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ABSTRACT

A new type of acid-sensitive 100% hyperbranched polyacetals (HBPA) was

synthesized, which could be completely degraded into small molecules under

acidic environment and avoid the accumulative toxicity in vivo. The AB2

monomer was synthesized by 4-carboxybenzaldehyde and 2-bromoethanol. The

bulk polycondensation was carried out in vacuum environment to remove

water byproduct. The massive terminal aldehyde groups of HBPA were con-

jugated with mPEG-NH2 and doxorubicins to form amphiphilic acid-sensitive

polymer–drug conjugates (DOX-HBPA-PEG). The stability of the micelles of

DOX-HBPA-PEG was evaluated by DLS at different pH value in phosphate

buffer saline (PBS). The DOX release in vitro showed that the cumulative release

rate was 14.51% in pH 7.4 PBS after 24 h and the cumulative release rate was

48.56% in pH 6.0 PBS after 24 h. The results of cell viability of DOX-HBPA-PEG

and HBPA-PEG showed that the polymer–DOX conjugates were effective drug

delivery systems. The uptake process of DOX-HBPA-PEG by A549 cells showed

that the micelle was totally swallowed in 1 h later. The controllable drug release

nature, stability, biocompatibility and completely degradable structures (acid-

sensitive) make them to be promising drug delivery systems.

Introduction

Nowadays, numerous drug delivery systems have

been reported for delivering anticancer drugs to

tumors based on inorganic carriers of mesoporous

silica nanocapsules [1, 2], nanobubbles [3], carbon

nanotubes [4, 5] and Au nanoparticles [6, 7] as well as

organic carriers of nanoporous polymers [8], hyper-

branched polymer [9], dendrimers [10], polymer–

drug conjugates [11, 12] and polymer micelles [13].

Most of drug delivery systems are fabricated from

polymers or macromolecules. The biocompatibility,
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biodegradability and water solubility of polymers or

macromolecules were usually evaluated before use.

For drug delivery system, the macromolecules or

polymers cannot pass through the endothelium of

normal blood vessels [14]; at the same time, the

metabolism and excretion are pretty hard for

macromolecules or polymers. The rate of renal elim-

ination is inversely correlated with the molecular

weight of the polymers [15, 16]. The polymers need to

be degraded into small molecules and excreted via

kidney, otherwise resulting in accumulative toxicity

in vivo. Conversely, the small molecules are deliv-

ered systemically and consequently exhibit a non-

specific biodistribution, short plasma circulation

times and rapid systemic elimination [17]. These

properties avoid the accumulative toxicity in specific

normal tissues of polymers or macromolecules.

The polymers or macromolecules used for drug

delivery should be eliminated from the body, either

by excretion of non-biodegradable polymers or by

degradation of biodegradable polymers [18]. The

backbones of biodegradable polymer usually are

linked by ester bonds [19–22], ether bonds [23–27],

carbon–carbon bonds [28, 29] and amide bonds

[30, 31]. This type of polymer cannot be controllable

and rapidly degraded into small molecules in target

tissue or in vivo, resulting in long degradation time

and accumulative toxicity to normal tissues in vivo.

Although many drug delivery systems with partial

stimulated bonds or polymer can respond to the

change of environment, like temperature [32, 33], pH

value [34, 35], light [36, 37], redox-reduction reagent

[38, 39] and magnetic field [40, 41], most of polymers

or macromolecules for drug delivery systems cannot

be completely degraded into small molecules with

partial stimulated linker bonds of disulfide bond

[38, 42, 43], imine bond [29] and acetal bond [19, 42].

These linker bonds need to be repeat units in back-

bone of polymers or macromolecules for complete

degradation. The backbone with pH or glutathione

responsive bonds [44–47] can be completely degra-

ded into small molecule in tumor cells because of the

environment of tumor cells with low pH value and

high concentration of glutathione.

The perfect polymers or macromolecules in drug

delivery system for cancer therapy should be degra-

ded into small molecule in the environment of low

pH or high concentration of glutathione after deliv-

ering anticancer drugs to tumor cells. The polymers

or macromolecules cannot freely pass through the

cell membrane. Only small molecule drugs or

monomer can freely pass through the cell membrane

followed by blood stream to kidney to excrete via

urinary tract. So the completely degradable polymers

under low pH or glutathione can avoid the accumu-

lative toxicity of polymers or macromolecules in vivo.

In this paper, we synthetized 100% hyperbranched

polyacetals that can completely be degraded into

monomers with aldehyde and hydroxyl groups in

acidic environment in tumor cells. The hyperbranched

polyacetals possess massive terminal aldehyde groups

that can react with amino-terminated mono-

polyethylene glycol and DOX. The micelles of DOX-

HBPA-PEG were characterized by NMR, FTIR, SEC and

DLS. The properties of drug release and stability were

evaluated in vitro, and the cell viability and uptake

process were evaluated by A549 cell line in vitro.

Materials and methods

Materials

Doxorubicin hydrochloride (DOX�HCl) was pur-

chased from Aladdin Co. (China). Amino-terminated

monopolyethylene glycol (mPEG-NH2, Mw = 2000 -

Da) was purchased from Shanghai Yare Biotech, Inc.

The 4-carboxybenzaldehyde and 2-bro-moethanol, N,

N-dimethyl formamide (DMF) and tetrahydrofuran

(THF) were purchased from J&K Scientific Ltd. (Bei-

jing, China); CCK-8 and Hoechst Staining Kit were

purchased from Beyotime company. The pyridinium

camphorsulfonate (PCS) catalyst was synthesized

using a similar protocol to the literature [46].

Characterization

Fourier transform infrared spectroscopy (FTIR) was

performed on an MIR-NIR PerkinElmer, 1605 Series

spectrophotometer using a diamond attenuated total

reflectance accessory (ATR). Nuclear magnetic reso-

nance (NMR) measurement was taken on a Bruker

Avance 400 spectrometer (Bruker BioSpin, Switzer-

land) to collect the 1H and 13C spectra in DMSO-d6.

The average hydrodynamic radius of micelles was

measured by using a Zetasizer ZEN 3500 dynamic

light scattering (DLS) (Malvern instrument, UK). All

DLS measurements were taken with an angle detec-

tion of 173� at 25 �C. All data were averaged over two

measurements. All samples were filtered through
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0.45-lm filters to remove dust prior to use. AUV-2450

UV–Vis spectrophotometer (Shimadzu, Japan) was

used to determine the doxorubicin release rate of

micelle DOX-HBPA-PEG. Size exclusion chromatog-

raphy (SEC) measurement was taken on a system

equipped a Waters 515 pump with a flow rate of 0.5

mL min-1 in THF (HPLC grade) at 25 �C. Detectors

were including differential refractometer (Opti-

labrEX, Wyatt) and multiangle light scattering

detector (MALLS) equipped with a 632.8 nm He–Ne

laser (DAWN EOS, Wyatt). The refractive index

increments of polymers in THF were measured at 25�
Cusing an OptilabrEX differential refractometer.

ASTRA software (version 5.1.3.0) was utilized for

acquisition and analysis of data. Cell viability was

detected by M200 Pro NanoQuant (TECAN). The cell

uptake experiment was conducted by inverted fluo-

rescence microscope (Olympus IX73).

Synthesis of AB2 monomer 2-hydroxyethyl-
4-formylbenzoate

The synthesis route of AB2 is described in Scheme 1.

The 4-carboxybenzaldehyde (5.00 g, 33.3 mmol),

KOH (1.87 g, 33.3 mmol) and 2-bromoethanol (4.16 g,

33.3 mmol) were stirring overnight in 30 mL DMF

under 100 �C with reflux condensation in round-

bottom flask. The DMF was concentrated by evapo-

ration under a reduced pressure; then, 100 mL ethyl

acetate was added in DMF concentrated solution. The

ethyl acetate organic solution was washed three times

with NaHCO3 and then washed three times with
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Scheme 1 The synthesis route of 100% hyperbranched polyacetals conjugated with PEG and DOX.

9432 J Mater Sci (2017) 52:9430–9440



pure water. The organic solution of ethyl acetate was

concentrated under reduced pressure to yield the

yellowish liquid. The yellowish liquid was purified

by flash chromatography (1:1 hexane/EtOAc) to

supply 3.7 g AB2 monomer as clear oil (57% yield). IR

(KBr): m = 3449, 2960, 2837, 1707 cm-1. 1H NMR

(400 MHz, DMSO-d6, d): 3.78 (t, 2H, –CH2–), 4.42 (t,

2H, –CH2–), 5.00 (s, 1H, –OH–), 8.00 (d, 1H, –CH–),

8.12 (d, 1H, –CH–), 10.12 (s, 1H, –CHO–).

Polymerization of AB2 monomer to obtain
100% hyperbranched polyacetals

The polymerization reaction is shown in Scheme 1.

AB2 monomer 2-hydroxyethyl-4-formylbenzoate (3 g,

15.5 mmol) with 2% molpyridinium camphorsul-

fonate was added to Schlenk tube. The reaction was

vacuum degassing three times and carried out in

vacuum status under 60 �C. The polymerization

reaction was carrying out under vacuum pumping

interval 12 h to remove the water byproduct. Five

days later, polyacetals were dissolved to 2 mL THF

and then precipitated twice in methanol (78% yield,

white solid). IR (KBr): m = 3546, 2952, 2870,

1707 cm-1. 1H NMR (400 MHz, DMSO-d6, d): 3.86

(2H, –CH2–), 4.45 (2H, –CH2–), 5.80 (1H, –O–CH–O–),

7.56 (1H, –CH–), 8.00 (1H, –CH–), 10.02 (1H, –CHO–);
13C NMR (400 MHz, DMSO-d6, d): 63.75, 65.28 (–

CH2–), 100.88 (–O–CH–O–), 127.00, 130.14 (ArCH),

165.18 (C=O), 192.80 (–CHO–).

PEGylation of hyperbranched polyacetals
and synthesis of DOX-HBPA-PEG

HBPA (200 mg) and mPEG-NH2 (100 mg) were dis-

solved in DCM (10 mL) in 25-mL round-bottom flask

with Molecular Sieves. A few drops of acetic acid

dropped in flask. The reaction was carried out at

room temperature for 24 h. The reaction solution was

put into dialysis bag (MW = 3500) and then placed in

ethanol. 12 h later, put the dialysis bag into water and

change pure water three times. The solution of

HBPA-PEG was freeze-dried powder (60% yield). IR

(KBr): m = 2874, 1707, 1640 (–CH=N–) cm-1. 1H NMR

(400 MHz, DMSO-d6, d): 3.50 (4H, –CH2CH2O–), 3.86

(2H, –CH2–), 4.45 (2H, –CH2–), 5.80 (1H, –O–CH–O–),

7.56 (1H, –CH–), 8.00 (1H, –CH–), 8.36 (1H, –CH=N–),

10.02 (1H, –CH–); 13C NMR (400 MHz, DMSO-d6, d):

63.75, 65.28 (–CH2–), 100.88 (–O–CH–O–), 127.00,

130.14 (ArCH), 165.18 (C=O), 192.80 (–CHO–).

HBPA-PEG (130 mg) and DOX�HCl (25 mg) were

dissolved in DCM (10 mL) in 25-mL round-bottom

flask with Molecular Sieves. The reaction was carried

out at room temperature for 24 h. The reaction solu-

tion was put into dialysis bag (MW = 3500) and then

placed in DMF and change three times DMF solvent.

24 h later, put the dialysis bag into water and change

pure water three times. The micelle solution of DOX-

HBPA-PEG was reassembled by centrifugalization;

then, the supernatant was freeze-dried red powder.
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Figure 1 The 1H NMR spectrum of hyperbranched polyacetals in

DMSO-d6.
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Evaluation of stability, drug release of DOX-
HBPA-PEG and drug loading

The freeze-dried red powder of DOX-HBAP-PEG

(9 mg) was solubilized in pH 6.0 and pH 7.4 PBS,

respectively. The micelle of DOX-HBAP-PEG

(3 mg mL-1) was centrifuged, and the supernatant

was evaluated with the time passing at the condition

of pH 6.0 and pH 7.4 PBS. The drug release rate of

DOX from the micelle of DOX-HBAP-PEG was

measured by UV–Vis spectrophotometer at 496 nm.

The four parts of 3 mL micelle solution with pH 7.4

PBS were put into dialysis bag (MW = 1000); then,

the dialysis bags were put into pH 6.0 and pH 7.4

PBS, respectively. 3 mL dialysis solution outside

dialysis bag was taken out at every interval time;

then, add 3 mL fresh PBS to dialysis solution. The

eight solution samples which were taken out from

solution outside dialysis bag at eight points-in-time

were prepared to be measured. The experiments

Figure 3 The 13C–1H COSY

spectrum of hyperbranched

polyacetals in DMSO-d6.
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were carried out twice in parallel. The drug loading is

12% measured by UV–Vis spectrometer at 496 nm.

Cell viability in vitro

The cell viability of DOX-HBPA-PEG and HBPA-PEG

was evaluated using the Cell Counting Kit (CCK-8)

assay. The concentrations of DOX in micelle of DOX-

HBPA-PEG were 1, 5, 10 lg mL-1, and the concen-

trations of HBPA-PEG were 56, 112, 280 lg mL-1,

respectively. The Lung A549 cells were seeded in a

96-well culture plate at a density of 104 cells per well

and cultured in DMEM medium supplemented with

10% fetal bovine serum at 37 �C in a humidified

environment of 5% CO2 for 1 day. Thereafter, the

cells were incubated with DOX-HBPA-PEG and

HBPA-PEG for 24 and 48 h, respectively. 10 lL of

CCK-8 solution was added to each well and incu-

bated for further 1 h at 37 �C. The cell viability was

obtained by scanning with a microplate reader at

430 nm. The relative cell viability (%) was expressed

as a percentage of that of the control culture. The

experiments were carried out six times in parallel.

The results presented are the average data.
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Elution time (min)

HBPA-PEG HBPA

Figure 6 The elution time (t)-dependent SEC-RI curves of

polymer HBPA and HBPA-PEG with a flow rate of 0.5 mL min-1

in THF.
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Figure 7 The stability with time passing of DOX-HBPA-PEG in

PBS at different pH.

Table 2 The size of DOX-HBPA-PEG measured by dynamic

light scattering in PBS

DOX-HBPA-PEG

Time (h) pH 6.0 pH 7.4

Size (d.nm) PDI Size (d.nm) PDI

4 133 0.134 148 0.136

20 136 0.187 154 0.121

48 152 0.228 156 0.152

Table 1 The molecular weight of HBPA and HBPA-PEG

Sample Mw (g mol-1) Mn (g mol-1) PDI

HBPA 9100 6300 1.46

HBPA-PEG 13900 10400 1.34
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Cellular uptake assay

Lung A549 cells were seeded with a density of

5 9 104 per dish in 35 mm plastic microscopy dishes

and incubated overnight at 37 �C. Then, the A549

cells were treated with 0.25 mg mL-1 DOX-HBPA-

PEG micelles for 0 min, 15 min, 1 h, 4 h, respectively.

Then, the cells were fixed and stained by Hoechst

Staining Kit for 10 min, respectively, then gently

rinsed with PBS three times and observed with flu-

orescence microscope.

Results and discussion

Synthesis of AB2 monomer 2-hydroxyethyl-
4-formylbenzoate and 100% hyperbranched
polyacetals

The synthesis route of AB2 and 100% hyperbranched

polyacetals is described in Scheme 1. The character-

istic peak of –CHO– is showed at 10.12 ppm by 1H

NMR (Fig. 1) and the characteristic peak of –OH at

the wavenumber 3449 cm-1 by IR spectrum. The

crude material of 4-carboxybenzaldehyde can be

washed out by NaHCO3 water solution; then, the

product was purified by flash chromatography (1:1

hexane/EtOAc) to obtain pure AB2 monomer for

polycondensation reaction. The reaction of AB2

monomers was catalyzed by PCS in bulk polymer-

ization. The molar masses of polyacetalization are

increased as the removing the water byproduct. The

product of polyacetals was characterized by 1H, 13C

NMR spectra. The polyacetals characteristic peak of

OH obviously decreased compared to AB2 monomer,

meaning the acetal bond is continuously forming.

The acetal bonds are particular structure for the

polymer of polyacetals. The characteristic peak of –

O–CHO– is 5.80 ppm in 1H NMR, and the charac-

teristic peak of –O–CHO– is 100.88 ppm in 13C NMR

(Figs. 1, 2). The structure of polyacetals further con-

firmed by using 2D 13C–1H COSY spectra. The cross

dot of 100.88 ppm in 13C NMR and 5.80 ppm in 1H

NMR in Fig. 3 means the C–H correlation peak of

acetals (–O–C–O–).

0%

20%

40%

60%

80%

100%

120%

140%

Control

lortnocfo
ytilibaivllec

evitale
R

 24h
 48h

(a)

56 112 280

0%

20%

40%

60%

80%

100%

120%

Control

lortnocfo
yti libaivll ec

evital e
R

 24h
 48h

(b)

1 5 10

Concentration of HBPA-PEG ( μg⋅mL-1 )

Concentration of DOX in micelle  ( μg⋅mL-1 )

Figure 9 The cell viability of a HBPA-PEG (56, 112,

280 lg mL-1) and b DOX-HBPA-PEG micelle (8.3, 41.7,

83.3 lg mL-1) with different concentration at 24 and 48 h later.

0 5 10 15 20 25
0

10

20

30

40

50

60

X
O

D fo
et ar

e saele r
e vitalu

mu
C

Time (h)

pH 6.0
pH 7.4

Figure 8 The cumulative release rate of DOX from the micelle of

DOX-HBPA-PEG in PBS at the conditions of pH 7.4 and pH 6.0

(the experiments were carried out twice in parallel).

9436 J Mater Sci (2017) 52:9430–9440



PEGylation of hyperbranched polyacetals

The hyperbranched polyacetals were characterized

by NMR and FTIR. The signal of aldehyde proton

(10.02 ppm) is decreased, and the signal of imine

bond proton (8.36 ppm) clearly appeared, meaning

the PEG was conjugated with HBPA (Fig. 4). The

FTIR also demonstrated the imine bond (1640 cm-1)

is formed. The characteristic peak of –OH in HBPA is

disappeared, and the characteristic peak of imine

bond in HBPA-PEG is appeared (Fig. 5). The molec-

ular weight of HBPA-PEG and HBPA in Table 1

showed that two mPEG-NH2 molecules at least were

conjugated with HBPA. The shoulder peak further

confirms that more molecules of mPEG-NH2 were

conjugated with HBPA (Fig. 6 and Table 1).

The stability of DOX-HBPA-PEG

The amphiphilic polymer of DOX-HBPA-PEG was

evaluated by DLS in pH 7.4 and pH 6.0 PBS at dif-

ferent time. The size of DOX-HBPA-PEG did not

remarkable change over time at pH 7.4 PBS. To

simulate the tumor extracellular environment, we

evaluated the stability of micelle of DOX-HBPA-PEG

in pH6.0 PBS. Figure 7 showed the micelle display

Figure 10 Investigation of DOX-HBPA-PEG endocytosis by A549 cell at different time (blue channel: nucleuses were dyed by Hoechst

33258, red channel: DOX-HBPA-PEG).
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the double peak and the distribution is broader in pH

6.0 PBS. The results of DOX-HBPA-PEG measured by

dynamic light scattering (Table 2) further confirmed

that the micelle of DOX-HBPA-PEG was stable in

pH7.4 PBS. The data in Table 2 showed that the

polydispersity index (PDI) and size of the micelle of

DOX-HBPA-PEG obviously increased with the time

passing in pH 6.0 PBS and the PDI and size of the

micelle of DOX-HBPA-PEG did not clearly change

with the time passing in pH 7.4 PBS. It means the

micelle of DOX-HBPA-PEG was disrupted in acidic

environment and stable in physiological environment

in vivo.

Drug release of DOX-HBPA-PEG

The drug release property of DOX-HBPA-PEG was

evaluated at the condition of pH 7.4 and pH 6.0 in

PBS (Fig. 8). The micelle of DOX-HBPA-PEG was

stable in pH 7.4 PBS, and the drug release rate is 14%

24 h later. The micelle of DOX-HBPA-PEG was

unstable in pH 6.0 PBS, and the drug release rate is

48% 24 h later. The results of accumulated drug

release rate in pH 7.4 and pH 6.0 PBS showed the

drug of DOX was controllable released in acidic

environment.

Cell viability of HBPA-PEG and DOX-
HBPA-PEG in vitro

The cell viability of HBPA-PEG and DOX-HBPA-PEG

was evaluated by A549 cells in vitro at 24 and 48 h

later. The cell viability of HBPA-PEG with different

concentration did not change. The results of Fig. 9a

illustrated that the biocompatibility of HBPA-PEG

was pretty good, even the highest concentration of

HBPA-PEG is 280 lg mL-1. The decreased cell via-

bility of DOX-HBPA-PEG was typically responsive to

the increased DOX concentrations in micelle (Fig. 9b).

The results of cell viability in Fig. 9 illustrated the

polymer of HBPA-PEG have no toxicity compared to

polymer–drug conjugate of DOX-HBPA-PEG at the

same concentration. It means the cell apoptosis was

triggered by DOX.

Cellular uptake assay

To investigate the distribution of micelle of DOX-

HBPA-PEG in A549 cells, the nucleus were dyed by

Hoechst 33258 at 0 min, 15 min, 1 h, 4 h, respectively,

after being treated with 0.25 mg mL-1 DOX-HBPA-

PEG. The micelle of DOX-HBPA-PEG was swallowed

slightly by A549 cells at 15 min later in red channel

and merge channel. One hour later, the micelle of

DOX-HBPA-PEG totally overlapped with nucleus in

merge channel. These results in Fig. 10 further con-

firmed that the cell apoptosis was triggered by DOX.

Conclusions

Hyperbranched polyacetals is an acidic-sensitive

polymer which can completely degrade into small

molecule in acidic environment. We adopted a sim-

ple method to synthesize the 100% hyperbranched

polyacetals. The AB2 monomer 2-hydroxyethyl-4-

formylbenzoate was catalyzed by PCS with bulk

polymerization. The polymerization products of

polyacetals were modified by PEG-NH2 to form

amphiphilic polymer for drug delivery system. The

synthesis route was characterized by 1H, 13C NMR,
13C–1H COSY spectra and FTIR spectrum. The ter-

minal aldehyde groups of polyacetals were conju-

gated with DOX to form acidic-sensitive imine bonds.

The micelle of DOX-HBPA-PEG was very stable in

pH 7.4 PBS, and the DOX can be controllable released

at pH 6.0 PBS. The results of cell viability and uptake

confirm that the micelle of DOX-HBPA-PEG is an

effective drug delivery system for cancer therapy.

The controllable drug release nature, stability, bio-

compatibility and completely degradable structures

(acid-sensitive) make them to be promising drug

delivery systems.
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