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ABSTRACT

Stacking fault energy (SFE) is an intrinsic material property whose value is

crucial in determining different secondary deformation mechanisms in auste-

nitic (face-centered cubic, fcc) steels. Considerable experimental and computa-

tional work suggests that the SFE itself is highly dependent—in a complex

manner—on chemical composition and temperature. Over the past decades,

there have been a large number of efforts focused on determining the compo-

sition dependence of SFE in austenitic steel alloys by means of experimental,

theoretical or computational methods. Unfortunately, experimental methods

suffer from the indirect nature of the methodologies used to estimate the value

of SFE, while computational and/or theoretical approaches are either limited by

the physics that they can incorporate into the predictions or have more practical

limitations associated, for example, to the size of the systems that can be

modeled or the assumptions that must be made. In this paper, we review the

major experimental and computational approaches to determine SFE in auste-

nitic steel alloys, and we discuss their limitations. We then demonstrate a data-

driven machine learning technique to mine the literature of experimental SFE

data in steels, while algorithms at the fore-front of machine learning have been

used to visualize the SFE data and then construct a three-class classifier. The

classifier is used then to predict likely secondary deformation mechanisms of

untested compositions, while the classifier itself is presented as a valuable tool

for the further development of austenitic steel alloys in which the specific sec-

ondary plastic deformation mechanisms are a feature to design for. The data as

well as the entire analysis workflow are made available to the wider community

through a public github repository.
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Introduction

Stacking fault energies

There have been many approaches to designing steels

with superior mechanical properties, with one of the

most successful approaches to date being the design of

austenitic steels that exhibit, in addition to slip, sec-

ondary plastic deformation mechanisms, such as

transformation-induced and twinning-induced plas-

ticity (TRIP, TWIP) behavior, or both. Steels in which

these secondary mechanisms can be activated tend to

have high strain-hardening rates, large ductility and

high strength [1]. These properties are attributed to the

c ! � stress-induced martensitic transformation and

deformation twinning in the case of TRIP and TWIP-

assisted steels, respectively. Theoretical and experi-

mental work suggests that these so-called secondary

deformation mechanisms in austenitic steels are pri-

marily a function of their stacking fault energy (SFE).

With decreasing SFE, the deformation mechanisms

tend to change from (i) dislocation glide to (ii) disloca-

tion glide ? deformation twinning to (iii) dislocation

glide ? martensitic transformation. Many researchers

have attempted to correlate different SFE regimes to

different secondary deformation behavior [2, 3]. Hence,

the ability to predict SFE for any given austenitic steel

composition is crucial to steel alloy design since a cer-

tain desired mechanical deformation behavior is one of

the most important design criteria when it comes to this

very important class of structural materials. While there

have been many theoretical approaches to predicting

SFE—all of which are discussed at length in the paper—

all of the current efforts have important limitations that

preclude their use in the context of alloy design. In this

paper, this is addressed through the use, as will be

shown, of machine learning approaches.

Materials genome initiative

The materials genome initiative (MGI) calls for the

acceleration of materials discovery at a fraction of cur-

rent costs [4]. The MGI has paved the way for a para-

digm shift in how we think of materials discovery and

design—from experimental guesswork in a large,

unbounded n-dimensional parameter space to one of

targeted search among infinitely fewer possibilities

derived from computational—or computationally

assisted—exploration. The MGI emphasizes the adop-

tion of new frameworks and techniques to accelerate

materials discovery. One of the pillars and new para-

digms of this initiative is Materials Informatics [5] and

Materials Data Science [6]. Materials Data Science and

Informatics encapsulates Machine Learning/Statistical

Learning/Data Mining (or various other interchange-

ably used terminologies) which are being used in

myriad disciplines ranging from artificial intelligence,

social media analytics, decision making in enterprises to

economics, bioinformatics, astronomy and other scien-

tific fields. The basis of these learning algorithms is that

given some information or data and an understanding

of the meaning of, or information associated to, that

data, an underlying pattern can be uncovered and

‘learnt’ which can be used to predict outcomes for

unseen scenarios. These powerful algorithms have

contributed to the further development of the above-

discussed disciplines, specifically where the complexity

of the problems rendered theoretical modeling based on

domain knowledge incredibly challenging. Materials

Informatics and Materials Data Science leverage these

techniques on top of the experimental and physics-

based computational data in materials sciences com-

munity to usher the field forward in a new era of

accelerated materials discovery.

Our approach

This paper is a description of our research to accomplish

a materials discovery task using techniques and algo-

rithms in machine learning. The task at hand is to pre-

dict the stacking fault energy, SFE, of any given untested

austenitic steel composition, thereby aiding alloy

design of austenitic steels with a requisite mechanical

deformation behavior. For this task, we collected, to the

best of our knowledge, all data available in the literature

on experimental determination of SFE for austenitic

steels and then used machine learning algorithms to

predict SFE. The paper is organized in the following

sections: (i) discussion of existing theoretical SFE pre-

diction approaches and their shortcomings (ii) exten-

sive review of experimental methods for SFE

determination (iii) description of our methodology and

its uniqueness (iv) results and discussion.

Stacking fault energy determination
in the literature

SFE for austenitic steels can either be predicted based on

different theoretical modeling approaches or experi-

mentally determined by casting the alloy compositions
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and characterizing them using different techniques.

From an alloy design perspective, the ability to predict

SFE for any given composition is crucial as SFE is a

strong indicator of likely secondary plastic deformation

mechanisms in these systems and hence theoretical

approaches for its estimation are important as the latter

can potentially contribute to the acceleration of the alloy

design process. The experimental calculations aid the

formulation of these theoretical models as they are true

data against which models are evaluated.

Stacking fault energy prediction: theoretical
methods

There have been predominantly three approaches to

predicting stacking fault energy for any given com-

position in austenitic steels: (i) first principles/ab-i-

nitio electronic structure calculations, (ii)

thermodynamic modeling and (iii) linear regression.

While the first two are physics-based modeling

paradigms, the latter is a purely statistical approach.

The modeling techniques are discussed below with

an added emphasis on their pitfalls and a plausible

explanation for why there is currently no robust go-to

equation in the literature that explains the composi-

tion-SFE relationship in austenitic steels.

First principles approaches to predicting SFE

Calculation of SFE in steel alloy systems by first prin-

ciples, ab-initio electronic structure modeling based on

quantum mechanical theory can be realized by more

than one approach. However the choice of approach is

eventually guided by the computational cost and

accuracy of method at hand. Unfortunately, with cur-

rent computational resources it is exceedingly difficult

(if not impossible) to do first-principle calculations of

SFE for multi-component steels with compositions

corresponding to realistic systems. In fact, the most

complex chemistry for which the SFE has been modeled

and predicted using ab-initio approaches are quater-

nary steel alloys [7, 8], which, while complex, do not

approach the richness in chemistry exhibited by most

commonly used alloy systems.

Overall, there are predominantly two approaches

in the literature for calculating SFE of Fe alloyed with

other elements. One approach was first presented by

Vitos et al. [7] who calculated the intrinsic SFE in

ternary and quaternary Fe alloys by adopting a Axial

Next Nearest Neighbor Interaction (ANNNI) model

for ferrous alloys. Another approach is the widely

known explicit calculation of the generalized stacking

fault energy (GSFE) surface which claims to provide a

complete description of the energy landscape is

shared along specific slip directions on specific slip

planes. Based on accuracy and computational cost,

the approach from Vitos seems to be the most suit-

able, at least for alloy systems. A high-level descrip-

tion of both approaches is explained next.

ANNNI modeling The approach pioneered by Vitos

is based on the application of the ANNNI model,

which assumes that the energetics corresponding to

different layer stacking in a given crystal system can

be described essentially with a one-dimensional

Ising-like model where different values of spins cor-

respond to different layer identities or stacking

sequences. This model was first used to describe the

energetics of different SiC polytypes [9, 10]. Earlier

work on SiC suggested that this one-dimensional

representation of the configurational state of layered

systems and their corresponding energetics was suf-

ficiently adequate to explain the thermodynamics of

such complex systems. Practical applications of the

ANNNI model consist of the calculation of the

energetics of structures that can be represented

through different one-dimensional stacking sequen-

ces, followed by the fitting of a one-dimensional Ising

model against the energies of known configuration-

energy tuples and then using the Ising parameters for

predicting arbitrary configurations/stackings.

In their paper [7], Vitos et al. formulate the for-

mation energy of an intrinsic stacking fault in a fcc

crystal as the excess free energy per unit area of a

region in the crystal with ‘incorrect’ stacking, relative

to the conventional � � �ABCABC� � � stacking of an fcc

structure along the [111] direction:

c ¼ FSF � F0

A2D
ð1Þ

FSF is the free energy of the system with the stacking

fault, F0 is the free energy of system without stacking

fault and A2D is the specific area of the stacking fault.

With the ANNNI model, the stacking sequence along

a specific direction—[111] in the case of fcc crystals—

is represented by Si’s, the same formulation as the

Ising model but here they represent different layer-

ing/stacking sequences rather than spin configura-

tions. The excess free energy of a stacking sequence is

then formulated in terms of �RiRjJnSiSiþn where Ji is

the interaction parameter for the ith nearest neighbor.
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Hence J1 is nearest neighbor, J2 is the next nearest

neighbor and so on. Using this representation, the

energy of intrinsic stacking faults can be expressed in

terms of differences between periodic crystal struc-

tures such as fcc, hcp and dhcp, which in turn cor-

respond to different stacking sequences, ABCABC,

ABAB, ABCB, etc. Based on these expressions, we

have:

FSF � F0 � Fhcp þ 2Fdhcp � Ffcc ð2Þ

Here the reason for approximate symbol is the fact

that the expressions in terms of Ji are truncated and

only the first three or four interactions are consid-

ered. Although these approximations have shown to

be consistent and within the limits of experimental

error, for higher accuracy, higher order terms need to

be considered. The calculations were then done based

on the EMTO-CPA approach also devised by the

same authors. For a detailed description one can refer

to their work [7].

Vitos and collaborators have modeled ternaries like

Fe–Cr–Ni [7, 8, 11] systems as well as quaternaries like

Fe–Cr–Ni–Mn [7, 8], Fe–Cr–Ni–Nb [7, 8] and Fe–Cr–

Ni–Co [7, 8]. These results have been shown to be in

good agreement with the experimental values when

taking into account the inconsistencies and uncertainty

of experiments. Figure 1 shows a relevant comparison

between predictions and experimental data. The for-

mulation also has an excellent description for the tem-

perature variance of SFE which has been modeled

indirectly in terms of magnetic contributions. The big-

gest contribution of the above approach has been to

explain the nature of composition-SFE relationship,

since Vitos and collaborators have found highly non-

linear relationships [7, 8, 11]. In fact, they have conclu-

sively shown that the effect of an alloying element on

SFE depends not only on the element but also on the

host composition. Figure 2 demonstrates these nonlin-

ear relationships. Thus the authors have suggested that

it is impossible to derive universal SFE-composition

relationships for multi-component steel alloys.

GSFE modeling Another common approach to the

prediction of SFE is the widely used technique

known as the generalized stacking fault energy cal-

culation that explicitly calculates the energy landscape

of a system as it is being sheared along specific slip

plane-slip direction systems. In fcc systems, a single-

layer of stacking fault can be generated by displacing

the upper half of the crystal relative to the lower half

along h112i direction on the {111} planes. The fault

energy c can be calculated as a function of this dis-

placement, which will be a curve representing energy

of different sheared configurations resulting from

different values of displacement along specific crys-

tallographic directions, such as h112i. There are some

important characteristic material properties which

can be calculated based on the GSFE curve which are

depicted in Fig. 3, namely the unstable fault energy,

intrinsic fault energy and stable fault energy. The

displacements which lead to the structures corre-

sponding to these energies are 0.5jbpj, jbpj and 2jbpj
respectively, where jbpj ¼ 1=6h112i is the Burger’s

vector of the partial dislocation producing the shear.

However the use of this approach has not yiel-

ded—in general—good quantitative predictions of

SFE in Fe alloy systems. The calculations using this

approach for Fe alloy system were first performed by

Figure 1 Comparison of theoretical calculations of SFE by

ANNNI model with experimental values. Adapted from Ref. [7]

and reproduced with permission.
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Kibey et al. [12], who modeled the Fe–N binary and

Fe–Mn–N ternary systems. The same approach has

been adopted in the literature to model other alloying

additions in iron, such as the Fe–Mn binary [13], Fe–

C binary [14], Fe–Cr–Ni ternary [15], Fe–Mn–Al–C

quaternary [16] and Fe-X binaries where X ¼ transi-

tion metals [17]. As mentioned earlier, the important

note about all these calculations is that they all sig-

nificantly underestimate intrinsic SFE compared to

similar experimental and theoretical (thermodynamic

and other ab-initio approaches) data, even taking into

account that these are 0 K calculations. Hence most of

these GSFE calculations are restricted to explaining

trends of SFE variation in particular alloy systems,

rather than predicting SFE values that could be

directly used in alloy design.

In summary ab-initio electronic structure modeling

is a fundamentally robust approach to predicting SFE

in steel alloys, specifically the ANNNI model has

been shown to have agreement with experimental

values. However due to computational cost and

complexity, these calculations are exceedingly diffi-

cult (if not impossible) for multi-component alloys

with many alloying additions. They, however, pro-

vide crucial insights about the nature of the compo-

sition-SFE relationship in the steel alloy system.

CALPHAD-based approaches to predicting SFE

There have been many investigations into the calcu-

lation of SFE using the so-called CALPHAD

approach where the energy of the stacking fault is

modeled as a martensitic embryo or as a hcp sec-

ondary phase with phase boundaries lining the

austenite or fcc phase on either sides. The schematic

of such a formulation is shown in Fig. 4. As shown,

the SFE can then be written out in terms of extra

energy needed to nucleate this stacking fault, which

roughly corresponds to the Gibbs Free energy to

nucleate the locally hcp stacking fault i.e. DGfcc!hcp,

the strain energy due to the stacking fault as a second

phase in the fcc matrix and partial dislocations

bounding the stacking fault i.e. Estr
m and the interfacial

energy on the hcp–fcc boundary i.e. r.

The Gibbs free energy—related to the contribution

of the thermodynamic driving force—can be written

out as a summation of ideal, excess, magnetic and

other contributions. Different researchers have mod-

eled various different Fe-based systems using slightly

varying formulations. For example, the stacking fault

modeled as an hcp second phase can lead to different

strain energies based on the shape assumed for the

stacking fault. Olson [18] and Cotes [19] have mod-

eled the second phase as a spherical particle while

Ferreira and Mullner [20] model it as flattened plate-

Figure 2 Nonlinear dependence of SFE on composition of Mn

based on host composition of Fe–Cr–Ni. Adapted from Ref. [8]

and reproduced with permission.

Figure 3 a A representation of different shear displacements to

calculate a GSFE curve. b A schematic of the GSFE curve with

important quantities marked. Adapted from Ref. [12] and repro-

duced with permission.
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like particle. These lead to different strain energy

contributions although the energy value itself and the

differences are low compared to SFE values. How-

ever the biggest discrepancy in thermodynamic

approaches to the modeling of the composition

dependence of SFE is in the assumed value of inter-

facial energy r that is necessary to parameterize

composition-dependent expressions for SFE. In all

research papers to date, though, this is not physically

estimated, although in fairness this quantity is

extremely difficult to estimate through experimental

means and perhaps even more difficult to calculate

from first-principles. Hence, this quantity is generally

used as a fitting parameter to make the thermody-

namic calculation match experimental SFE calcula-

tions. This leads to large discrepancies as the value of

r in the literature varies from 4 to 20 mJ/

m2 [2, 3, 18, 19, 21–29] which leads to even larger

variations in SFE, thus highly depreciating the relia-

bility of the thermodynamic modeling approach to

SFE prediction. Figure 5 demonstrates such an

example. In their paper, Akbari et al. [3] calculate SFE

for Fe–Mn–C and other systems. They construct

composition-SFE maps choosing different values of r
given in the literature since there is no way to

determine this as discussed earlier. We consider 2

random compositions on this map and show how the

choice of different interfacial energy values leads to a

large range of possible SFE for a fixed composition.

Hence, the compositions corresponding to the blue

point and green point on the composition-SFE map

can have SFE values differing by 30 mJ/m2 depend-

ing on what the interfacial energy parameter is cho-

sen, and this is an unreliable prediction for the

purposes of alloy design. Many different papers

show many other values of interfacial energy. Also, it

has been discussed in the literature how this value

itself is composition-dependent and hence estimating

it for one composition based on experimental value

and then using the same for all other compositions is

not a robust approximation. This energy parameter

than becomes essentially a fitting parameter that

absorbs all unexplained physics in one’s model.

To summarize, thermodynamic approaches in

theory are a good approach for multi-component

steels. However the problems lie with databases and

energy parameters. Modeling the Gibbs free energy

of the fcc-to-hcp phase transition needs data for hcp

state in the databases for Fe alloys which is lacking.

The other significant problem is the value for inter-

facial energy parameters which are basically used as

fitting parameters in the model leading to high

uncertainties and inconsistencies among models in

the literature. Sometimes the difference in interfacial

energy parameters is so large that the difference in

SFE more or less means an altogether different SFE

regime for the same composition. Hence the ther-

modynamic modeling approach is not as robust as

one would need for practical alloy design.

Linear regression approaches to predicting
SFE

In addition to the theoretical/computational formu-

lations for describing SFE-composition relationships,

the statistical technique of linear regression has been

applied on many small sets of experimental SFE data

to describe a linear relationship between SFE and

composition. Table 1 has a comprehensive list of such

linear regression models in the literature, which have

Figure 4 Schematic of thermodynamic formulation for SFE

calculation.

Figure 5 An example of variation in SFE due to large uncertainty

in interfacial energy parameter. Adapted from Ref. [3] and

reproduced with permission.
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been formulated for different composition regimes in

the austenitic steel system. Most of these equations

have been modeled based on the experiments carried

out in one research paper and hence the size of the

dataset is typically very small. Except for a couple of

papers which have either many experiments or took

data from other papers, these equations are very

‘‘local’’ in the composition space.

There are two major problems with the linear

regression approaches in the literature. First the

amount of data used to create these regression

models is small. In most cases the models have been

built from the few experimental values in the paper,

and hence cannot be extrapolated with any degree of

certainty to compositions outside the range explored.

More importantly, there has been ample discussion in

the literature about the composition-SFE relationship

being nonlinear as well as the significant interaction

between amount of elements in alloy to affect the

SFE. Hence there cannot be universal regression

equations as the effect of one element on SFE

depends on the values of other elements in the alloy

system. When looking at all the above equations, it is

evident that all of them have linear relationships in

composition-SFE, which is not the true case. These

equations are essentially modeled in sections of the

whole composition-SFE space, keeping values of

some elements constant. For example, the effect of Ni

wt% on SFE is very different in all these equations

and also SFE is linearly related to SFE in all cases. As

such all these equations cannot be considered as

universal composition-SFE relationships. In order to

do robust statistical modeling, a much larger dataset

is needed. Also the model should try to mimic the

true relationship; hence, there is a need to consider

nonlinear higher order and interaction terms.

Stacking fault energy measurement:
experimental methods

Above we discussed the methods for the prediction

of SFE for untested Fe alloys. However these pre-

dictions have to be matched against some (assumed,

ground truth) value to gauge their accuracy. The true

value of SFE can be inferred, albeit not measured, by

experimental techniques and we discuss the two

major techniques and methods that are used to

experimentally estimate SFE in austenitic steels. The

understanding of this is important, as for our mod-

eling we eventually use all the experimental data

available to do informatics and delving into the

methodology of these techniques provides crucial

insights into the uncertainty of measurements. The

uncertainty will eventually prove to be a very

important parameter in the selection of modeling

techniques.

Transmission electron microscopy technique

The oldest technique used to indirectly estimate SFE

is through transmission electron microscopy (TEM).

Although this is sometimes referred to as a direct

method, it is essentially indirect as it relates geometry

of dislocation configurations and other crystal defects

to the SFE of the material. Historically, many differ-

ent geometries and related techniques have been

used to calculate SFE using TEM. These are extended

dislocation nodes, extrinsic–intrinsic stacking fault

pairs [42], stacking fault tetrahedra [43], twinning

frequency [44] and most recently partial dislocation

separation. Out of these, the extended dislocation

nodes and partial dislocation separation are the two

most widely used techniques. The earliest work in

this field was introduced by Whelan [45] who laid

out the theoretical foundation for using extended

dislocation nodes in steels to (indirectly) measure/

estimate SFE and did the same on 304 stainless steel.

Various theoretical refinements were suggested by a

host of researchers to this original work, predomi-

nantly along geometric considerations [46–50]. Sub-

sequently, many researchers have used this technique

to calculate SFE over the years, a detailed list of

which is available in Table 2. A more direct and more

widely accepted technique, based on the measure-

ments of partial dislocation separation, had also been

used earlier but has found more relevance in recent

years, mainly due to the availability of better instru-

mentation and imaging approaches. Many recent

papers have used this technique to estimate the SFE

in multi-component austenitic steels [36, 41, 51] and

others, again the list of which can be looked up in

Table 2.

Theoretically, when a perfect dislocation in a fcc

lattice dissociates into two partial dislocations, a

stacking fault is formed. The separation or dissocia-

tion width d between these partials is inversely rela-

ted to the SFE c of the fcc material. This can be

calculated from anisotropic elasticity theory and the

SFE c is given by:
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c ¼ lbp
2

8pd
2 � m
1 � m

� �
1 � 2m cos 2a

2 � m

� �
ð3Þ

This is used to calculate for dislocations along [110]

in the (111) glide plane. Here bp is the partial Burger’s

vector, l is the effective shear modulus in the (111)

plane, m is the effective Poisson ratio, a is the angle

between Burger’s vector and dislocation line. The

effective terms arise due to anisotropy in the crystal

and can be calculated by:

l ¼ C44
ðC11 � C22Þ

2

� �1=2

ð4Þ

1

1 � m
¼ 1

3l
Cþ C12ð Þ C44ðC� C12Þ

C11ðCþ C12 þ C44Þ

� �1=2

1 þ 2
C11

C

� �

ð5Þ

where

C ¼ 1

2
C11ðC11 þ C12 þ 2C44Þ

� �1=2

ð6Þ

Here the C’s are the elastic constants of the material

which are measured or are approximated from alloys

of similar compositions. Hence the partial dislocation

separation d can be measured and used to calculate

Table 2 List of all the papers SFE experimental data mined from

References Year Technique References Year Technique

Whelan et al. [45] 1959 TEM Gavriljuk et al. [70] 2006 TEM

Swann et al. [71], 1963 TEM Talonen et al. [72] 2007 XRD

Dulieu et al. [44] 1964 TEM Bracke et al. [73] 2007 TEM

Douglas et al. [74] 1964 TEM Ojima et al. [36] 2009 TEM

Silcock et al. [118] 1966 TEM Tian et al. [35] 2009 XRD

Clement et al. [119] 1967 TEM Tian et al. [35] 2009 XRD

Fawley et al. [120] 1968 TEM Li et al. [75] 2009 TEM

Murr et al. [76] 1969 TEM Lee et al. [62] 2010 Neutron diffraction

Latanision et al. [42] 1969 TEM Idrissi et al. [77] 2010 TEM

Gallagher et al. [79] 1970 TEM Kim et al. [78] 2011 TEM

Lecroisey et al. [81] 1970 TEM Kim et al. [80] 2011 TEM

Latanision et al. [82] 1971 TEM Mujica et al. [124] 2011 TEM

Breedis et al. [83] 1971 TEM Behjati et al. [84] 2011 TEM

Lecroisey et al. [85] 1972 TEM Jin et al. [58] 2012 XRD

Butakova et al. [121] 1973 XRD Jeong et al. [38] 2012 Neutron diffraction

Abrassart et al. [86] 1973 TEM Pierce et al. [51] 2012 TEM

Schramm et al. [30] 1975 XRD Unfried-Silgado et al. [87] 2012 XRD

Volosevich et al. [122] 1976 TEM Kang et al. [61] 2012 Neutron diffraction

Strife et al. [88] 1977 TEM Lee et al. [37] 2012 Neutron diffraction

Remy et al. [89] 1977 TEM Yonezawa et al. [125] 2013 TEM

Rhodes et al. [31] 1977 XRD Jeong et al. [60] 2013 XRD

Brofman et al. [90] 1978 Literature survey Pierce et al. [91] 2014 TEM

Bampton et al. [92] 1978 TEM Lehnhoff et al. [93] 2014 TEM

Stoltz et al. [94] 1980 TEM Rafaja et al. [95] 2014 XRD

Yang et al. [96] 1982 XRD Lee et al. [55] 2014 XRD

Oh et al. [97] 1995 TEM Lee et al. [55] 2014 Neutron diffraction

Reick et al. [123] 1996 TEM Lee et al. [55] 2014 TEM

Pontini et al. [98] 1997 TEM Hickel et al. [99] 2014 TEM

Gavriljuk et al. [100] 1998 TEM Barman et al. [101] 2014 XRD

Li et al. [102] 1999 TEM Moallemi et al. [59] 2015 XRD

Gavriljuk et al. [103] 1999 TEM Kumar et al. [104] 2015 XRD

Kireeva et al. [105] 2002 TEM Mahato et al. [106] 2015 XRD

Petrov et al. [107] 2003 TEM Kim et al. [108] 2016 Neutron diffraction
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SFE. In practice d is measured multiple times along

the dislocation line and the average is taken. Figure 6

shows the two commonly imaged geometries,

extended dislocation nodes and partial dislocation

separation from a certain composition of steel.

Although the TEM technique is theoretically the

most reliable experimental method as well as the

most direct method of SFE measurement, there are

various reasons why this method is not ideal and

some are discussed here. For alloy compositions with

high SFE, the partial dislocations are so close to each

other that estimates of their separation distance can

have significant uncertainties relevant to the absolute

value of SFE. Moreover, one seldom finds partial

dislocations parallel to each other, as in reality there

are curvatures and kinks in the partial dislocation

separation. Thus, the measurement of partial–partial

distances becomes challenging and highly sensitive

to outliers.

In the case of the extended dislocation node radii

measurements, the nodes are rarely arranged in a

manner which allow for proper radii measurement.

Added to all this is the statistical scatter. Since with

TEM imaging one can only image a few regions and a

few geometries, there is always a question of sample

representation by these few observations.

Microstructural effects and interstitials also affect

dislocation geometries, and hence another criticism is

that the geometries are not at equilibrium. Given that

SFE depends on temperature and TEM imaging leads

to sample heating, there is also a possibility of mea-

suring SFE at temperatures higher than intended.

Lastly, most of the factors/constants used in the

equations used in the estimation of SFE based on

indirect measurements are not considered to be

composition dependent, while in principle they

should be—at the very least—weak functions of

composition. Hence it can be seen that there are a

large number of possible sources of uncertainty, some

of which are quantifiable and others are not.

Although some papers report the quantifiable

experimental error, many do not. Thus all experi-

mental values for SFE measurement need to be trea-

ted in a manner consistent with such large

uncertainty around measurements.

X-ray and neutron diffraction technique

While indirect methods based on TEM imaging of

dislocation configurations is a widely used and

established method for the estimation of SFE, it is

tedious and is mostly suitable for low SFE values,

Figure 6 Example geometries of dislocations used to measure SFE experimentally using TEM. a Extended dislocation nodes. b Partial

dislocation separation. Adapted from Ref. [51] and reproduced with permission.
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where (partial)dislocation pairs can be adequately

resolved. This method, however, suffers from sig-

nificant intrinsic uncertainties due to the fact that the

(small) volume observed in a sample corresponding

to a specific composition/temperature is very likely

not representative of the entire sample. Conse-

quently, other indirect methods have been suggested,

although the seminal work from Reed and

Schramm [52] represents the canonical work on the

determination of SFE based on the analysis of XRD

patterns. These authors established a relationship

between SFE, stacking fault probability and RMS

microstrain which made it possible to calculate SFE

rather than just reporting stacking fault probability as

was done earlier. Based on the above formulation,

Schraam and Reed published the first work for cal-

culation of SFE using X-ray diffraction in commercial

austenitic steels [30] and Fe–Ni alloys [53]. The

equation formulated by the authors is [52]:

c ¼
K111x0Gð111Þa0A�0:37

p
ffiffiffi
3

p
�2

50

	 

111

a
ð7Þ

where,

c ¼ stacking fault energy

K111x0 ¼proportionality constant

Gð111Þ ¼ shear modulus in the ð111Þ fault plane

a0 ¼unit cell edge dimension

A ¼Zener elastic anisotropy

�2
50

	 

111

¼microstrain; averaged over 50�A in the

½111� direction

a ¼ stacking fault probability:

There are many quantities in the equation,

including some that depend directly from the X-ray

diffraction experiment while some are material con-

stants which can be taken either from the available

literature or separate experiments/calculations. A

complete process chart for the calculation of SFE

using XRD-based approaches in Eq. 3 is shown in

Fig. 7. The section ahead is an elaborate literature

review on the experimental determination and the

literature for these quantities. After Schramm and

Reed developed and demonstrated the methodology

for X-ray diffraction, researchers adopted the same

for neutron diffraction experiments.

Stacking fault probability Stacking faults occur on the

(111) close-packed planes in the fcc crystal and cause

a shift in position of diffraction lines. Stacking fault

probability can be calculated using the angular dis-

placements (shifts) of the of the diffraction peaks

according to Warren’s method of peak shift analy-

sis [54]. Comparison between annealed and

deformed specimens is typically used to measure the

peak shift and get corresponding a. As explained by

Reed and Schramm [30], it is best to obtain the profile

angular separation of (111) and (200) rather than

absolute 2h positions to avoid diffractometer errors

and achieve better sensitivity. Thus the widely

used [33, 35, 55–60] equation to calculate stacking

fault probability as given in [30]

D2h ¼ 2h200 � 2h111ð ÞCW � 2h200 � 2h111ð ÞANN

¼ � 45
ffiffiffi
3

p

p2
tan h200 þ

1

2
tan h111

� � ð8Þ

This equation is derived for (111) and (200) reflec-

tions from the general equation described by

Warren [54]

D2h ¼ 90
ffiffiffi
3

p
a tan h

p2h0
2 uþ bð Þ

X

b

�L0 ð9Þ

where
P

b �L0=h0
2 uþ bð Þ is a constant specific to each

hkl reflection. For austenite 111, 200, 220, 311 and 222

reflections, the values are 1/4, -1/2, 1/4, -1/11 and

-1/8, respectively [54]. Using the above general form

some researchers have calculated a using a different

set of reflections [61] or taken averages of a for dif-

ferent set of reflections [37, 62]. To do away with the

need of testing a stacking fault free annealed sample

for comparison, Talonen et al. [63] described a novel

method which combined Warren’s treatment and

Bragg’s law. By assuming no long range residual

stresses in the powder sample, the peak positions are

affected by lattice spacing and stacking faults which

leads to the following equation with two unknown

parameters (interplanar spacing k and stacking fault

probability a)

2hhkl ¼ 2arcsin
k

2dhkl

� �
þ 90

ffiffiffi
3

p
a tan hhkl

p2h2
0 uþ bð Þ

X

b

�L0 ð10Þ

Hence Eq. 10 can be used to obtain as many inde-

pendent linear equations corresponding to each rep-

resentative hkl austenite reflection. These equations

are subsequently solved using the linear regression

method for a. Talonen et al. [63] and other research-

ers [64, 65] have described the use of the above

method for calculation of stacking fault probability in
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deformed sample eliminating the need of comparison

with an annealed sample.

RMS microstrain X-ray or Neutron Diffraction pro-

file broadening of plastically deformed samples can

be caused due to various factors, but primarily due to

powder size and strain; hence, the profiles can be

analyzed for evaluating these 2 components. Various

different approaches and software packages exist for

the calculation of RMS microstrain from the broad-

ening of diffraction profiles. Schramm and

Reed [30, 52, 53] in their seminal papers adopted the

Warren–Averbach technique [66] in which the value

of RMS microstrain �2
L

	 

hkl

can be expressed as

22
L

	 

hkl
¼ lnAL h1k1l1ð Þ � lnAL h2k2l2ð Þ½ �a2

0

2p2L2 h2
2 þ k2

2 þ l22
� �

� h2
1 þ k2

1 þ l21
� �� � ð11Þ

where AL h1k1l1ð Þ and AL h2k2l2ð Þ are the coefficients of

the cosine term with first power in the Fourier series

expression of diffraction profiles, L a length normal to

reflecting planes, a0 is the lattice parameter. Typically

h1k1l1ð Þ and h2k2l2ð Þ are (111) and (222) planes while as

a matter of practice �2
L

	 

hkl

is averaged over 50 Å in the

[111] direction. Instrumental broadening can be elim-

inated by comparing the profiles for annealed and

deformed samples for the same material. In addition to

Schramm and Reed many other researchers [33, 35, 57]

have used the Warren–Averbach method for calcu-

lating RMS microstrain. Another widely

used [55, 58–60, 67] method is the Williamson–Hall

plot [68] for XRD profiles. Citing probability of errors

due to neglecting dislocation density and arrangement

effects, some researchers have used a modified Wil-

liamson equation along with a modified Warren

approach to calculate RMS microstrain [64, 65].

Hence from the above discussion it is seen how by

analysis of diffraction patterns of deformed alloy

compositions, SFE can be inferred, indirectly. How-

ever, as was the case in the TEM-based methodology,

diffraction-based methods also suffer from many

problems, particularly when considering the multiple

corrections that must be made in order to make the

estimation. Although the whole sample is being

considered for analysis, this is an indirect method

and many other physical and material interactions

can influence the results derived from this method-

ology. There has been discussion regarding the

robustness of the underlying theory of this method

and the value of proportionality constant suggested

by Schramm and Reed. The calculated RMS micros-

train may have influences due to other sources of

strain in the material, one source claimed as powder

preparation of sample for diffraction analysis. The

Figure 7 Complete procedure for calculation of SFE using X-ray or neutron diffraction in austenitic steels.
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material constants plugged into the equation are

mostly approximated from similar compositions and

can be another source of error. Hence similar to TEM

technique, data from the diffraction technique need

to be accounted for large uncertainty.

Uncertainty in SFE determination

We have discussed in earlier sections the computa-

tional/theoretical and experimental approaches to

determine the SFE in austenitic Fe-based alloys. In

this section we revisit the sources of uncertainty in

the predictions/determinations of this important

quantity. Typically, in materials research, it is diffi-

cult to compare values from computational models to

experimental observations due to missing physics in

the computational models and experimental mea-

surement error. However the task becomes dramati-

cally difficult when the experimental observations

themselves are very uncertain and inconsistent, not

only due to measurement error but the inherent

technique of observation or calculation as well.

SFE is an intrinsic material property depending on

composition and temperature. Although there have

been a very few papers claiming grain size and pro-

cessing effects, the evidence is minimal or the effects

are so small that they can be safely ignored [69].

Despite being a material property, there is no direct

way to measure SFE. For example, the strength of a

material can directly be determined by a tensile test.

There can be uncertainty in the strength due to

experimental error but not due to the method of mea-

surement itself. However in the case of SFE, the value

calculated is indirect. An observable quantity like

geometry of dislocations or diffraction profile of the

material is theoretically related to the SFE of the

material. In this calculation there is then substitution of

material constants, the observed property and other

material parameters. Hence, there are multiple sources

of uncertainty and inconsistency. In general there can

be error due to observed quantity not matching the

exact theoretical requirement to be used to calculate

SFE, using averaged value of material properties for

multiple compositions, and finally the robustness of

the underlying theory itself relating an observed

quantity to the SFE of material which can all be con-

sidered as the systemic uncertainty in SFE calculation

while there can always be experimental error in the

observed quantity due to sampling and measurement

which can be called as the experimental uncertainty.

This leads to a complex set of results for SFE of auste-

nitic steels making it very difficult to use for compar-

isons and trends as well as matching against

theoretical predictions. Different techniques lead to

different calculations of SFE for similar composition.

Any theoretical prediction model needs to tackle the

problem of uncertainty in SFE data as it is difficult to

choose the ‘‘correct’’ data.

Methodology

This work consisted of two parts: Collecting data

from the literature on SFE calculations for steel

compositions and using machine learning algorithms

for visualizing, mining trends and predicting SFE.

Prediction problem setup and uniqueness
of approach

The final objective of this work is to predict SFE for any

given austenitic steel alloy based on just the chemical

composition. A natural approach would be to build a

model capable of providing a quantitative prediction

for SFE as a function of arbitrary chemical composi-

tions. All theoretical computational models essentially

do the same, albeit only for a limited composition

space—up to 4 or 5 different components. Linear

regression techniques applied to SFE data allow for

many components to be included in the models;

however, problems with work in this direction until

now have been discussed earlier. Given the high

uncertainty in SFE determination, both systemic and

experimental, we thought of an approach which

would address practical needs of SFE determination

and be more robust to underlying data uncertainties.

SFE value is of prime importance in alloy design.

Since the SFE value of austenitic steels drives different

deformation mechanisms, for designing a steel with

certain grain structure and amenable to required

deformation in process-use we need to know the SFE for

unknown compositions. However, we certainly do not

need the ‘‘exact’’ value or even precise values. There has

been previous work in this direction by many

researchers which have established that deformation

mechanisms in austenitic steels are a function of SFE

‘regimes’, rather than specific values. What also helps is

that this mapping from SFE regime to deformation

mechanism is monotonic as well as one-to-one.

Although the research establishes different values for
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these regimes, they are not too different and there is a

common acceptance in the literature. Figure 8 shows

different SFE regimes proposed in the literature. It is

well accepted that an Austenitic steel with SFE value

below 20 mJ/m2 deforms by martensitic transforma-

tion of TRIP-like behavior, with SFE value in between 20

and 45 mJ/m2 deforms primarily by deformation

twinning leading to a TWIP-like behavior while SFE

values above 45 mJ/m2 deforms majorly by slip. These

regimes can be termed as Low, Medium and High,

respectively.

Based on this knowledge, we can construct three

‘‘classes’’ of SFE ranges or three regimes and can map

all our SFE numerical data to categorical data. The

advantage of this approach is that it helps engulf the

systemic and experimental uncertainty associated and

now we can say that although the SFE calculation may

be uncertain numerically, it most certainly belongs to a

certain regime. This helps us circumvent the problem

of choosing ‘‘correct’’ data from experiments. As dis-

cussed, the experimental data in SFE is highly con-

flicting, but by clustering the existing data in different

SFE regimes/ranges we can leverage all the data

available. Once we construct this dataset as such, our

prediction problem is essentially a ‘classification’ task

as it is known in machine learning and data mining

fields. Given a composition we now want to classify

whether the specific steel belongs to either the Low or

Medium or High regime of SFE values. This is prac-

tically applicable to an alloy design task where com-

positions can be checked using this classifier and

predicted how they deform. Another advantage is in

the classification algorithm itself which will be dis-

cussed in the upcoming section.

Data capture and curation

A very extensive literature survey has been done to

capture all the various experiments done on different

steel compositions to build the best possible training

dataset for the prediction algorithms. The authors

believe that this is the most exhaustive dataset for

experimental SFE calculations available to the community

yet in a single source. The process of data collection

was conceived in a manner so that not only the data

but also all relevant metadata was captured. Essen-

tially then, metadata regarding the experimental

technique, process and conditions which can poten-

tially inform more about the data itself were added

into the database. These data descriptors can help

making selections for the training data set, under-

stand patterns on which experimental technique has

larger uncertainties etc. and hence constitute very

useful information.

The process of data collection is the first step but an

even more important step is that of data curation.

Data curation is the process which essentially enables

reliable retrieval and querying of data for future

research and reuse. To make our data collection

efforts usable and available to the community, we

decided to use Materials Data Curation System

(MDCS) which is an undertaking by NIST to promote

efforts in MGI. Hence we devised a schema for

passing the captured data to a repository in a sys-

tematic manner such that the data are query-able as

well as re-usable for the community at large.

Data We have discussed how SFE is a function of

composition and temperature and these are the pre-

dictor variables or features which will help in pre-

dicting SFE. Thus we have captured composition,

temperature and SFE. All possible elements that have

been used in alloying in austenitic steel system have

been considered. We have also discussed various

experimental techniques for SFE calculation and

underlying reasons on how these calculations can be

uncertain. Hence capturing uncertainty in SFE data is

crucial and we have reported the spread in SFE val-

ues wherever available.

MetaData In addition to the above-mentioned data,

descriptors that add meaning and context to the data

are equally important. These descriptors might not

directly go into the calculations or algorithms for

prediction, but are essential for establishing physical

relations between features and indicators. As dis-

cussed earlier, there is considerable work in the
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Figure 8 Different values in the literature for SFE regimes.
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literature that establishes SFE as a function of pro-

cessing due to alloying effects. Similarly, there is

available critique in the literature on the accuracy and

applicability of different SFE measurement tech-

niques as well as specific bodies of work. We can take

all of these into account to make selections on the

complete SFE dataset to choose subsets which we

think are the best for a certain problem. However to

be able to make these subsets, we need the descrip-

tors of the data—which is essentially the metadata. For

the experimental SFE dataset the metadata is broadly

bibliography, experimental technique and processing.

The bibliography maps observations to particular

journal papers which enables us to subset certain

observations based on the community’s confidence

and critique of certain papers. Similarly experimental

technique helps choose data only from certain tech-

niques which might be established to be more accurate

while processing helps identify differences in SFE

measurements based on different process routes.

Training set

We have a dataset of SFE calculations on various

compositions at different temperature conditions

processed by different processing routes. This com-

plete dataset has 500 odd points. Table 2 is a list of all

the papers in the SFE literature from which experi-

mental SFE data were recorded. This to the authors’

knowledge the most comprehensive SFE dataset to

date and is exhaustive as far as experimental research

in SFE of austenitic steels is concerned.

As evident from the table, a large number of papers

have been mined to collect these data and build an

exhaustive dataset. One merit of this work is the

sheer amount of data collected for this task compared

to earlier regression approaches in SFE prediction

which had data from a maximum of 5 research

papers, hence making the data mining task

unreliable.

Machine learning algorithms

In this section we briefly discuss the machine learn-

ing (ML) algorithms used in this work on the SFE

dataset. All ML algorithms work with an input

dataset which has observations across various pre-

dictors or features. This dataset may or may not have

a target value for observations and depending on that

an ML algorithm can be classified as supervised or

un-supervised. The objective and dataset at hand

leads to selection of which ML algorithm one uses

with their dataset. Different ML algorithms can be

used at different points in a data mining workflow

starting from (i) dimensionality reduction which can

be useful in working with very high-dimensional

data (large number of predictors) and hence captur-

ing only the important ones to reduce dataset size or

where dimensionality of data makes it impossible to

completely visualize it in three dimensions and hence

we reduce dimensions for the purpose of visualiza-

tion (ii) prediction which depends on our target

output type—nominal or categorical. Regression and

classification algorithms are used to predict target

output based off the predictors/features in the data-

set. We use the open source ML Library Sci-Kit

Learn [109] in this work.

Visualization

The SFE Dataset has 9 predictors—the weight per-

centage of different alloying elements. We cannot

visualize the predictors and SFE value, a ten-dimen-

sional data at once. Hence, we have to rely on

dimensionality reduction algorithms to reduce the

10-d data to 2-d or 3-d such that minimal information

is lost and we can search for insights after visualizing

the data. While there is a wide range of approaches to

dimensionality reduction, we focus our attention to

three different approaches. It is important to note that

these new dimensions in which we visualize our data

might not have any physical meaning or significance

but nevertheless help us visualize underlying trends

and patterns in the data—if any which would be

impossible to visualize in the higher dimensions. The

three techniques we use are (i) Principal Component

Analysis (ii) Multidimensional Scaling (iii) Locally

Linear Embedding. The common idea in all dimen-

sionality reduction algorithms is based on distance

between data points in euclidean space which sta-

tistically can be thought of as covariance between

points which is tried to be preserved when moving

from the high-dimensional mapping to a lower-di-

mensional representation.

Classification

As explained earlier, our problem definition is the

prediction of SFE regime or deformation mechanism

given a composition of austenitic steel. Hence our

11062 J Mater Sci (2017) 52:11048–11076



target output are classes which are categorical. This

problem is essentially a classification task which is a

very standard problem in the field of machine

learning. It has been discussed in the SFE literature

that the compositional dependence in elements space

is inherently nonlinear. That was one of the main

drawbacks of linear regression approaches. Although

regression can be used to model nonlinear higher

order relationships between predictor variables and

output class, classification algorithms by virtue of

there design are robust to nonlinearities and are able

to learn faster compared to regression approaches.

The three algorithms we used are: (i) random forests

(ii) support vector machines (iii) artificial neural

networks. These three algorithms are known to be the

best performing algorithms in the machine learning

literature [110, 111].

Perfomance metrics

The performance of classification algorithms can be

measured in different ways, the two most common

techniques being using n-fold cross validation or a

hold-out test set. In n-fold cross validation, the

dataset is partitioned into n subsets and n models are

trained with n-1 subsets while evaluating perfor-

mance on the 1 subset not used to train the model.

The final metric is then an average over the perfor-

mance of these n models. In hold-out test set method,

a small sample of the original dataset is randomly left

out from the training. Hence the model is trained on a

training set and is evaluated against the unseen hold-

out test set. The n-fold cross validation is preferred

when the dataset is not large as the complete dataset

is used in training eventually while in the hold-out

test set method a subset is lost which means the

model is trained with less information, and infor-

mation is crucial in small datasets. However Braga-

Neto and Dougherty [112] have done extensive

research on using n-fold cross validation on small

datasets which are characteristic to the field of

bioinformatics and concluded that there is large

spread in the values of performance metric and one

can over-estimate performance. Hence keeping in

mind that our dataset is relatively small, we use hold-

out test set methodology for evaluating performance

for increasing robustness of our results, mindful of

the fact that this might deteriorate performance since

some information will be lost for training. In fact, we

recommend the material informatics community to

use the same methodology as more often than not,

the size of dataset in our domain is small.

The metric most commonly used to evaluate per-

formance for ML models is accuracy. It is a very

simple metric which basically measures out of all

predictions predicted by a model, how many pre-

dictions are correct. This accuracy is tested over the

hold-out test set in our case. However Dougherty and

researchers have researched how sampling of data

points to form the training dataset affects accu-

racy [113]. When random sampling from population

cannot be assured for the formation of training

dataset, accuracy can be biased as per sampling.

Since in material science experiments tend to be done

based on a researcher’s interest in chemical space

based on the literature or on intuition, sampling is

almost never random. Hence, accuracy is not the

ideal metric as the population distribution of classes

being predicted might not be represented by the

sampled training dataset. Based on this discussion,

other metrics like false positive rate (FPR), recall or

true positive rate (TPR) which are agnostic to popu-

lation distribution of classes are more suitable. For an

extensive discussion on different metrics that can be

used for evaluating performance of ML models, one

can refer to this excellent paper [114].

Results and discussion

Based on the informatics workflow discussed earlier,

we delved into the SFE data to look for insights,

patterns and then eventually build a classification

model. The materials knowledge a priori known to us

from the literature can be used to support the data

analysis, empirical generalization about alloying

behavior can be backed by data and vice versa the

inconsistencies in the literature can also be pointed

otherwise. In the Methodology section we explained

how we have built a dataset with all experimental

SFE data in the literature. The dataset has data to

account for the variation of SFE with different alloy-

ing additions; however, for some alloying elements

the data are very sparse. This makes it impossible to

study trends and model SFE for such small sample

cFigure 9 a SFE data scatterplot matrix with variation of SFE

regimes plotted against weight percent of Cr and other alloying

elements. b Variation of absolute SFE values with weight percent

Cr.
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set of alloying additions. Thus only a subset of the

dataset where elements have more than 0.05 wt%

alloying addition and then their is substantial num-

ber of data points have been chosen for the analysis.

Additionally only data points for which Fe is the

major alloying element have been retained. Similarly,

only data for room temperature measurements have

been retained as there are very less data points for

specific non-room temperature measurements.

Another way to explore and analyze this data

space would be to transform the input variables i.e.

the compositions into some other variables leverag-

ing materials knowledge. This would help explain

the results more from the theoretical perspective and

will also help reduce the dimensionality of the

problem. Since we are looking at SFE of austenitic

alloys, we can look at mean atomic radii of alloy

compositions as well as valence electron concentra-

tion. Also since magnetic character has been shown to

influence SFE, we can also choose magnetic entropy

of alloys as a variable. Hence we can transform a 9-d

composition space to this 3-d material character

space. This was shown to have similar results as our

analysis from prediction perspective. However this

approach can be very useful in problems with very

high dimensionality where materials knowledge can

help us reduce complexity of input space.

Data exploration

Visualizing data leads to many simple yet powerful

observations. Just plotting the data along various

dimensions and exploring what you see is a very

helpful tool in data analysis. There have been many

empirical observations and propositions in SFE lit-

erature which material scientists use as rules of

thumb in alloy design in absence of concrete com-

position-SFE relationship. These can be useful; how-

ever, the generalizations need to be done over a lot of

observations. Since we have at our disposal an

exhaustive dataset of SFE, we queried and explored

the data for visual trends which can be generalized or

validate existing ones. We looked at scatterplot

matrices where we fixed x-axes as wt% of a particular

element and varied other alloying elements on y-axes

in different matrices of the scatterplot. Since these are

2-d plots, there is no way to represent SFE numeri-

cally with 2 axes taken for wt%. We represent this

SFE value dimension by color coding points accord-

ing to SFE regimes (pointed out in figure labels).

Hence while looking at the plots, one should be eying

for change in colors in regions which would corre-

spond to certain compositional range leading to a

particular SFE regime. We also visualize scatterplots

with explicit SFE value versus wt% of certain element

to see only the effect of that particular element. Here

the color is a redundant value since SFE value is the

y-axes, however it helps eyeballing fraction of data in

a regime for a particular element. The following is the

data exploration analysis with SFE dataset. The sali-

ent feature about all the plots is that there really are

not standout patterns and in general the SFE data are

very complex with many interplaying factors. Most

scatterplot matrices have a mixture of SFE regimes all

over the compositions and not much can be said

about rules that can explain the data.

For example, in Fig. 9 we examine the variation of

SFE with change in wt% of Cr. From Fig. 9a we can

see no outstanding pattern of SFE regime based on

interaction of Cr and any other elements. All regimes

are mixed and based on wt% of Cr and another ele-

ment, nothing can be predicted about the possible

SFE regime. Examining Fig. 9b we can see the there is

absolutely no relation between SFE and only wt% Cr.

For a given Cr alloying, the SFE varies from very low

values to very high, thus showing no apparent trend

with wt%. We explore similarly effect of other

alloying elements on SFE and see similar results. To

summarize, by visual exploration some observations

clearly stand out about the SFE dataset that can be

related to existing discussion in the literature

regarding SFE-composition relationships.

(i) As seen in the plots, the pattern of points

going from blue to green (representing

increase in SFE) is not monotonic across any

dimension and in fact highly mixed. Hence

this clearly brings out the dependence of

composition-SFE relationship of any element

on other elements in the system verifying the

first-principles calculations regarding nonlin-

ear dependencies.

(ii) These plots also clearly thwart all attempts to

use linear regression models in the literature

listed out earlier as clearly there is no linear

relationship between any element and SFE.

As emphasized above, there are strong inter-

actions between elements’ effects on SFE.

(iii) Not many rules of thumb, or generalizations

could be processed which might aid in
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composition tinkering for alloy design. In fact

given the nonlinearities, it would not be

advisable to look for simple rules in compo-

sition-SFE relationships.

Dimensionality reduction and visualization

As shown above, visualization can be a simple yet

powerful technique to look for patterns and know

more about the dataset as well underlying relations.

However in the data exploration tasks described

above, we were only able to visualize part of the

features of the data at once. Thus we were losing

crucial insights about the true nature of SFE depen-

dence on composition. If we could visualize all

changing parameters at once and the dependence of

SFE on these parameters, we would essentially know

everything. However when the data are higher

dimensional than what our viewing permits, com-

plete data visualization becomes increasingly diffi-

cult. Here we have to take help of ML algorithms

discussed earlier where the aim is to compress the

nine-dimensional composition space to 2 or 3

dimensions with minimal loss of actual information.

We tried the three algorithms listed in the method-

ology. However to bring out specific points, we dis-

cuss the results of PCA and LLE algorithms on the

SFE dataset below.

Principal component analysis (PCA) As discussed

earlier, PCA is a linear dimensionality reduction

algorithm. We performed PCA on the SFE dataset

and retained the first three components to visualize it

in 3 dimensions. The algorithm compresses the nine-

dimensional data to three-dimensional data with

80.5% retention of variance which can be intuitively

imagined as the measure of information recovered in

this compression. To aid in visualization, we take

projections of this 3 components to visualize in 2

dimensions. In Fig. 10 we plot 1st PCA component

against the 2nd and 1st against the 3rd. Hence one is

the top view and another is the front view of the

three-dimensional plot. Although there still are not

any clear regions corresponding to a specific SFE

class, we can use parts of information hidden in these

plots to help in our data analysis and modeling.

After careful observation we can draw linear

boundaries in the projections that have knowledge.

For both plots one can see that for PC1 [ 0.1

Figure 10 Using patterns in PCA to detect unreliable, erroneous and outlier observations.
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approximately, there are almost no observations

which fall within the low SFE regime. Similarly, for

PC \�0.2 approximately, there are almost no

observations that fall in high SFE regime. This is a

pattern, very simple rules that it in itself can act as a

classification rule. If a new point falls in one of these

regions of the plot after transformation, we can say

with some certainty what SFE regime it cannot

exhibit. However this is not complete information

neither the degree of certainty can be quantitatively

calculated. Nevertheless we can leverage this pattern

to do other analysis of the data. For instance we can

look at the very few points which do not follow our

proposed pattern and examine the reasoning in the

data.

Looking for low SFE or blue points in the region

PC1 [ 0.1, we find 3 instances labeled point 1–3 in

Fig. 10. Point 1 is a data point from the author

Ojima [36]. When we look at compositions very close

to this value, we find that there are many observa-

tions that correspond to the medium SFE regime.

This is evidence of an unreliable data point in the

literature to which we can attribute low confidence or

choose not to include while modeling the data. Point

2 is an interesting case. We checked the data for this

observation and found out that we had erroneously

entered the wrong SFE value while building the

dataset from this paper. This point actually corre-

sponds to a point which has an SFE value in the

medium regime. Point 3 is an outlier from the general

dataset. This has been taken from the author Kir-

eeva [105]. In this paper very small changes in N

content have been shown to cause very large changes

in SFE. Thus this does not fit the proposed pattern,

but the accuracy of this calculation cannot be com-

mented on as there are no benchmark observations

for comparison. Similarly points which do not follow

the other proposed pattern have been labeled from 4

to 6 in Fig. 10 and can be explained along similar

lines.

Locally linear embedding (LLE) Having used a linear

algorithm, we try a nonlinear dimensionality reduc-

tion algorithm in the pursuit to find lower-dimen-

sional representation which might inform us more

about the underlying patterns in the SFE dataset. As

mentioned earlier, locally linear embedding algo-

rithm (LLE) tries to search for linear sections in the

higher dimensional space and then cuts and pastes

those sections in the two-dimensional space [115].

Figure 11 shows the application of LLE on SFE

dataset. We can observe that in the LLE representa-

tion the complete SFE data lie on a shape very close to

a V or a Y with a very small vertical base. The most

interesting feature of this representation is that each

of the arms of this Y has a correlation to the SFE

regime. This is precisely what LLE is used for in

pattern recognition. As discussed earlier, in a very

ideal case different classes separate out on the LLE

representation enabling classification from this rep-

resentation. In the LLE representation of SFE data in

Fig. 11, we can see the left arm (highlighted in yel-

low) has very less green points or high SFE compo-

sitions while the right arm (highlighted in orange)

has almost negligible blue points or low SFE com-

positions. In the earlier 2 visualizations using PCA

and MDS we were able to propose similar patterns.

However there were no clear boundaries in those

representations where we can assert that the pattern

exists. LLE helps bring out the pattern explicitly with

compositions along the two arms mapped to absence

of a particular regime.

In this case we can also look at various points

which do not follow the pattern and explain them in

a similar fashion to what was done for the PCA

analysis. We specifically look at the large cluster of

points named C þ N. All these points are observa-

tions from papers by Gavriljuk and Pet-

rov [70, 100, 103, 107]. The common link among them

is that these are observations to measure effect of C

and N alloying in steels and the effect of C and N

seems to be very significant. According to experi-

ments, small additions lead to large changes. Hence

although two compositions can be really close in the

LLE embedding due to only a small difference in C or

N alloying, they might have very different SFE

regimes. Hence all observations measuring effects of

interstitials like C and N will most certainly not fol-

low mappings from dimensionality reduction algo-

rithms as is the case here since their effect is

markedly different from other predictors.

To summarize, we used various dimensionality

reduction algorithms to view the complete SFE data

in 2 or 3 dimensions by doing certain transforma-

tions. Important learnings from the task are:

(i) We observe the classes are highly mixed in

the composition space and there are no

regions or cluster for single classes. Had

there been any clusters forming or clear

boundaries forming, boundaries could have
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been derived as to what compositions relates

to what SFE class. This reinforces the under-

lying nonlinearity and complexity in the data

and also draws merit to the use of classifica-

tion algorithms to link composition and SFE.

(ii) Nevertheless we could identify 2 patterns in

the PCA and MDS representations, regions of

absence of compositions with high and low

SFE regime. This pattern was identified more

concretely with well defined boundary in the

LLE representation with the SFE data lying

along a Y-like shape and each arm corre-

sponding to non-existence of compositions

with a certain regime.

(iii) Exceptions to the above proposed pattern

were examined. They were either unreliable

observations in the literature or outliers.

Unreliable observations were recommended

to be modified which would help in increas-

ing reliability of data models while outliers

were explained as the effects of C and N

alloying. Thus this is an excellent showcase of

what visual representations can be leveraged

for and at the same time their limitations.

Classification

With the complexity in composition-SFE relationship

discussed extensively up to this point, we applied

classification algorithms to uncover or ‘‘learn’’ this

underlying relationship. Although these classification

models are not as intuitively explainable as linear

regression which means one cannot write down a

final expression relating composition to SFE, it is the

price that one has to pay in order to attain higher

accuracy than any existing models. These algorithms

can essentially be thus treated as black boxes which

when given an input composition, will output the

SFE regime or class that the composition belongs to.

Artificial neural network (ANN) Artificial neural

networks (ANN) are very powerful because of their

sheer computational complexity. Given enough

parameters, neural networks can learn almost any

function irrespective of how nonlinear it is. However

this can act as a problem since neural networks can

easily overfit to the training data leading, to poor

generalization ability. Hence sometimes lower mod-

els are preferred at the cost of accuracy. ANNs can

have many hidden layers and each layer can have

Figure 11 Locally linear embedding representation of the SFE dataset in two dimensions closely resembling a Y. Left arm highlighted in

yellow and right arm highlighted in orange.

11068 J Mater Sci (2017) 52:11048–11076



many units. The number of layers and units are

essentially hyper-parameters to the ANN model

which decide the shape of the decision boundary in

higher dimensions. The activation function in the

units of the hidden layer can also be changed but we

used a sigmoid function which has been demon-

strated to have good performance. There are other

parameters like learning rate and number of itera-

tions for searching minima of cost function, but they

typically do not affect performance of ANN on

unseen data. However they are essential to training

performance and minima search. Given the size of

our data, we implemented only a 1 hidden layer

ANN. The number of units in this hidden layer and

number of iterations were the hyper-parameters

which we searched for using grid search.

Random forests (RF) Random forests (RF) are one of

the most popular ensemble machine learning algo-

rithms. They are essentially a collection of many

decision trees, but each decision tree in the ensemble

is trained differently leading to the ‘randomness’. The

performance of random forests has been attributed to

two key parameters in the literature. First is the

number of decision trees used to train the model

which leads to many random samples getting selec-

ted from the training set since each tree is fit to a

bootstrapped sample of the training set. Second is the

number of predictors considered at every node to

obtain the best split. These 2 hyper-parameters

essentially control the performance of random

forests.

Support vector machines (SVMs) Support vector

machines (SVMs) are very rich classifiers because of

the various types of kernels which can be used to fit

the data. The most commonly used kernels which

have been proven to give good results are linear,

polynomial and radial basis function (rbf) or Gaus-

sian. In addition to the kernel, there are two crucial

hyper-parameters to select in SVMs, C and c. C is a

parameter that acts as a regularizing coefficient bal-

ancing misclassifications and simplicity of decision

surface. Hence it is the term which controls over-fit-

ting in SVMs. c is a parameter whose purpose is the

same, though it is imagined as the degree of influence

of one data point on another. The interplay between

these 2 parameters hugely affects SVM performance.

For choosing the best parameters and kernel function

we did a grid search over combination of parameters

and function. The functions we chose were the same

as listed above and for the parameters we did a log-

arithmic sweep.

Figure 12 summarizes the performance of the

above 3 algorithms on the hold-out test set. Each

algorithm has an accuracy of about 85% on the

Figure 12 Performance of different classification algorithms on the SFE dataset expressed using confusion matrices.
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validation set. The macro scores of precision and

recall are very similar too. We have taken macro

scores since all classes are equally important to us

and hence no weighting has been provided to better

performance over one of the classes. However as

discussed earlier, for small datasets where random

sampling cannot be assured, false positive rate is a

good metric as it is agnostic to population distribu-

tion of classes. Moreover from an alloy design per-

spective, we need this rate to be low. Thus RF with

lowest false positive rate is the model of choice. From

the confusion matrices, our learning from data visu-

alization are further emphasized. As can be seen,

misclassifications are almost always among Low and

Medium or High and Medium classes. There is at

maximum 1 misclassification across all models

between Low and High classes. Thus as evident in

the LLE embedding, there is a relatively simple

decision boundary separating the Low and High

classes. However the boundary between the Medium

class and other 2 classes is comparatively fuzzy

which can be attributed to lack of data as well as

uncertainty in SFE data itself.

Increasing confidence of predictions

Engineering design is always accompanied by a

known factor of safety. Many times better perfor-

mance is compromised for a more reliable and robust

design. With the same principle and philosophy as

motivation, we discuss the choice of classification

algorithm. We have discussed how this model can be

used for alloy design. In alloy design it is costlier to

make misclassifications than not adding information.

For example, if we want to design a steel that exhibits

significant twinning and our classifier incorrectly tags

a Low SFE composition as Medium in face of just

minimal evidence for Low over Medium, this is an

undesirable situation. However if the classifier out-

puts a tag which says that for this composition there

is not enough evidence to assign it to Low or

Medium, we can also check for other compositions.

In the process we might lose some candidates, but if

we can reduce the incorrect classifications this helps

in alloy design.

This evidence is essentially class probability. Most

classification algorithms output probabilities of the

output being a certain class and then the class with

maximum probability is assigned as the output class.

This might mean the probabilities being very similar

in absolute terms but still having an output class.

Though this is not incorrect, specifically when there is

large training data; in our case with a small dataset

and sparse sampling in the composition space cou-

pled with the cost of misclassification, maximum

probability is not robust enough. We need over-

whelming evidence of a composition’s mapping to a

SFE regime. Hence we have to choose a certain

threshold probability only above which the model

assigns a class, the rest of the time it shows that the

output is fuzzy. Since SVMs do not a have a

straightforward way of calculating probabilities, we

drop them as choice. Between ANN and RF, we chose

RF due to its slightly better performance based on

false positive rate.

It has been discussed as to how the Low–Medium

classes are closely entwined and this is similar in the

case of Medium–High classes. There are two reasons

to this. Mathematically due to errors and uncertainty

in experimental SFE calculations, for some composi-

tions whose true value lies on the border—there is

data with both classes in training set. Another reason

is the lack of data as this is relatively a small dataset

and hence interpolations are sometimes uncertain.

There is a physical materials behavior-based reason-

ing as well. Although there are truly 3 deformation

regimes in steels, there is a set of transitioning values

between these regimes which has experimental evi-

dence for both regimes. Thus there are two fuzzy

zones, one between Low and Medium which we

name as Fuzzy-LowMedium and one between Med-

ium and High which we name as Fuzzy-

Table 3 Metrics for different

choice of probabilities to

choose output class from RF

model

Threshold probability Accuracy/reliability (%) %Fuzzy outputs (%)

0.5 85 0

0.6 85 1

0.66 88 10

0.7 88 14

0.8 93 28
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MediumHigh. We do not assign a value to these

fuzzy zones as they are unknown. Mathematically all

we can say is that they extend out from the bound-

aries at 20 and 45 mJ/m2.

We decided we want to establish a threshold

probability below which our classifier should not

assign any class membership. The choice of this

probability will be dictated by practical choices

between reliability or safety and predictive ability. If

we take too stringent a probability we will output a

lot of fuzzy choices which is very safe but becomes

less predictive as a lot of predictions will lie in the

fuzzy zone. If we choose too low, we are basically at

the base model. We tried different probabilities

greater than 0.5 and below are the results for RF in

Table 3. The reliability or safety in this case is defined

as follows. A prediction is safe if it mathematically

satisfies the criteria. For instance, a class output of

Fuzzy-LowMedium is reliable and safe if the actual

SFE is either Low or Medium. One has to realize the

reliability is coming from increasing threshold prob-

ability which is the gold standard for confidence on

an output.

One sees that the safety or reliability is increasing

as the threshold probability is increasing (by virtue of

increase in threshold probability) but so is the num-

ber of fuzzy outputs. The %fuzzy outputs take a huge

jump after 0.6–0.66 which means the base classifier

was classifying a lot of points within this range.

However looking for more reliability comes at cost of

%fuzzy outputs which if very high, decrease the

decision making ability or predictive power of the

model. Thus based on above statistics, we choose a

threshold probability of 0.66 below which the classi-

fier would tag only fuzzy classes. This is a good

enough metric as it ensures the probability of chosen

class is at least more than double the probability of

any other class. Also at this probability we are clas-

sifying about 10% of the inputs fuzzy which we

believe as a good price to pay for reliability.

Thus based on our above discussion, now our

model outputs 5 classes: Low, Medium, High, Fuzzy-

LowMedium and Fuzzy-HighMedium.

Validation

The accuracy of the classification algorithms were

judged based on the hold-out test set from the SFE

dataset. That is a perfect measure of a model’s per-

formance in machine learning. Nevertheless we now

wanted to randomly pick some austenitic steel alloys

in the literature for which deformation experiments

have been carried out and predict their possible

deformation behavior from the classifier. This would

be an ultimate litmus test for the model. Table 4 is a

list of some randomly chosen alloys from the litera-

ture, their experimentally observed deformation and

the model’s prediction.

As can be seen from the table, the model performs

reasonably well. It was able to predict the correct

deformation behavior for most compositions. For the

compositions it predicted as belonging to a fuzzy

class, the experimental behavior is one or both of the

expected behaviors from that fuzzy class. Notice that

for alloy 1, although experimentally the alloy shows

both behavior, the classifier predicts Medium class.

This is rooted in the fact that there is no clear

boundary for the transition between these two

behaviors. For many alloys which might exhibit this

behavior, the experiments must have calculated their

value in the Medium SFE class and hence our clas-

sifier will predict the same. Thus from a design per-

spective, the fact that the algorithm has not

misclassified any composition is very crucial.

Conclusions

In this work we aim to solve the problem of uncov-

ering the composition-SFE relationship in austenitic

steels. SFE is crucial to alloy design as it the most

Table 4 Scoring the ML

model against experiments of

deformation behavior

Alloy composition References Experimental observation Model prediction

Fe–19.1Mn–1.8Al–0.14Si–0.07C Sato [116] � Martensite ? Twinning Medium

Fe–19.4Mn–4.4Al–0.03Si–0.05C Sato [116] Twinning Medium

Fe–31.3Mn–0.0Al–0.08Si–0.07C Sato [116] � Martensite ? Twinning Fuzzy-LowMedium

Fe–29.1Mn–2.0Al–0.11Si–0.07C Sato [116] Twinning Medium

Fe–29.2Mn–3.8Al–0.11Si–0.06C Sato [116] Twinning Medium

Fe–28.8Mn–7.1Al–0.05Si–0.07C Sato [116] Twinning Fuzzy-LowMedium
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important factor which dictates secondary deforma-

tion regimes in steels as discussed in the literature.

We discuss existing techniques to predict SFE and

discuss their pitfalls, specifically lack of reliability.

We then propose to use a data-driven machine

learning approach to model composition-SFE rela-

tionship based on all experimental SFE data in the

literature. This approach is first of its kind applied to

this particular problem. We setup the problem in a

novel way leveraging knowledge about the system.

Since a range of SFE values is essential to knowing

the deformation regime and not exact SFE values

itself, we setup the problem statement as a classifi-

cation task. We then implemented a complete infor-

matics workflow to solve the problem. We applied

tools like querying and data exploration to under-

stand simple patters in the data and relate them to the

literature. Next we applied dimensionality reduction

machine learning algorithms to uncover any visual-

izable patterns. We found patterns in PCA, MDS and

LLE representations of the data which separated 2

regimes of SFE values. However the need of applying

classification algorithms was clear and we went

ahead and modeled data using SVM, ANN and RF.

Based on testing with a hold-out test set, we achieved

good accuracy of 85% and a good False Positive Rate

of 10% with RF. To make our classification prediction

more robust, we then do an analysis of choosing a

high threshold probability to increase confidence on

our predictions. Thus we eventually have a machine

learning model that predicts Low, Medium or High

SFE regimes with high confidence and predicts fuzzy

outputs where it is uncertain. The contribution of this

work is that we now have a predictive model that

predicts SFE and consequently deformation regimes

for untested compositions in austenitic steels with

high reliability and good accuracy.

Supplementary data

We have shared the complete raw dataset we built for

the analysis as well as the source code for the com-

plete informatics workflow on Github [117]. It

includes code for loading the data, processing it and

making it amenable to analysis, visualization of the

data and finally the predictive machine learning

modeling. Thus the community can access and

reproduce all our analysis as well as use our pre-

dictive model to test any austenitic steel’s SFE value

regime. Instructions regarding how to run the code

and dependencies have been given in the readme

document of the github repository.
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