Liu RS (2010) Light converting inorganic phosphors for white light-emitting diodes. Materials 3:2172–2195
- [6] Pust P, Weiler V, Hecht C, Tucks A, Wochnik AS, Henss AK, Wiechert D, Scheu C, Schmidt PJ, Schnick W (2014) Narrow-band red-emitting Sr[LiAl₃N₄]: Eu²⁺ as a nextgeneration LED-phosphor material. Nat Mater 13:891–896
- [7] Coltrin ME, Armstrong AM, Brener I, Chow WW, Crawford MH, Fischer AJ, Kelley DF, Koleske DD, Lauhon LJ, Martin JE, Nyman M, Schubert EF, Shea-Rohwer LE, Subramania G, Tsao JY, Wang GT, Wierer JJ, Wright JB (2014) Energy

frontier research center for solid-state lighting science: exploring new materials architectures and light emission phenomena. J Phys Chem C 118:13330–13345

- [8] Deng KM, Gong T, Chen YH, Duan CK, Yin M (2011) Efficient red-emitting phosphor for near-ultraviolet-based solid-state lighting. Opt Lett 36:4470–4472
- [9] Zhu HM, Lin CC, Luo WQ, Shu ST, Liu ZG, Liu YS, Kong JT, Ma E, Cao YG, Liu RS, Chen XY (2014) Highly efficient non-rare-earth red emitting phosphor for warm white lightemitting diodes. Nat Commun 5:4312-1–4312-10
- [10] Pust P, Wochnik AS, Baumann E, Schmidt PJ, Wiechert D, Scheu C, Schnick W (2014) Ca[LiAl₃N₄]:Eu²⁺-a narrowband red-emitting nitridolithoaluminate. Chem Mater 26:3544–3549
- [11] Wei XT, Wen J, Li S, Huang S, Cheng J, Chen YH, Duan CK, Yin M (2014) Red-shift of vanadate band-gap by cation substitution for application in phosphor-converted white lightemitting diodes. Appl Phys Lett 104:181904-1–181904-4
- [12] Blasse G, Bril A (1969) Luminescence of phosphors based on host lattices ABO₄ (A is Sc, In; B is P, V, Nb). J Chem Phys 50:2974–2980
- [13] Kang FW, Yang XB, Peng MY, Wondraczek L, Ma ZJ, Zhang QY, Qiu JR (2014) Red photoluminescence from Bi³⁺ and the influence of the oxygen-vacancy perturbation in ScVO₄: a combined experimental and theoretical study. J Phys Chem C 118:7515–7522