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ABSTRACT

This work reports the synthesis of surface-modified iron oxide magnetic nanotubes

(Fe3O4NT)with poly(amido amine) dendrimers of the third generation (PAMAM-G3)

as novel nanomaterials for potential drug-delivery applications. Fe3O4NT were

obtained by reduction of a-Fe2O3 nanotubes, which were synthesized following a

hydrothermal strategyusing SO4
2-/H2PO4

- to control the size andmorphology of the

prepared materials. Fe3O4NT were further functionalized with PAMAM-G3 moieties

using a silane coupling agent. Pristine and PAMAM-modified Fe3O4NT were char-

acterized through TEM, FTIR, XRD, N2 adsorption–desorption isotherms and VSM

measurements,which confirmed thenanotubularmorphology andmagnetic behavior

for both systems, andTGAanalyses,which revealed aPAMAMgraftingpercentage of

16.8%. The effect of PAMAM conjugation on the adsorption and release properties of

Fe3O4NTwas examined using silibinin asmodel poorly soluble drug compound. Our

results revealed that PAMAM grafting increased the maximum amount of adsorbed

drugfrom675 mg g-1 inpristineFe3O4NTto825 mg g-1 inPAMAM-Fe3O4NT.These

quantities exceedby far thedrug-loadingcapacityof otherpristine andPAMAM-mod-

ified nanotubular systems,which constitutes a relevant outcome for the present study.

Introduction

In the last decades, nanoscience and nanotechnology

have played a leading role in the development of

diverse research fields such as electronics, catalysis,

biocatalysis and biomedicine. In this context, nano-

materials with different shape and topology have

been extensively studied as vehicles for drug encap-

sulation and sustained release of a wide variety of

therapeutic agents, ranging from small drugs to
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proteins [1–4]. Within diversely shaped materials,

nanotubular structures present advantageous fea-

tures for drug encapsulation and delivery compared

to conventional spherical counterparts due to their

enhanced drug-loading capacity and distinctive inner

and outer surfaces, which allow the incorporation of

functional moieties to modulate their properties

[5–9].

Within biomedical nanomaterials, magnetic

nanostructures have emerged as valuable platforms

for the design of image contrast agents, drug carriers

and controlled drug-delivery systems. Particularly,

iron oxide magnetic nanoparticles of different size

and morphology are being assayed as promising

nanomaterials for drug-delivery applications, and

many efforts have been made in the synthesis of iron

oxide magnetic nanostructures with well-defined

morphologies, such as nanocrystals, polyhedra,

cubes, rods and tubes [10, 11]. Regarding to this

subject, hydrothermal synthesis has proven to be a

simple successful experimental strategy to obtain

functional nanostructures with tunable shapes and

high reproducibility [12, 13]. Using a hydrothermal

route and a subsequent H2 reduction treatment, Jia

et al. reported a simple procedure to produce mag-

netic Fe3O4 nanotubes (Fe3O4NT), starting from

FeCl3�6H2O as iron source and Na2SO4 and NH4H2-

PO4 as morphology controllers, opening the possi-

bility of creating a range of three-dimensional

structures by varying the SO4
2-/H2PO4

- ratio during

the hydrothermal synthesis [14–16].

In the past years, Fe3O4NT have shown remarkable

properties for the encapsulation and controlled

release of drugs, oligomers and macromolecules,

which can be safely transported into the cell avoiding

hydrolytic degradation or insolubility behavior dur-

ing their delivery at the specific target site [17].

Despite these promising features, the clinical appli-

cation of Fe3O4NT is largely limited by their colloidal

aggregation, which can be overcome through the

surface modification of these materials with diverse

polymeric or proteic moieties [17–21]. The surface

modification of Fe3O4NT has also proven to be a

successful strategy to increase the drug-loading

capacity, stability and biocompatibility of these

nanomaterials, which encourages the search for novel

possibilities to improve the performance of Fe3O4NT

based on the covalent attachment of polymeric sys-

tems with intrinsic drug-encapsulating properties,

such as poly(amido amine) (PAMAM) dendrimers. In

the past years, several studies have explored the

synthesis of hybrid materials combining iron oxide

nanoparticles with PAMAM dendrimers with a

diversity of purposes [22–25]. Nevertheless, to the

best of our knowledge, the use of PAMAM den-

drimers as surface modifiers of magnetic Fe3O4NT

has not been reported in the literature and constitutes

a challenging task for the design of novel nanoma-

terials for drug-delivery applications. In very recent

reports we demonstrated that the surface covalent

attachment of PAMAM dendrimers improved the

drug-loading and release properties of Al2O3 and

TiO2 nanotubes [26, 27], which is an auspicious result

to explore the use of these polymeric moieties as

surface modifiers for magnetic Fe3O4NT, as reported

in the present work.

PAMAM dendrimers are monodisperse synthetic

polymers constituted by a central core of ethylene

diamine, branches of amido amine moieties and ter-

minal surface amino groups. Because of its unique

architecture, PAMAM dendrimers have been vastly

studied as drug-delivery systems due to their capa-

bility to complex small-size molecules and enhance

the solubility and bioavailability of hydrophobic and

sparingly soluble drugs [28, 29]. A major limitation of

PAMAM dendrimers in drug-delivery applications

arises from the reported cytotoxicity of high-genera-

tion species [30, 31], which can be overcome by using

low-generation dendrimers since they are non-im-

munogenic and exhibit minimal cytotoxicity [32, 33].

Based on the previous background, this work

describes the synthesis of surface-modified magnetic

Fe3O4NT with PAMAM dendrimers of the third

generation (PAMAM-G3) and examines the role of

this surface functionalization in the modulation of the

drug encapsulation and release properties of the

prepared nanomaterials. Magnetic Fe3O4NT were

obtained by reduction of a-Fe2O3 nanotubes, which

were synthesized using a hydrothermal strategy.

Pristine Fe3O4NT materials were subsequently graf-

ted with PAMAM-G3 moieties using a silane cou-

pling agent (GPTMS). The drug-loading and release

properties of the pristine and PAMAM-modified

nanomaterials were examined using silibinin (SIL) as

model poorly soluble hydrophobic drug compound.

Our results revealed that PAMAM incorporation

exerted a favorable effect in the drug-encapsulating

capacity and sustained release properties of Fe3O4-

NT, without altering the magnetic behavior of these

systems compared to the pristine material. These
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results are valuable for the design of novel nanoma-

terials with biomedical purposes and constitute a

relevant outcome for our current and future research

in this field.

Materials and methods

Materials

Poly(amido amine) dendrimer, ethylenediamine core,

generation 3.0 (PAMAM-G3) solution 20 wt% in

methanol, 3-(glycidyloxypropyl)trimethoxysilane

(GPTMS, C98%), silibinin (SIL), NH4H2PO4 were

obtained from Sigma-Aldrich�. FeCl3�6H2O, ethanol,

nitric acid (HNO3, 67%) and hydrochloric acid (HCl,

37%) and Na2SO4 were provided by Merck�. Toluene

was dried over metallic sodium before use.

Synthesis of Fe3O4NT

To obtain the magnetic nanotubes, first the synthesis

of hematite nanotubes (a-Fe2O3) was performed by

means of a hydrothermal treatment of a mixture of

salt solutions FeCl3�6H2O, NH4H2PO4 and Na2SO4

according to the work reported by Jia et al. [14, 15].

Briefly, aqueous solutions of FeCl3, NH4H2PO4 and

NaSO4 were mixed in 36:1.2:1 molar ratio at a total

volume of 100 mL. The mixture was transferred into

a hydrothermal reactor and heated at 220 �C for 48 h.

After the hydrothermal treatment, the solid was

washed with distilled water and ethanol. The solid

was dried in a vacuum oven for 12 h at 80 �C to

obtain a-Fe2O3 nanotubes. Subsequently, the a-Fe2O3

nanotubes were reduced under continuous flow of

H2 (5% v/v H2/Ar) for 5 h at 360 �C (heating rate of

1 �C/min). This material was characterized by using

different techniques, demonstrating the formation of

Fe3O4 nanotubular structures (Fe3O4NT).

Synthesis of PAMAM-Fe3O4NT

Fe3O4NT were functionalized using 3-(glyci-

doxypropyl)methyldiethoxysilane (GPTMS) as cou-

pling agent. For this purpose, 1.0 g of Fe3O4NT was

dispersed in dry toluene for 30 min in an ultrasound

bath; subsequently, 4.5 mmol of GPTMS was added,

and the mixture was refluxed for 48 h. The modified

nanotubes were filtered and washed exhaustively

with toluene and acetone and then dried at 40 �C for

48 h in vacuum oven. This material was labeled as

GPTMS-Fe3O4NT and was employed as starting

material for PAMAM covalent attachment.

PAMAM covalent immobilization was carried out

by placing 0.50 g of GPTMS-Fe3O4NT, 25 mL of dry

DMSO and 0.5 mL of 0.81 mmol L-1 PAMAM-G3 in

methanol solution into a round-bottom flask. The

mixture was degassed with N2 gas and stirred for

48 h at room temperature. The obtained solid was

centrifuged with methanol and distilled water to

remove the unreacted reagents and dried for 48 h at

40 �C in vacuum oven.

Materials characterization

XRD patterns were recorded on a Rigaku D/max-

2500 diffractometer with the Fe Ka radiation at 35 kV

and 150 mA. Infrared spectroscopy (FTIR) experi-

ments were carried out on a Perkin Elmer 1760-X

spectrometer using a range of 4000–400 cm-1 and

KBr pellets. The N2 adsorption–desorption isotherms

at 77 K were performed on a Micromeritics ASAP

2010 apparatus. The specific surface areas were

determined by the BET (Brunauer–Emmett–Teller)

equation, using the adsorption data over the relative

pressure range of 0.05–0.3, and the pore-size distri-

butions were estimated using the BJH method. For

surface area estimation and pore-size distribution,

Fe3O4NT were degassed at 150 �C for 5 h, whereas

PAMAM-Fe3O4NT were degassed at 25 �C (dye

decomposition temperatures *60 �C) for 5 h.

The TGA studies were conducted on a Mettler

Toledo Thermogravimetric TGA/SDTA 851 using an

N2 flow of 25 mL min-1 and a heating rate of 5 �C
min-1 from 25 to 800 �C. Dismissing the adsorbed

water in Fe3O4, the mass loss percentage in TGA

profiles allowed the determination of the PAMAM

content in the prepared material by subtracting the

mass loss in the PAMAM-Fe3O4NT system minus the

mass loss in GPTMS-Fe3O4NT.

The morphology and size of the nanotubes were

examined by Transmission Electron Microscopy

(TEM) images. The micrographs were obtained using

a Philips electron CM200 microscope with an energy

dispersive analyzer and a digital camera coupled to a

high-speed TVIPS FastScan F-114 model of

1024 9 1024 pixels and 12 bits. The samples for

analysis were prepared by dispersion in ethanol/

H2O (1:1) and were deposited on a holey carbon Cu

grid (300 mesh). TEM images were analyzed using
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the imageJ software, considering [300 particles per

sample.

Magnetic characterization of the nanomaterials

was carried out in a vibrating sample magnetometer

(VSM; MLVSM9 MagLab 9 T, Oxford Instrument).

Magnetization curves were recorded at 290 K by first

saturating the sample in a field of 5 T. Data are

expressed in emu per gram of inorganic material

(iron oxide). MS was evaluated by extrapolating to

infinite field the experimental results obtained in the

high field range where the magnetization linearly

increases with 1/H.

Drug adsorption kinetic studies

Drug adsorption kinetic studies were carried out

following the next general procedure: 10 mg of the

solid materials (Fe3O4NT or PAMAM-Fe3O4NT) was

dispersed in 2 mL of deionized water and put into a

dialysis bag. After the dialysis bag was immersed

into a flask containing 200 mL of drug solution

(0.05 mg mL-1 of SIL). The drug solution was

mechanically shaken at constant temperature (25 �C),
in order to reach the equilibrium. Residual concen-

tration of drug in the liquid solutions was measured

with an UV–visible Spectrophotometer Spectroquant

UV/Vis Spektralphotometer Pharo 300 Merck at the

corresponding wavelength (287 nm) using previ-

ously recorded calibration curves data. Experiments

were conducted in triplicate under identical condi-

tions and were found reproducible (experimental

error within 4%). The amount of adsorbed drug per

gram of nanotube, q (mg g-1) was calculated from the

difference between the initial and final concentrations

in solution after the respective contact times. Drug

adsorption kinetic was fitted to different models

using MATLAB R2011a (MathWorks, Inc., Mas-

sachusetts, USA) nonlinear regression tools.

In vitro drug release studies

SIL was incorporated into adsorbents by mixing

100 mg of ground samples of the nanotubes with

10 mL of aqueous solution of SIL (0.05 mg mL-1) for

84 h at constant temperature (25 �C) in darkness

under continuous mechanical shaking. After encap-

sulation, the powders were filtered by using 0.45 lm
cellulose filter paper. Filtered powders were dried at

40 �C overnight to obtain drug-loaded Fe3O4NT and

PAMAM-Fe3O4NT materials.

The in vitro drug release experiments were carried

out by dispersing the prepared drug-loaded Fe3O4NT

and PAMAM-Fe3O4NT materials into 75 mL of sim-

ulated body fluid (SBF, 0.14 mol L-1 Na?, 5.0 mmol

L-1 K?, 2.5 mmol L-1 Ca2?, 1.5 mmol L-1 Mg2?,

0.15 mol L-1 Cl-, 4.2 mmol L-1 HCO3
-, 1 mmol L-1

HPO4
2- and 0.5 mmol L-1 SO4

2-) at pH 7.3, leading

to a final dispersion concentration of 3.33 g L-1.

300 lL solution samples were consecutively taken in

2 h intervals and centrifuged in Amicon Ultra-0.5

Centrifugal Filter Unit with Ultracel-3 membrane

(Merck). The drug content in the recovered filtered

was analyzed by means of UV/VIS spectroscopy.

Cell viability assays

Cytotoxicity of the materials under study was eval-

uated using the Alamar BlueTM cell viability assay on

human embryonic kidney 293 cell line (HEK 293).

Cells were incubated in 96-well plate with 30.000 cells

per well on a solution of Dulbecco’s Modified Eagle’s

Medium (DMEM 4.5 g L-1 glucose, 2 mmol L-1

glutamine, 0.11 g L-1 sodium pyruvate and 10% fetal

bovine serum) and dispersions of Fe3O4NT and

PAMAM-Fe3O4NT (10–500 lg mL-1) for 24 h at

37 �C and 5% CO2. Then, the medium was removed

and replaced by medium with Alamar blue reagent.

Cells were incubated 3 h, and finally the fluorescence

was measured in a NOVOstar (BGM, Germany)

multiplate reader at 580 nm. Comparison with con-

trol groups was performed using standard one-way

ANOVA and p\ 0.05 for significant differences from

cell survival control.

Results and discussion

This work describes the surface modification of

magnetic Fe3O4NT with PAMAM dendrimers of the

third generation, as potential modulators of the drug-

encapsulating and release properties of these nano-

materials. Pristine Fe3O4NT were obtained by

reduction of a-Fe2O3 nanotubes that were previously

synthesized using a hydrothermal procedure. Pris-

tine Fe3O4NT were then subjected to a surface func-

tionalization with the GPTMS silane agent and

further coupled with PAMAM-G3 dendrimers

through a ring opening reaction promoted by the

primary amine groups of PAMAM-G3 acting as

nucleophiles (Fig. 1). The presence of magnetite in
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Fe3O4NT and PAMAM-Fe3O4NT systems was veri-

fied from XRD experiments, which revealed the

appearance of standard patterns for magnetite in

both materials [(111), (220), (311), (222), (400), (511)

and (440), JCPDS No. 19-0629]. These characteristic

signals differ from the XRD pattern corresponding to

the a-Fe2O3 precursor, which presented major char-

acteristic peaks associated to hematite [(012), (104),

(110), (113), (024), (116), (018) and (214), JCPDS No.

33-0664], thus confirming the success of the reduction

procedure (Fig. 2). No significant differences were

observed in the XRD patterns of pristine and

PAMAM-modified Fe3O4NT materials, which evi-

denced that PAMAM grafting did not induce chan-

ges in the crystalline structure of magnetite.

FTIR spectra of Fe3O4NT, GPTMS-Fe3O4NT and

PAMAM-Fe3O4NT materials are reported in Fig. 2

and were employed to verify the covalent attachment

of organic moieties to Fe3O4NT. Pristine Fe3O4NT

showed characteristic IR bands at 3340–3000 cm-1,

corresponding to the stretching mode associated to

surface hydroxyl groups and adsorbed water mole-

cules, 1628 cm-1 attributed to the OH bending mode

and 574 cm-1 associated to the Fe–O stretching in the

magnetite lattice [34, 35]. GPTMS-Fe3O4NT showed

peaks corresponding to aliphatic C–H stretching in

the region comprised between 2800 and 2900 cm-1

and a weak signal around 1100 cm-1 associated to Si–

O stretching. PAMAM-Fe3O4NT showed character-

istic bands of aliphatic C–H stretching modes cen-

tered at 2912 and 2849 cm-1, amide C=O stretching

mode centered at 1638 cm-1, NH bending mode at

1541 cm-1 and a C–N vibration at 1106 cm-1 [36].

TGA analysis was further employed to estimate the

percentage of PAMAM grafting in the prepared

material by subtracting the mass loss percentage

observed in the PAMAM-Fe3O4NT system minus the

mass loss percentage measured in the GPTSM-Fe3-
O4NT precursor. Our results revealed a PAMAM

grafting percentage of 16.8 wt%, corresponding to a

dendrimer content of 24.3 lmol g-1. Further experi-

ments were carried out aimed at characterizing the

morphology and magnetic properties of the prepared

materials, as described in the following section.

Morphology and magnetic properties
of Fe3O4NT and PAMAM-Fe3O4NT

TEM analyses were employed to examine the mor-

phology of pristine and PAMAM-modified Fe3O4NT

materials (Fig. 3). According to TEM images, the

prepared materials exhibit nanotubular shapes with

Figure 1 Synthesis of

PAMAM-modified Fe3O4NT.
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average lengths of 280 and 286 nm, and average

diameters of 151 and 159 nm, for Fe3O4NT and

PAMAM-Fe3O4NT systems, respectively. The

dimensions of the prepared nanotubes are signifi-

cantly larger than the average diameter of PAMAM-

G3 (3.6 nm), thus enabling the functionalization of

Fe3O4NT on both internal and external nanotube

surfaces. However, the direct observation of the

organic moieties attached to Fe3O4NT was not pos-

sible to achieve considering that TEM resolution is in

the range of PAMAM size. An indirect evidence of

the partial coverage of internal nanotube cavities

with PAMAM moieties was obtained from nitrogen

adsorption–desorption isotherms as displayed in

Fig. 4. In the case of native Fe3O4NT, the adsorption

isotherm showed a type IV mesoporous profile with a

characteristic hysteresis loop at P/P0 = 0.45–1.0 of

H1-type, which is customarily associated to meso-

porous materials with uniform pores. In the case of

PAMAM-Fe3O4NT, the isotherm showed a similar

shape but revealed a decrease in the mesopore size

and surface area as compared to the pristine material,

thus suggesting a partial coverage of the nanotube

pore surface with PAMAM molecules, leading to a

wall thickness increase. Estimated pore diameters for

the Fe3O4NT and PAMAM-Fe3O4NT ranged between

19 and 33 nm, which correspond to suitable pore

sizes to allow the entrance and encapsulation of

medium to large organic compounds, such as SIL.

To assess the magnetic properties of Fe3O4NT and

PAMAM-Fe3O4NT materials, VSM magnetic hystere-

sis measurements were carried out at 290 K (Fig. 5).

The saturation magnetizations (Ms) of Fe3O4NT and

PAMAM-Fe3O4NT were found to be 67 and

59 emu g-1, respectively. Hysteresis loop measure-

ments demonstrated that magnetic nanotubes exhib-

ited a weak ferromagnetic behavior. Fe3O4NT and

PAMAM-Fe3O4NT presented remanent magnetiza-

tion (Mr) and coercivity (Hc), withMr values of 17 and

14 emu g-1 and Hc values of 260 and 240 Oe for Fe3-
O4NT and PAMAM-Fe3O4NT materials, respectively.

This values of remanent magnetization and coercivity

are typical of magnetite and maghemite [37, 38]. Sev-

eral authors have shown that coercivity is related to the

shape anisotropy of tubular structure and the mag-

neto-crystalline anisotropy of the particles [39] and for

Fe3O4 nanotubular materials Hc values in the range of

193–205 Oe have been reported [37, 40].

In summary, TEM analysis, nitrogen adsorption–

desorption experiments and VSM magnetic mea-

surements confirmed the nanometric size, nan-

otubular shape and magnetic behavior of Fe3O4NT

and PAMAM-Fe3O4NT materials, which is a valuable

Figure 2 XRD patterns, FTIR spectra and TGA profiles for

Fe3O4NT related materials.
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result to further examine the properties of these

systems as potentials carriers for drug encapsulation

and sustained release, as described next.

Drug adsorption kinetic studies

Drug adsorption kinetic studies were carried out to

examine the effect of PAMAM incorporation on the

drug encapsulation and release properties of Fe3O4-

NT using SIL as model drug compound. SIL is a

natural polyphenolic flavonoid with hepatoprotective

and antitumoral properties [41, 42]. This compound

is isolated from the plant milk thistle Silybum mari-

anum and has shown a strong efficacy in various

human cancer cell lines and also in several animal

models of cancer [43, 44]. However, the effectiveness

of this drug is seriously limited by its low solubility

in water, and low bioavailability after oral

Figure 3 TEM images and

size distribution data for

a Fe3O4NT and b PAMAM-

Fe3O4NT.

Figure 4 Nitrogen adsorption–desorption isotherms for a Fe3O4-

NT and b PAMAM-Fe3O4NT.
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administration. To overcome these drawbacks dif-

ferent experimental strategies have been assayed in

the past, such as the preparation of b-cyclodextrin
inclusion complexes, phospholipid complexes,

nanosuspensions, porous silica nanoparticles, lipo-

somes and microencapsulation in polymeric matrices

[45–50]. Nevertheless, despite the relative success in

this subject, some of these formulations are degraded

rapidly, do not produce sustained drug release or

have limited physical or chemical stability during

storage, which encourages the search for novel

nanocarriers for SIL and its derivatives, as described

in this work.

Kinetic profiles for SIL adsorption into Fe3O4NT

and PAMAM-Fe3O4NT materials were obtained by

registering the amount of drug adsorbed (mg g-1) at

different times during the course of 80–100 h, as

shown in Fig. 6. Experimental profiles revealed that

SIL encapsulation occurs at low rates and reached

equilibrium after 60 h of contact in both systems.

Kinetic parameters for the SIL adsorption were

obtained from fitting the experimental data to the

Figure 5 Magnetic hysteresis

measurements for a Fe3O4NT

and b PAMAM-Fe3O4NT.
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pseudo-first-order Lagergren’s model, as described in

following equation [10, 51]

Lagergren model qt ¼ qe 1� e�k1t
� �

ð1Þ

where qt and qe are the amount of adsorbed drug

(mg g-1) at the time t and at the equilibrium,

respectively, and k1 is the pseudo-first-order rate

constant (h-1). Fitting results revealed that both sys-

tems present similar pseudo-first-order rate constants

with values of 0.052 and 0.062 h-1 for Fe3O4NT and

PAMAM-Fe3O4NT materials, respectively. Addition-

ally, kinetic adsorption profiles revealed a favorable

effect in the drug-encapsulating capacity of Fe3O4NT

after PAMAM incorporation, with a maximum

amount of adsorbed SIL of 825 mg g-1 in the

PAMAM-modified system compared to 675 mg g-1

in the pristine material, representing a 22% drug-

loading increase. The measured SIL adsorption

capability of PAMAM-Fe3O4NT exceeded signifi-

cantly the performance of PAMAM-grafted alumina

and titania nanotubes that were recently synthetized

by us, which showed drug-loading capacities in the

range of 5–40 mg g-1 [26, 27], which is a promising

outcome for the use of Fe3O4NT and PAMAM-Fe3-
O4NT materials as platforms for the future design of

more efficient drug carriers for insoluble drugs such

as SIL.

Regarding the nature of the adsorption phenom-

ena, SIL interaction with pristine and PAMAM-

modified Fe3O4NT can take place through a combi-

nation of van der Waals, dipole–dipole and hydro-

gen-bonding interactions, involving the apolar, polar

and hydrogen donor/acceptor groups of SIL,

respectively. These interactions can occur on both the

internal and external surface of the nanotubular

materials. Nevertheless, considering the slow rate of

SIL adsorption, internal drug complexation is

expected to predominate over external association.

Drug release kinetic studies

In vitro drug release kinetic studies were performed

to obtain information about the characteristics of SIL

release from Fe3O4NT and PAMAM-Fe3O4NT mate-

rials. The accumulative percentage of drug released

from each nanomaterial during the course of 100 h is

reported in Fig. 7. Release kinetic data were adjusted

to two different mathematical models, namely first-

order and Gallagher–Corrigan models to account for

one-step and two-step release profiles, respectively

[52–54]. Best-fit parameters for each system are pro-

vided in Table 1.

First order
Mt

M1
¼ 100� eb�kt ð2Þ

where Mt=M1 is the cumulative drug release per-

centage at time t and at infinite, k isthe first-order

kinetic constant and b is a constant.

Gallagher� Corrigan

ft ¼ fB 1� e�k1t
� �

þ fmax � fBð Þ ek2t�k2t2max

1þ ek2t�k2t2max

� � ð3Þ

Figure 6 Drug adsorption kinetic profiles for SIL encapsulation

in Fe3O4NT and PAMAM-Fe3O4NT.

Figure 7 Drug release kinetic profiles for the exit of SIL from

Fe3O4NT and PAMAM-Fe3O4NT.
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where ft is the cumulative percentage of released

drug at a time t, fB is the fraction of drug released

during the first stage, k1 is the first-order kinetic

constant of the first stage of release, k2 is the kinetic

constant for the second stage of release, and t2max the

time to maximum drug release rate.

In both pristine and PAMAM-modified Fe3O4NT,

the release rate is higher at the initial portion of the

experiments, thus evidencing a strong influence of

the concentration of SIL in the bulk solution. This

result suggests that drug release is diffusion con-

trolled in both systems. In the case of Fe3O4NT,

experimental data followed a typical first-order

kinetics, corresponding to a one-step release of the

drug from this nanomaterial, with a kinetic constant

of k = 3.5 9 10-2 h-1. In the case of PAMAM-Fe3-
O4NT, release data were better fitted to a Gallagher–

Corrigan model, thus accounting for a two-stage

release process, with kinetic constants k1 = 0.78 and

k2 = 6.1 9 10-2 h-1. These results can be roughly

interpreted as the additive contribution of a fast ini-

tial release of SIL molecules from PAMAM moieties,

followed by a slow exit of the drug from the Fe3O4NT

matrix. At 5 h of release time, a 34% of encapsulated

SIL was liberated from Fe3O4NT material, whereas a

52% of the drug was released from PAMAM-Fe3O4-

NT. At 20 h of release, the exit profiles of Fe3O4NT

and PAMAM-Fe3O4NT materials intersect and equal

the amount of released drug at 53–57%. After this

time, the exit of the drug from PAMAM-Fe3O4NT

becomes slower than Fe3O4NT, thus suggesting that

PAMAM incorporation induced a more sustained

release of the remaining adsorbed drug in the nan-

otube framework (47–43%), which represents the exit

of 317 and 387 mg of SIL for Fe3O4NT and PAMAM-

Fe3O4NT materials, respectively. Thus, even though

the liberation of SIL occurs faster in the first stage of

release from PAMAM-Fe3O4NT, the performance of

this material for the sustained release of the second

half of the encapsulated drug is superior in the

PAMAM-modified material compared to pristine

Fe3O4NT.

Cell viability studies

In order to evaluate the cytotoxicity of magnetic

nanotube materials, standard Alamar Blue cell via-

bility assays were performed by using human

embryonic kidney 293 cell line. Figure 8 displays the

results of the cell viability assays, showing the per-

centage of cell survival versus the concentration of

magnetic Fe3O4NT and PAMAM-Fe3O4NT materials.

The results were compared with a positive control

(C?; 100% of cell viability), and Triton-treated cell

cultures as a negative control (C-), which were used

as reference systems for comparative purposes. The

results showed that both Fe3O4NT and PAMAM-

Fe3O4NT nanomaterials, caused a small decrease in

the cell proliferation in an independent concentration

manner, with cytotoxicity behaviors similar to other

magnetic nanoparticles [55–57], showing that these

Table 1 Kinetic models

equations and best-fit

parameters for the release of

SIL from pristine and

PAMAM-modified Fe3O4NT

System Model and parameters

SIL: Fe3O4NT Mt

M1
¼ 100� eb�kt

k (h-1) b

3.5 9 10-2 4.38

SIL: PAMAM-Fe3O4NT ft ¼ fB 1� e�k1t
� �

þ fmax � fBð Þ ek2 t�k2 t2max

1þek2 t�k2 t2max

� �

k1 (h-1) k2 (h-1) fB t2max (h)

0.78 6.1 9 10-2 47.3 41

Figure 8 Standard Alamar Blue cell viability assays for Fe3O4NT

and PAMAM-Fe3O4NT using embryonic kidney 293 cell lines.
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magnetic nanotubes are promising biocompatible

materials for drug delivery.

Conclusions

The synthesis of Fe3O4NT and PAMAM-Fe3O4NT

nanomaterials was carried out, leading to novel

PAMAM-modified materials with a substitution

percentage of 16.8%, which retained the nanotubular

morphology, magnetic properties and low cytotoxic-

ity of pristine Fe3O4NT materials. Drug adsorption

kinetic studies using the poorly soluble drug silibinin

revealed that PAMAM grafting induced a favorable

effect on the drug-loading capacity of Fe3O4NT by

increasing the amount of adsorbed drug from

675 mg g-1 in the pristine material to 825 mg g-1 in

the PAMAM-modified system. The drug adsorption

performance of Fe3O4NT and PAMAM-Fe3O4NT

materials largely exceeds the drug-loading capacity

of similar systems and constitutes a promising result

for future drug-delivery applications. Regarding to

drug release properties, PAMAM grafting induced a

more sustained release of the second half of the

adsorbed drug, while the first half is released faster

from the modified material compared to pristine

Fe3O4NT. The auspicious results discussed in the

present report constitute the initial efforts of our

group in designing novel PAMAM-modified mag-

netic nanomaterials with enhanced drug-loading

capacities for a diversity of insoluble therapeutics,

which will be addressed in our future contributions.
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