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ABSTRACT

The evaluation of the stress field distribution of warp-reinforced 2.5D woven

composites using meso-scale voxel-based model is described. The idealized

geometry model is established by using measured parameters from the CT

image. Comparison between voxel-based finite element method and experi-

mental measurements is included. The results show that the proposed meso-

scale voxel-based method is capable of accurately predicting the mechanical

properties of warp-reinforced 2.5D woven composites, validated by the com-

parison of the initial modulus, max stress as well as the failure modes. Also, the

numbers of representative volume element have an important effect on

mechanical behaviors of warp-reinforced 2.5D woven composites.

Introduction

Angle-interlock (2.5D) woven fabric as reinforcement

in polymeric composites continues to expand [1, 2].

The ability to manufacture such materials is highly

influenced by the flexibility of the reinforcement (as

shown in Fig. 1), and their mechanical properties

depend largely on the details of the architectures. As

such, the obtained representative volume cells

(RVCs) are quite unique, and the resin zones between

yarns are highly irregular and complex. Many finite

element models exist which describe these RVCs

using a large number of tetrahedral elements;

however, it is difficult to guarantee the mesh quality

[3]. Further, models which predict the stiffness and

strength properties of textile composites are sensitive

to the assumed mesh type. In these cases, it is nec-

essary to develop a more simpler, universal and

reasonable mesh generating method.

As reviewed in the previous references, meso-scale

finite element analysis with an RVC is the main

method for simulating the mechanical properties,

such as stiffness, strength and damage initiation/

evolution [4–7]. The early representative model

seems to largely belong to Cox’s binary model [8].

Subsequently, based on the Cox’s binary model, the
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independent mesh method (IMM) [9] and the domain

superposition methods (DST) [10] are proposed.

Doubtlessly, it may provide a way to analyze the

mechanical behavior of large-scale components.

However, these early representations suffered from

an inability to simplify the structural details, and

thus, less accurate results are predicted. Also, these

models are difficult to express the local mechanical

behaviors and the full-field strain characteristics.

Recently, meso-scale finite element solid model has

been gaining popularity with the rapid development

of CAD and CAE software. For instance, Mahadik Y

et al. [11] developed a finite element model in terms

of the multi-element digital chain technique. Lu et al.

[12] evaluated the stress–strain and progressive

damage behaviors of 2.5D woven composites sub-

jected to uniaxial tension loading. Song et al. [13]

predicted the tensile and compressive progressive

damage process of 2.5D woven composites.

Unfortunately, current meso-scale finite element

solid method is not robust enough to ensure the

establishment of the geometrical model and the dis-

crete mesh generation. As is the case for calculation,

the required memory and run-time are also

enormous.

In order to overcome the above difficulties, some

regular mesh generating methods have been pro-

posed for textile composites. One of these methods,

widely used in the advanced numerical formulations,

is voxel meshing [14, 15]. This method is quite

straightforward to generate meshes of any complex

architectures, including 2D braided [16], 3D braided

[17], 2D woven [18] and 3D woven [19]. Also, several

authors used voxel meshes to simulate the damage

initiation and evolution of woven composites. For

instance, Doitrand et al. [18] evaluated the mechani-

cal behaviors of 2D plain woven composites using

voxel and consistent meso-scale models. Fang et al.

Width direction(Weft)

Thickness direction

Figure 1 Structural evolution

characteristics of angle-

interlock (2.5D) preform.
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[3] proposed the stress averaging technique to

smooth artificial stress concentrations of voxel-based

textile composites. These studies, however, are lim-

ited to extend to the simulation of warp-reinforced

2.5D structure. Hence, the understanding of the

structure–property relationships as well as the pro-

gressive damage behavior of warp-reinforced 2.5D

composite is not presented adequately.

The present work is aimed at establishing an ide-

alized meso-scale voxel-based model to calculate the

stress field distribution of warp-reinforced 2.5D

woven composites. The detailed outline of the work

is as follows. First, the microstructure of warp-rein-

forced 2.5D woven composites is derived in ‘‘Mi-

crostructure’’ section. Next, meso-scale voxel-based

finite element model is proposed in ‘‘Meso-scale

voxel-based finite element model’’ section. Subse-

quently, the mechanical theory is described in ‘‘Me-

chanical theory’’ section. The experimental details,

including the composite specimen preparation and

the test process, are presented in ‘‘Experimental

details’’ section. Then, the predicted results are

shown and compared with the experimental ones in

‘‘Results and discussion’’ section. Finally, some

valuable conclusions are summarized in ‘‘Conclu-

sions’’ section.

Microstructure

The weave style considered in this paper is a type of

2.5D woven reinforcement: warp-reinforced 2.5D

structure (see Fig. 2). The warp and weft are oriented

along the x-direction and y-direction, respectively. The

binderwarp interlockswith theweft layers through the

thickness (z-direction). Also, thewarp and binderwarp

arrange alternatelywitha certain ratio of 1:1 along the x-

direction. In this structure, warp remains straight to the

maximal degree so as to make the composite achieve

higher in-planemechanical properties. The architecture

of the undeformed composite is periodic in warp, weft

and thickness directions. The representative volume

cell (RVC) is markedwith black box in Fig. 2, as well as

its basic dimensions: A, B and C The structural param-

eters as manufacturer-specified parameters of preform

are thenumberof layers (n), thewarpdensity (Pwarp), the

Warpx

z
y

y

x

Weft
Binder Warp

(a)

(b)

(c)

x

z
RVC

RVC

A
C

B

A
Pweft

Pwarp Pbinder

Figure 2 Schematic diagram

of warp-reinforced 2.5D

woven composite and

definition of RVC.

Table 1 The detailed

manufacturing parameters of

the considered preform

Parameters Symbols Values

Number of layers n 8

Yarn density (tows/cm) Pwarp,Pweft,Pblinder 3, 3, 3

Yarn fineness (Tex) Texwarp;Texweft;Texblinder 800, 800, 200
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weftdensity (Pweft), thebinderwarpdensity (Pblinder), the

warp fineness (Texwarp), the weft fineness (Texweft) and

the binder warp fineness (Texblinder). These values are

summarized in Table 1.

Then, the carbon/epoxy composite specimens are

produced by using the process of resin transfer

molding (RTM), as shown in Fig. 3. The mechanical

properties of carbon fiber and epoxy resin are sum-

marized in Table 2 [20, 21].

For all the textile composites, there exist several

structural levels from yarns to preform and eventually

to the composite. In each level, there are many uncer-

tainly geometry variables which significantly influ-

ences the final composite behaviors. Therefore, basic

assumptions regarding the shape of the yarn cross

section and the yarnpath are required. In this paper, on

the basis of the microscopic CT image analysis

(Fig. 4a), the following assumptions are provided.

1. The path of binder warp is divided into two

parts: curve segment and line segment (see

Fig. 4b). Note that the curve segment keeps

intimate contact with weft.

2. The cross section of weft yarn is convex lens,

whereas that of both warp and binder warp is

rectangular, as shown in Fig. 4c.

3. The path of both warp and weft is straightened.

The dimension of a RVC is calculated as

A ¼ 2� 10

Pweft
; B ¼ 2� 10

Pwarp

¼ 2� 10

Pbinder

; C

¼ Twarp þ 2b ð1Þ

where Twarp mmð Þ is the thickness of single warp.

b mmð Þ is the minor semi-axis length of weft.

According to Fig. 4b, the geometrical relationship

is given by

lc ¼ rþ Twarp

2

� �
� h1; a ¼ r� sinh1;

b ¼ r� r� cosh1;

Sweft ¼ 4� r2 � h1 � 2 r� bð Þ � a;

ld � cosh2 ¼
A

2
� a� rþ Twarp

� �
� sinh1;

ld � sinh2 ¼ 4bþ Twarp ð2Þ

Reactor

Preform

Mould
Resin

Materials
recycling tank

Air Pump
Figure 3 The process of the

resin transfer molding.

Table 2 Mechanical parameters of constituents

Carbon T700-12 K [21]

(Warp, weft)

Carbon T300-3 K [22]

(Blinder warp)

Epoxy matrix

Longitudinal modulus (GPa) Ef
11 = 232 Ef

11 = 221 Em = 3.5

Transverse modulus (GPa) Ef
22 = 15 Ef

22 = 13.8 –

Longitudinal Poisson’s ratio mf12 = 0.28 mf12 = 0.2 –

Longitudinal shear modulus (GPa) Gf
12 = 24 Gf

12 = 9 mm = 0.35

Transverse shear modulus (GPa) Gf
23 = 5.03 Gf

23 = 4.93 –

Longitudinal tensile strength (MPa) Xf
lt = 4850 Xf

lt = 4850 Xm
lt = 80

Longitudinal compression strength (MPa) Xf
lc = 2470 Xf

lc = 2470 Xm
lc = 241

Shear strength (MPa) – Sm = 60
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where a mmð Þ is the major semi-axis length of weft.

The value of a
b is measured in terms of the actual

observation and here is equal to 4. r is the drawing

radius of the convex lens. h1 is the angle of the curve

segment of weft. h2 is the dip angle of the linear

segment of weft. lc mmð Þ and ld mmð Þ are the length

of the curve and linear segments, respectively.

Sweft mmð Þ is the cross-sectional area of weft.

The geometrical parameters of yarns are then

expressed by

Swarp ¼
Texwarp
dwarp � q

; Sweft ¼
Texweft
dweft � q

; Sbinder ¼
Texbinder
dbinder � q

;

Twarp ¼
Swarp
Wwarp

;Tbinder ¼
Sbinder
Wbinder

ð3Þ

where Swarp mmð Þ and Sblinder mmð Þ are the cross-

sectional areas of warp and binder warp, respec-

tively. Texwarp texð Þ, Texweft texð Þ and TexbinderðtexÞ
are the warp, weft and binder warp finenesses,

respectively. q g=cm3
� �

is the density of carbon

fiber, q ¼ 1:78 g=cm3. dwarp, dweft and dbinder are the

fiber volume fractions of warp, weft and binder

warp, respectively. Here, it should be noted that

the cross-sectional shapes of warp and binder

warp are rectangular, dwarp ¼ dbinder ¼ 0:785. The

cross-sectional shape of weft is nearly circular,

dweft ¼ 0:75 [22]. Tbinder ðmmÞ is the thickness of

single binder warp, which is equal to Twarp. Wwarp

and Wbinder are the width of warp and binder warp,

respectively.

By calculation, the corresponding geometrical

parameters are summarized in Table 3. Also, a care-

ful statistical analysis based on the CT image (Fig. 5)

is carried out for a comparison between experimental

data and predicted result.

Meso-scale voxel-based finite element
model

Warp-reinforced 2.5D woven composites RVC are

divided into a lot of regular 3D grid of voxels to

study the effective mechanical properties. In this

(c)

yx

z z

Wwarp

Twarp

Wblinder

a

(b)

(a)

Weft

Binder Warp

Tblinder

Warp

o

1mm

Figure 4 Detailed structural

information of warp-reinforced

2.5D woven composites: a real

yarn cross sections, b ideal

shapes of blinder warp, c ideal

shape of warp and weft.

Table 3 Geometrical parameters of RVC of warp-reinforced 2.5D

woven composites

Theoretical a(mm) b(mm) h1(�) h2 (�) ld (mm)

0.852 0.213 76.01 51.24 1.59

Experimental

Plane-1 (Mean) 0.85 0.22 76.61 49.02 1.56

Plane-1 (cv %) 1.57 1.54 3.61 3.52 3.91

Plane-2 (Mean) 0.85 0.21 76.92 50.21 1.52

Plane-2 (cv %) 1.32 1.39 3.25 3.11 3.79

Plane-3 (Mean) 0.86 0.23 76.24 50.42 1.55

Plane-3 (cv %) 1.49 1.50 3.31 3.23 3.95

Plane-4 (Mean) 0.85 0.22 76.59 50.31 1.53

Plane-4 (cv %) 1.36 1.35 3.12 3.01 3.72
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study, RVC voxel meshes are generated using Tex-

Gen software. The advantages of this methodology

are (1) generating quickly and automatically voxel

meshes; (2) assigning automatically the material

properties; and (3) providing the periodic mesh at the

boundaries. A voxel mesh schematic view of yarns

and matrix is shown in Fig. 6. However, a general

problem of the voxel mesh is that the non-orthogonal

interfaces appear stepped in nature. This phe-

nomenon cannot be avoided, but its influence can be

effectively reduced by refining the voxel mesh size.

When the mesh sizes are enough small, the compu-

tational time and cost increase greatly. Hence, the

mesh convergence study is crucial.

Undoubtedly, the fiber volume fraction has a first-

order effect on the mechanical properties of the

composites. Besides, Grail et al. [23] reported that the

maximum edge length of the voxel mesh element is a

key parameter which influences the final mechanical

behaviors, whereas the shorter edge is used only

where it is needed to precisely remodel the geometry

shape. In order to eliminate this factor, the cubic

voxel is used in most existing studies [24]. In this

way, the mesh size depends only on the length of the

voxel edge. Usually, the number of voxel mesh (Ntotal)

made of the linear hexahedral element is given by

Ntotal ¼ nx � ny � nz ð4Þ

The different edge lengths are then calculated as

Lx ¼
A

nx
; Ly ¼

B

ny
; Lz ¼

C

nz
ð5Þ

where nx, ny and nz are the numbers of the meso-scale

voxel mesh along the direction of warp, weft and

thickness, respectively. Lx, Ly and Lz are the edge

length of the meso-scale voxel mesh along the

Plane-1 Plane-2

Plane-3

Plane-4

(a)

(b) Plane-1 (c) Plane-2

(d) Plane-3 (e) Plane-4

Figure 5 Digital images of different cross sections obtained by CT.
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direction of warp, weft and thickness, respectively. In

this paper, the three alternative edge values of nx and

nz are selected, whereas the values of ny remain

constant, as shown in Fig. 7. It should be seen that the

increase in value of nz is chosen, independently,

resulting in a flatter voxel mesh. The fiber volume

fractions of the three models are summarized in

Table 4. Note that a finer discretization shows an

accurate value related to the yarn volume fraction.

This study is presented in the part of results and

discussion.

Moreover, the definition of the materials orienta-

tion of the element is crucial, especially for binder

warp. Figure 8 illustrates the material orientation of

(a) (b)

Figure 6 Meso-scale voxel-based RVC of warp-reinforced 2.5D woven composites: a yarns, b matrix.

(a)

(b) 30 40 11

x

z

(c) 40 40 22

(d) 60 40 33

Figure 7 Meso-scale voxel-

based model with different

voxel sizes.

Table 4 Fiber volume fraction of varying voxel mesh models

nx � ny � nz Fiber volume fraction of

warp (%)

Fiber volume fraction of

weft (%)

Fiber volume fraction of blinder

warp (%)

Fiber volume fraction of

RVC (%)

30 9 40 9 11 18.24 20.33 7.27 45.84

40 9 40 9 22 21.21 21.61 8.07 50.59

60 9 40 9 33 21.06 22.32 8.19 51.57

Experimental – – – 50.9

6820 J Mater Sci (2017) 52:6814–6836



binder warp. Clearly, the geometrical characteristics

of RVC are sufficiently described. More importantly,

RVC is not isolated from its adjacent RVC in the

composites. Thus, in the present work, the applied

periodic boundary conditions are carried out to

ensure the continuity of displacements on the oppo-

site faces of RVC. For the voxel meshes, applying the

periodic boundary condition is more straightforward

and easy. The detailed constraint equations of RVC

are described in Refs [25, 26].

In the existing studies, themechanical properties of

woven composites are usually predicted by 1 RVC. In

this study, the finite element models with different

numbers of RVCs subjected to axial (warp) and

transverse (weft) loadings are discussed, as shown in

Fig. 9.

Mechanical theory

Materials properties of matrix-impregnated
fiber bundles

For the RVC of warp-reinforced 2.5D woven com-

posites, all the yarns are thought to be the matrix-

impregnated fiber bundles, which are assumed to be

transversely isotropic. For the matrix-impregnated

fiber bundles (see Fig. 10), the stress increments in

the constituent fiber and matrix are correlated by the

bridging matrix as follows [27]:

drmi
� �

¼ Aij

� 	
drfj

n o
ð6Þ

where

dri
� �

¼ dr11;dr22;dr33;dr23;dr12;dr13f gT ð7Þ

drmi
� �

and drfi

n o
represent the matrix and fiber

stress increments, respectively. Aij

� 	
is the bridging

matrix, which is expressed by:

Aij

� 	
¼

a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 0 0 0
0 0 0 a44 0 0
0 0 0 0 a55 0
0 0 0 0 0 a66

2
6666664

3
7777775

ð8Þ

where

a11 ¼ Em


Ef
11

a12 ¼ a13 ¼ Sf12 � Sm12
� �

a11 � a22ð Þ



Sf11 � Sm11
� �

a21 ¼ a31 ¼ a23 ¼ a32 ¼ 0

a22 ¼ a33 ¼ 1


2 1þ Em



Ef
22

� �
a44 ¼ 1



2 1þ Gm



Gf

23

� �
a55 ¼ a66 ¼ 1



2 1þ Gm



Gf

12

� �
ð9Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

In the above formulas, Em and Gm are the elastic

and shear modulus of matrix, respectively. Ef
11 and

Ef
22 are the longitudinal and transverse elastic

3

3 1

31

1

θ2

θ1

Figure 8 Illustration of local

orientation of binder warp in

voxel-based model.
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modulus of fiber, respectively. Gf
12 and Gf

23 are the

longitudinal and transverse shear modulus of fiber,

respectively.

When the bridge matrix is given, the compliance

matrix of the matrix-impregnated fiber bundles is

defined as follows:

Sij
� 	

n
¼ df Sfij

h i
þ dm Sfij

h i
Aij

� 	� �
df I½ � þ dm Aij

� 	� ��1

ð10Þ

where Sfij

h i
and Smij

h i
represent the fiber and matrix

compliance matrices, respectively. I½ � is a unit matrix.

df and dm are the fiber and matrix volume fraction,

respectively. And the relation is df þ dm ¼ 1.

Furthermore, the relation between the compliance

matrix and the engineering constants of the matrix-

impregnated fiber bundles is given by

x

y

x

y

RVC RVC

x

y

RVC

x

y

RVC

RVC
x

y

(a)

(b)

Figure 9 Longitudinal (warp) tensile (a) and transverse (weft) tensile (b) with different RVC numbers.

L(1) T(2)
Z(3)

Figure 10 The schematic of a strand yarn.
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S½ � ¼

1

EL
� mLT

ET
� mLZ

EZ
0 0 0

� mLT
EL

1

ET
� mTZ

EZ
0 0 0

� mLZ
EL

� mTZ
ET

1

EZ
0 0 0

0 0 0
1

GTZ
0 0

0 0 0 0
1

GLT
0

0 0 0 0 0
1

GLZ

2
666666666666666664

3
777777777777777775

ð11Þ

Also, the strength values of the matrix-impreg-

nated fiber bundles are obtained by [28, 29]:

FtL � X
f
ltVf ð12Þ

FcL � X
f
lcVf ð13Þ

FtT ¼
1þ Vf 1

.
gy � 1

� �
Kmt

Xm
lt ð14Þ

FcT ¼ 3� 7ð ÞFtT ð15Þ

S ¼
1þ Vf 1=gs � 1

� �
Kms

Sm ð16Þ

In the above equations,

FtL and FtT are the longitudinal and transverse

directional tensile strengths of the matrix-impreg-

nated fiber bundles, respectively.

FcL and FcT are the longitudinal and transverse

directional compression strengths of the matrix-im-

pregnated fiber bundles, respectively.

gy and gs are empirical coefficients.

Kmt and Kms are the tensile and shear stress con-

centration coefficients of matrix, respectively.

Sm is the shear strength of matrix.

By calculation, the mechanical properties of the

matrix-impregnatedfiber bundles are listed in Table 5.

Progressive damage model

Usually, the failure mechanisms of 2.5D woven

composites mainly include three different types,

namely the yarn breaking, matrix cracking and

interface debonding [30]. In this paper, the different

damage modes including yarns’ longitudinal failure

(L direction as shown in Fig. 10), yarns’ transverse

failure (T, Z directions as shown in Fig. 10), yarns’

shear failure (LT, LZ and TZ directions) and matrix

cracking are considered. The interface between yarns

and matrix is assumed to be excellent, and the

interface debonding is ignored. 3D Hashin failure

criterion [31] and maximum stress criterion are

employed to define the damage initiation of yarns

and matrix, respectively. The corresponding initia-

tion criteria relating to different damage modes are

expressed as follows:

Yarn tensile failure in L direction (rL � 0):

dtfL ¼ rL
FtL

� �2

þ b
rLT
SLT

� �2

þ b
rZL
SZL

� �
� 1 ð17Þ

Yarn compression failure in L direction (rL\0):

dcfL ¼ rL
FcL

� �2

� 1 ð18Þ

Yarn tensile and shear failure in T and Z directions

(rT þ rZ � 0):

dtfTðZÞ ¼
rL þ rZ

FtT

� �2

þ
r2TZ � rLrZ
� �

ðSTZÞ2

þ rLT
SLT

� �2

þ rZL
SLZ

� �2

� 1 ð19Þ

Table 5 Mechanical

properties of matrix-

impregnated fiber bundles

Warp Weft Blinder Warp Warp Weft Blinder Warp

EL(GPa) 173.79 166.20 165.59 GLZ(GPa) 8.12 7.24 5.27

ET (GPa) 10.70 10.18 10.15 GTZ(GPa) 3.70 3.54 3.64

EZ (GPa) 10.70 10.18 10.15 FtL(MPa) 3807 3637 3807

mLT 0.41 0.39 0.3 FcL(MPa) 1939 1837 1939

mLZ 0.41 0.39 0.3 FtT(MPa) 70 66 70

mTZ(GPa) 0.39 0.39 0.4 FcT(MPa) 223 210 223

GLT (GPa) 8.12 7.24 5.27 S(MPa) 109 104 109

J Mater Sci (2017) 52:6814–6836 6823



Yarn compression and shear failure in T and Z

directions (rT þ rZ\0):

dtfTðZÞ ¼
1

FcT

FcT
2STZ

� �2

�1

 !
ðrT þ rZÞ þ

rT þ rZð Þ2

ð2STZÞ

þ
r2TZ � rTrZ
� �

ðSTZÞ2

þ rLT
SLT

� �2

þ rZL
SLZ

� �2

� 1

ð20Þ

In the above equations,

SLT, SLZ and STZ are LT, LZ and TZ shear strengths

of yarns, respectively.

b is the contribution factor in each failure mode.

Matrix tensile failure criterion (rtm � 0):

dtm ¼ rtm
Ftm

� �2

� 1 ð21Þ

Matrix compression failure criterion (rcm\0):

dcm ¼ rcm
Fcm

� �2

� 1 ð22Þ

where Ftm and Fcm are the tensile and compression

strength of matrix, respectively. rtm and rcm are the

max tensile and compression stress of matrix,

respectively.

When the damage initiation of yarns/matrix is

reached, the damage development will follow the

damage evolution law. Note that the damage vari-

ables dI(L, T, Z) are introduced to define the damage

modes of L, T and Z directions for yarns and matrix.

When the constituents of woven composites fail, the

element dissipated energy equals its elastic energy.

1

2
eI;frI;f l

3 ¼ Gll
2 ð23Þ

where l is the characteristic length of the element. rI;f ,

eI;f and GI are the equivalent peak stress, failure

equivalent strain and facture energy density of failure

mode I, respectively. Moreover, each damage mode

can be described by its corresponding equivalent

displacement and stress, which are listed in Table 6.

The damage evolution law is given by

dI ¼ 1�
Xli

eq X
If
eq � XI

eq

� �

XI
eq X

If
eq � Xli

eq

� � ;
I ¼ Lt;Tt;Zt; Lc;Tc;Zc;Mt;Mcð Þ ð24Þ

where Xli
eq and X

if
eq are the initiation and full damage

equivalent displacement of failure mode I, respec-

tively. Xli
eq and X

if
eq are obtained by the following

equations:

Xli
eq ¼ XI

eq=
ffiffiffiffiffi
uI

p ð25Þ

Xlf
eq ¼ 2GI=r

li
eq ð26Þ

Here, uI is the value of initiation damage criteria.

GI and rlieq, respectively, denote the fracture energy

Table 6 Equivalence displacements and stresses corresponding to different failure modes

Type Direction Failure modes Equivalence displacement Equivalence stresses

Yarns L rL � 0(Tensile)
XLt

eq ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eLh i2þbe2LT þ be2ZL

q a
l rLh i eLh i þ brLTeLT þ brLZeLZð Þ

.
XLt

eq

a

rL � 0(Compression) XLc
eq ¼ l �eLh ia l �rLh i �eLh i

.
XLc

eq

a

T rT � 0(Tensile)
XTt

eq ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTh i2þbe2LT þ be2ZL

q a
l rTh i eTh i þ brLTeLT þ brZTeZTð Þ

.
XTt

eq

a

rT � 0(Compression) XTc
eq ¼ l �eTh ia l �rTh i �eTh i

.
XTc

eq

a

Z rZ � 0(Tensile)
XZt

eq ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eZh i2þbe2TZ þ be2LZ

q a
l rZh i eZh i þ brTZeTZ þ brZLeZLð Þ

.
XZt

eq

a

rZ � 0(Compression) XZc
eq ¼ l �eZh ia l �rZh i �eZh i

.
XZc

eq

a

Matrix – – Xmt
eq ¼ l eLj j l eLj j rLj j

.
Xmt

eq

Xmc
eq ¼ l eZj j l eZj j rZj j

.
Xmc

eq

a xh i ¼ xþ xj jð Þ=2
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density and initiation damage equivalence stress of

failure mode I. The initiation equivalence stress rlieq
can be calculated from the following equation:

rlieq ¼ rIeq=
ffiffiffiffiffi
uI

p ð27Þ

where rIeq is the equivalence stress as expressed in

Table 6. It is obvious that the damage evolvement

equation is associated with the element strain,

element characteristic length and material fracture

density.

In the present paper, Murakami-Ohno damage

model is used to characterize the damage process of

yarns and matrix. Moreover, three principal damage

variables are used to express the damage states. It is

defined as:

D ¼
X

Dini � ni i ¼ ðL;T;ZÞ ð28Þ

FE model of RVC

Periodic boundary condition

Coupling increment displacement L

Caculating element stress and strain

Matrix element 
damage

Yarn element 
damage

Updating damage variables

Updating tangent stiffness matrix

Updating the stress of integral points

Reaching final increment

End

Yes

No No

Yes

Yes

No

Figure 11 The flowchart of

progressive damage analysis.

(a)

25mm

6.7 mm
13.4 mm

25 mm

(b)

(c)

Figure 12 Tensile test setup

(a), longitudinal samples

(b) and transverse samples (c).
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where Di and ni are the principal damage value and

the principle unit vector of damage tensor, respec-

tively. It should be noted that combining with dI(L, T,

Z), Di is described as:

For yarns at L, T and Z directions:

DL ¼ max dLt; dLcð Þ
DT ¼ max dTt; dTcð Þ
DZ ¼ max dZt; dZcð Þ

ð29Þ

For matrix:

DL ¼ DT ¼ DZ ¼ max dRt; dRcð Þ ð30Þ

By definition, the effective stress r	 is expressed as:

r	 ¼ 1

2
I � Dð Þ�1
rþ r 
 I � Dð Þ�1

� �h i
¼ MðDÞ : r

ð31Þ

where r is the undamaged stress.

In order to introduce the damage variable into the

undamaged stiffness matrix, Cordebois–Sidoroff

energy assumptions [32] are used, and the detailed

damage stiffness matrix C(D) can be expressed as

follows:

where Cij, (i,j = L, T, Z), is the undamaged stiffness

matrix item.

After generating the meso-scale voxel-based finite

element models, a commercial finite element software

ABAQUS/Standard is employed to investigate the

mechanical responses of warp-reinforced 2.5D woven

composites. In order to implement the progressive

damage model as mentioned above, a user-defined

material subroutine (UMAT) is complied in ABA-

QUS. Three state damage variables (SDVs), including

SDV1 (L directional damage), SDV2 (T directional

damage) and SDV3 (Z directional damage), are set in

UMAT. Here, note that the state damage variables are

controlled by the damage equivalent strains and

evolved from 0 to 1 irreversibly after the failure ini-

tiation. The detailed flowchart of the simulation

process is shown in Fig. 11.

Experimental details

Figure 12 shows the tensile specimens and the test

equipment. For the tensile samples, each side is

affixed to an aluminum strengthening plate with the

epoxy glue film to protect the specimen from the

damage that caused by the rigid test fixture during

the test process. For the tensile tests, the standard test

method ASTM D3039 is used. Here, it should be

noted that the width of all the longitudinal (warp)

specimens is 25 mm, whereas the width of the

transverse (weft) specimens is specific values but

according to the number of RVCs. Specimen widths

include 6.7, 13.4 and 25 mm, which correspond to 1

RVC, 2 RVCs and 4 RVCs, respectively. Moreover, to

validate the accuracy of the simulation, it is more

worth mentioning that the digital image correlation

CðDÞ ¼

ð1�DLÞ2C11 ð1�DLÞð1�DTÞC12 ð1�DLÞð1�DZÞC13 0 0 0

ð1�DTÞ2C22 ð1�DTÞð1�DZÞC23 0 0 0

ð1�DZÞ2C33 0 0 0

2ð1�DLÞð1�DTÞ
2�DL �DT

� �2

0 0

2ð1�DLÞð1�DZÞ
2�DL �DZ

� �2

0

2ð1�DTÞð1�DZÞ
2�DT �DZ

� �2

2
666666666666664

3
777777777777775

ð32Þ

Table 7 Predicted elastic constants of the three voxel models with

different mesh numbers

nx � ny � nz Ex (GPa) Ey (GPa) Ez (GPa)

30 9 40 9 11 62.72 65.19 13.82

40 9 40 9 22 70.58 70.24 14.11

60 9 40 9 33 71.24 70.59 13.59

Experiment 69.16 – –
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technique (DIC) is employed to monitor the strain in

the composite components under transverse (weft)

tensile loading. This technique is becoming a popular

tool in the field of the structural mechanics because of

the low price and availability of the imaging equip-

ment and the correlation software.

All the tests are conducted by SHIMADZU AG-

250KNE universal material machine in the room

temperature. Each test result in this paper is the mean

of three repeats.

Results and discussion

Elastic properties

Three independent boundary conditions in the form

of the uniform displacements are carried out to

obtain the elastic modulus of voxel-based RVCs with

different mesh numbers, as shown in Table 7.

Apparently, the computed initial modulus of nx �
ny � nz ¼ 40� 40� 22 and nx � ny � nz ¼ 60� 40�
33 is in good agreement with the experimental data.

This is sufficient to ensure that the voxel mesh has a

minor influence on the elastic modulus as long as the

yarn volume fraction is correctly guaranteed. The

detailed supporting results can also be found in [18].

Figure 13 illustrates the stress field distribution at

strain level of 1.0% under the longitudinal (warp)

loading. The local stress concentrations (white box in

the binder warp and matrix) are clearly observed in

all the voxel-based models, regardless of the voxel

size. They are even more marked for the finer

meshes. However, this phenomenon does not appear

in the warp and weft zones. This is attributed to the

step-like of the binder warp trajectory and the load-

ing direction. Also, it is interesting to observe that for

the two finest meshes, the stress fields are very sim-

ilar. In other words, if the mesh size achieves a cer-

tain level, the local stress field does not vary

obviously. Hence, in order to reduce the computing

time, the mesh type with nx � ny � nz ¼ 40� 40� 22

will be used in the following comparisons.

Tensile strength and failure behavior

Global stress–strain curves

Figure 14 illustrates the comparisons of the typical

stress–strain curves between simulation and experi-

ment under longitudinal (warp) loading. For both 1

RVC and 2 RVCs, the simulated initial modulus and

max stress are essentially in accordance with the

experimental ones. The margin of error is a range of

0.1%–3%. Also, the stress–strain curves show an

obvious size dependency. The stress–strain curve of 2

RVCs exhibits significantly nonlinear characteristics,

whereas that of 1 RVC is nearly linear. This difference

indicates the length-scale effect, resulting in a varying

progressive damage behavior. However, as com-

pared to the predicted results, the stress–strain curve

displays significantly nonlinear characteristic at

Yarns

Matrix

30 40 11 40 40 22 60 40 33

Figure 13 Stress distribution in meso-scale voxel-based RVC at strain level of 1.0% under longitudinal (warp) loading.
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nearly e = 0.2%, indicating that the main failure

mechanisms occur. Also, the predicted stress–strain

curve tendency is distinct differences from the

experimental one after the strain of 0.4%. This can be

attributed to the reasonability of the stiffness reduc-

tion method when damage is activated [33]. There-

fore, the development of this model still needs

progress.

In addition, Fig. 14 gives the stress nephogram at

the point of the max stress. It is found that for 1 RVC

and 2 RVCs, the yarn stress distribution at the edges is

almost the same, while that of matrix at the edges

displays significant difference. The analytical results

obtained from the strain distribution are very close to

that of the stress distribution, as shown in Fig. 15. This

in fact demonstrates directly the effect of RVC num-

bers. Thus, its influence on the stress/strain

distribution and the failure behaviors cannot be

ignored. Figure 14 also illustrates the damage initia-

tion points of yarns and matrix for 1 RVC and 2 RVCs.

Here, it can be seen that the predicted stress–strain

curves increase linearly until the initiation damage.

Figure 16a, b presents measured and predicted

strain contours of different width of the specimens

under transverse tensile loading, respectively. The

strain distribution contours are obtained near the

strain level of 0.2% and 0.8% before fracture. Clearly,

both DIC and voxel-based models successfully collect

the strain fields. Furthermore, the predicted strain

field is similar to DIC image. Compared with the

result of voxel-based model, it can be concluded that

the low strain areas are located in the weft, whereas

the high strain regions occur mainly in the binder and

resin zones.

Matrix initial damage

Binder initial damage Binder initial damage

Matrix initial damage

Figure 14 The comparisons

of the typical stress–strain

curves between simulation and

experiment under longitudinal

(warp) loading.
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Figure 16c shows the experimental and numerical

stress–strain curves of the transverse tension coupon

specimens. Clearly, the numerically predicted moduli

match well with the experimental results, indicating

the capability of simulating the elastic response. Also,

the transverse tensile strength exhibits an obvious

size dependency, as increasing the specimen width

results in a higher value.

Damage development

In order to make a better interpretation for the

damage development, the damage nephograms at

three key strain points under warp tension are chosen

for the further study. For 1 RVC (see Fig. 17), the

damage onset first occurs clearly in the region of

binder warp and neighboring matrix at e = 0.86%.

With the external load reaching the peak value

(e = 1.20%), the matrix and binder warp damage

zones become larger. Also, the discrete damage

points occur initially in warp. Afterward, the crack

extends gradually. Consequently, the final failure of 1

RVC under warp tensile direction is due to the warp

and binder warp longitudinal breakage.

Figure 18 displays the detailed damage develop-

ments of 2 RVCs under warp tensile direction. The

initial damage, damage evolution and final failure of

2 RVCs are similar to those of 1 RVC. However, as

compared to 1 RVC, the initial damage of 2 RVCs

occurs early at e = 0.47%. The damage onset highly

influences the local stress distribution. Thus, the

nonlinear stress–strain responses of 2 RVCs are more

apparent as mentioned earlier. Moreover, the damage

of binder warp of 2 RVCs is more catastrophic at the

max loading point (e = 1.19%), and the fracture sur-

face of 2 RVCs is different from that of 1 RVC.

Local response and failure mechanism

To further characterize the local response and the

failure mechanism, the typical damage elements,

whose final state damage variable is maximum, are

selected. Here, it should be noted that the stress ratio,

namely the stress in yarns/matrix versus the pre-

dicted strength value (Table 5), is plotted as a func-

tion of the global axial strain. For 1 RVC, the axial

stress/strength (S11=F
t
m) histories of the typical

matrix damage elements, including E33212 (next to

binder warp), E68746 (next to warp) and E34655 (next

to weft), are shown in Fig. 19a. Clearly, when the

stress ratios are equal to 1 at the strain level of 0.68%,

the matrix damage (Element 33212) is found to initi-

ate. Then, the stresses increase because of the damage

evolution law and eventually decrease when fracture

energy is reached. The result is also indicated in Ref.

[34]. Moreover, the matrix failure elements first occur

next to binder warp. In the matrix failure elements

next to weft and warp, the max value point of the

stress ratio is closer to the peak loading. In brief, the

matrix element failure occurs almost neighboring the

yarns. For warp of 1 RVC, the axial stress/strength

(S11=Ftw) and the shear stress/strength (S12=Sw) are

considered, as shown in Fig. 19b. As observed, the

max value of the axial stress/strength ratio of warp is

close to 0.8, whereas the shear stress/strength ratio of

warp only increases immediately after the max

loading. The result indicates that for warp of 1 RVC,

the effect of the axial stress is much more significant

(a) (b) 

Figure 15 Strain distribution in meso-scale voxel-based RVC at the point of the max stress under longitudinal (warp) loading.
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than the shear stress. For binder warp of 1 RVC, the

axial stress/strength ratio (S11=Ftb) is considered as

shown in Fig. 19b. It is found that the max value of

the axial stress/strength ratio of binder warp is close

to 0.6. Also, the stiffness descends slightly after the

breakage initiation of binder warp. For yarns, there is

no denying that the final fracture surface is the

comprehensive effect of the warp axial stress, the

warp shear stress and the binder warp axial stress.

Also, for 2 RVCs, the typical yarn and matrix

damage elements are selected, respectively, and the

corresponding stress/strength versus global strain

curves are described in Fig. 20. In comparison with 1

RVC, the local stress distribution of 2 RVCs has two

Tensile direction
(a) DIC image 

(b) Prediction

(c) Stress-strain curve

Figure 16 Mechanical behaviors under transverse (weft) loading, a DIC strain image, b predicted strain contours and c the comparisons

of the typical stress–strain curves between simulation and experiment.
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ε=0.86% ε=1.20% (Max loading point) ε=1.25% 

Yarns

Matrix

Figure 17 Progressive damage process of 1 RVC under uniaxial tension in warp direction.

ε=0.47% ε=1.19% (Max loading point)

Yarns

Matrix

ε=1.24% 

Figure 18 Progressive damage process of 2 RVCs under uniaxial tension in warp direction.

E34655

E68746E33212

E18251

E27251

(b) (a) 

Figure 19 Mechanical responses under longitudinal (warp) loading of 1 RVC, a elements in yarns, b elements in matrix.
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obvious differences. Namely, (1) the stress/strength

ratio of the matrix elements reaches the max value

before e = 0.8%, which is much smaller than the

point of the max loading; (2) the warp breakage ini-

tiation occurs near e = 0.8%, which is also before the

point of the max loading. This phenomenon results in

a nonlinear behavior of S11=Ftw versus strain curve.

The above stress/strength history analysis further

confirms that the size effect plays an important role

on the failure behaviors under warp tensile loading.

The final damage morphologies got from numeri-

cal simulation and experiment under warp tensile

loading are compared in Fig. 21. According to the

experiment result, the fracture plane is relatively

smooth, and the final failure modes mainly occur in

the inclined segments of binder warp, warp and

matrix zones. This result is most consistent with the

numerical one, regardless of the number of RVC.

Meanwhile, the shear modes in warp of 2 RVCs are

more significant as compared to that in warp of 1

RVC. Hence, further work will be conducted to pre-

dict the failure behaviors of different numbers of

RVCs.

Figure 22 displays the experimental and numeri-

cal displacement contours under transverse (weft)

loading. Clearly, the predicted results obtained from

(b) (a) 

E69552

E68746E41949

E27488
E50433

Figure 20 Mechanical responses of 2 RVCs under longitudinal (warp) loading, a elements in yarns, b elements in matrix.

(a) 

(b) 

Warp fracture

Binder warp 
fracture

Binder warp failureWarp failureWarp damage

Binder warp 
fracture

Warp fracture

Warp damage
(shear and tensile)

Binder warp damage
(tensile)

Warp damage
(shear and tensile)

Binder warp damage
(tensile)

matrix fracture

Figure 21 Comparison of failure morphology between finite element simulation and experiment under longitudinal (warp) loading.
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the voxel-based finite element model correlate the

DIC image very excellently. Namely, the displace-

ment isolines in these results are non-uniform, not

surprisingly because the heterogeneity of the meso-

structure is considered in the voxel-based model.

This verifies the reliability of the voxel-based model

to some extent. Also, under transverse loading, the

numbers of RVC are insensitive to the displacement

contours. Moreover, combined with the final dam-

age morphologies (Figs. 22b, 23), it can be concluded

that the strength of the transverse specimens is

mainly decided by the tensile strength of weft and

matrix.

Conclusions

The main objective of this study is to develop meso-

scale voxel-based finite element model to predict the

stress distribution of warp-reinforced 2.5D woven

composites subjected to the axial tensile loading. For

comparison, experimental tests are carried out. Based

on the detailed analysis, the following conclusions

are summarized:

1. From the comparisons of the stress distribution

under longitudinal (warp) and transverse (weft)

loadings, the predicted initial modulus, max

stress and failure modes agree well with the

experimental ones.

2. Under longitudinal tensile loading, the ultimate

strength of warp-reinforced 2.5D woven compos-

ites is mainly influenced by the tensile strength of

matrix, the tensile strength of binder warp and

the tensile/shear strength of warp. However,

under transverse tensile loading, the ultimate

strength of warp-reinforced 2.5D woven compos-

ites is mainly decided by the tensile strength of

weft and matrix.

3. The developed meso-scale voxel-based finite ele-

ment model is capable of accurately predicting

the mechanical properties of warp-reinforced

2.5D woven composites subjected to longitudinal

(warp) and transverse (weft) tensile loading.

Moreover, the geometrical model and the discrete

mesh are simple and are easily implemented into

the ABAQUS software through a user-defined

element. Furthermore, meso-scale voxel-based

finite element model possibly extends to other

(a) prediciton 

(b) Experim
ent

6.7mm 13.4mm

25mm

25mm13.4mm

Figure 22 Failure morphology under transverse (weft) loading, a numerically predicted in-plane displacement contours, b experimental

failure morphology and in-plane displacement contours.
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textile structural composites. As for the future

studies, it is desirable to continue with an effort to

address some of its limitations, including the

damage theory and the length-scale effect. These

insights can be extremely useful in dealing with

the textile structural composites with arbitrarily

shaped components subjected to complex

loadings.
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