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ABSTRACT

The possibility of creep cavity formation at subboundaries in austenitic stainless

steels is analysed. It is demonstrated that such nucleation is thermodynamically

feasible. A minimum stress must be exceeded in order to create cavities. The

nucleation is assumed to take place where subboundaries on one side of a

sliding grain boundary meet subgrain corners on the other side (double ledge

models). Alternative cavitation positions can be found where particles meet

subboundaries. The nucleation model can quantitatively predict the observed

nucleation rate. The model gives a nucleation rate that is proportional to the

creep rate in agreement with many experiments.

Introduction

Austenitic stainless steels are widely used for the

high-temperature components of power plants,

where creep strength and oxidation resistance are

critical factors. Therefore, it is of utmost importance

to understand the life controlling rupture mecha-

nisms in these steels. Creep cavitation plays an

important role during rupture of materials at high

temperatures. Rupture proceeds with the formation,

growth and coalescence of creep cavities along grain

boundaries. Nucleation of cavities has been observed

at a number of positions in the microstructure. The

nucleation can take place at inclusions or second

phase particles, at grain boundary ledges and other

irregularities, and at grain boundary triple points. In

particle free alloys, the nucleation often occurs at

intersections between grain and subgrain boundaries

[1–3]. In particle containing alloys, cavities nucleate at

particles on sliding grain boundaries [4–9]. A vast

volume of research effort has been performed to

explore the mechanisms of cavity nucleation. In spite

of this, the nucleation mechanisms in individual

alloys are still unclear in many cases. However, it is

well established that creep cavities typically nucleate

at grain boundaries due to Grain Boundary Sliding

(GBS) [5–7, 9].

Harris [10, 11] proposed that cavities can nucleate

at particles when the GBS rate is fast enough. In

Harris’ model, there exists a critical particle radius for

cavity nucleation which is related to the GBS dis-

placement rate. For smaller particles to initiate cavi-

ties, a higher GBS rate is required. With the help of

models for GBS that have recently been developed

[4], it has been possible to make quantitative predic-

tions. By combining the GBS models with Harris’

model, He and Sandström [4] modelled cavity

nucleation at particles. The predicted number of
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cavities nucleating at particles showed a good

agreement with the experimental number of cavities.

Lim [1] proposed that cavities can nucleate at

intersections of subgrains and grain boundaries and

he developed a grain boundary dislocation (GBD)

pile up model. The total number of dislocations in the

pile up is considered to generate the steady state

stress concentration. In this case, there is no incuba-

tion time for cavity nucleation since the GBD pile up

is a steady state phenomenon of the secondary creep.

However, a threshold stress is necessary, below

which cavities will not be formed. By deriving the

formation energy for cavities, he concluded that this

was thermodynamically feasible for cavity nucleation

at substructures for the metals that he studied, for

example copper.

Sandström and Wu [3] developed a strain con-

trolled model that can predict the cavity nucleation

behaviour quantitatively. They proposed that cavities

can nucleate at ledges or subboundary intersections

due to GBS. The grain boundaries are assumed to

have randomly distributed ledges or other inhomo-

geneities with a typical spacing. Here a detailed

derivation of the model will be given for the first

time. The basic assumption in the model is that the

grain boundaries consist of two closely spaced layers

and that cavities are nucleated when an inhomo-

geneity on one layer meets one on the other layer.

The model is referred to as the double ledge model.

The model results are in the same form as the

experimental observations, namely that the nucle-

ation rate is proportional to the creep rate.

The aim of this paper is to propose models for

cavity nucleation at intersections of subboundaries

with grain boundaries for austenitic stainless steels

based on the GBS models introduced in [4]. The

modelling results will be compared with experi-

mental data for different types of austenitic stainless

steels.

Grain boundary sliding model

As mentioned above, creep cavity formation is rela-

ted to GBS. Two GBS models have been presented by

He and Sandström [4] for austenitic stainless steels, of

which the shear sliding model will be introduced

here since it is of more general nature. In the shear

sliding model, the GBS displacement rate vsd is pro-

portional to the creep rate _e by a parameter Cs:

vsd ¼ U
3

2

dgrain
n

_e ¼ Cs _e; ð1Þ

where U is the fractional contribution of the GBS to

the total displacement rate. The U value was found to

be dependent only on the stress exponent n. The

value of U is in the range from 0.1 to 0.33 when the

stress exponent n varies from 1 to infinity. U is

approximately 0.23 for austenitic stainless steels

when the creep stress exponent is in the range of 5–10

[4, 12, 13]. n is a factor that relates the hexagonal grain

size to the measured grain size dgrain, which is

approximately 1.82 [14].

n ¼ dgrain
ahex

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

ptanðp=6Þ

s

� 1:82; ð2Þ

where ahex is the length of the side of the hexagons.

Finally, the parameter Cs is dependent on the grain

size.

It has been shown that there is an initial stage for

the GBS displacement, where the GBS rate is higher.

However, by taking the initial GBS displacement into

account, the modelling results of Cs still show a good

agreement with the average value of the experimen-

tal data for austenitic stainless steels [4]. The results

will be used here in the development of cavity

nucleation models in ‘‘Number of creep cavities

formed at subboundaries’’ Section.

Thermodynamics of cavity nucleation
at subboundaries

Experimentally, it has been found that the number of

cavities is approximately proportional to the creep

strain. The nucleation rate can be expressed as

dn

dt
¼ B _ecr; ð3Þ

where B is a constant and _ecr is the creep strain rate.

This relation was experimentally first observed by

Needham et al. for copper [15] and for austenitic

stainless steels [16]. This relation has also been used

for example for copper by Sandström and Wu [3],

and for alumina by Page and Lankford [17]. In this

work, a model based on cavity nucleation that gives a

similar form to Eq. (3) will be proposed. Models

about cavity formation at intersections of subbound-

aries with grain boundaries will be introduced.

However, before we proceed to the cavity nucleation
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models, it will be analysed whether it is possible for

cavities to nucleate at subboundaries in austenitic

stainless steels.

Gibbs energy model for cavity nucleation
at subboundaries

Lim [1] proposed a GBD pile up model which can be

used to check whether it is thermodynamically feasi-

ble for cavity nucleation at subboundaries. In Lim’s

model, high stress concentrations are generated by

pile ups of GBDs. In this case, the pile ups of GBDs are

part of the steady-state creep process, so the high

stresses do not relax. Now the thermodynamic feasi-

bility for formation of creep cavities will be examined.

In the model, it is assumed that the cavities can be

formed by consuming part of the GBDs’ energy. So

the cavity formation can gain energy from the fol-

lowing 3 parts.

1. Part of the line energy of the GBD is consumed

DG1

DG1 ¼
lb2

2pð1� mÞ ln
Rcut

r0

� �

r
rsina

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsinað Þ2�x2

q

W xð Þdx;

ð4Þ

where l is the shear modulus, b is the Burgers’

vector, m is the Poisson’s ratio and x is the coor-

dinate along the grain boundary. r0 and Rcut are

the core and cut-off radius of the dislocations, r is

the radius of the curvature and a is half the tip

angle of the lenticular shaped cavities. W(x) is the

GBD density function, see Eq. (8) below.

2. The interaction energy among the consumed

GBDs, as well as between the remaining and

consumed GBDs DG2

DG2 ¼ lb2

p 1 � mð Þ ln
Rcut

r0

� �

r
rsina

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsin að Þ2� x2

q

r
xþRcut

xþr0

W x
0

� �

ln
Rcut

x0 � x

� �

dx
0

( )

W xð Þdx: ð5Þ

3. The strain energy of the remaining GBDs over the

volume taken up by the cavity and its surround-

ings DG3.

DG3 ¼ F
0

vr
3 r
rsinaþRcut

rsina

1

2G

lb
2pð1 � mÞ

1

x

� �2

W xð Þdx; ð6Þ

where Fv = 2p/3(2 – 3cosa ? cos3a), Fv
0 = 1.5 Fv.

Fv and Fv
0 are dimensionless functions. Fv when

multiplied by r3 gives the volume consumed by

the cavity. When Fv
0 is multiplied by r3 it gives

the volume within which the strain energy is

relaxed on the formation of the cavity [1].

The change in Gibbs energy on the formation of a

cavity with radius of curvature r can be expressed as

DGtotal ¼ �r3Fvrappl þ r2Fscs � r2FGBcGB � ðDG1 þ DG2

þ DG3Þ;
ð7Þ

where cs and cGB are the surface and grain boundary

energy per unit area. As explained before, when Fv is

multiplied by r3 it gives the volume consumed by the

cavity. Similarly Fv, Fs and FGB are also dimensionless

functions which when multiplied by r2 give the sur-

face area and the grain boundary area consumed by

the cavity. Fs = 4p(1 - cosa) and FGB = psin2a [1]. In

Eq. (7), the first term represents the work done by the

applied stress on the system, and the second and the

third term indicate the change in the surface and

grain boundary energies. The fourth term, which is

the sum of DG1, DG2 and DG3, is the change of the

GBDs pile up energy, which is also the energy gained

by the cavity formation.

It is assumed that the GBDs form a double-end pile

up, where the density function of the GBDs in the pile

up can be represented by a dislocation density

function W(x)

W xð Þ ¼ gL
p

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lx� x2
p � 2ð1 � mÞrappl

lbsinh
x� L=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lx� x2
p ð8Þ

where l is the shear modulus, b is the Burgers’ vector,

rappl is the applied stress, x is the coordinate along

the grain boundary, h is the orientation of the dislo-

cations in the pile up; for h = p/2 and h = 0, it cor-

responds to the climb and glide of dislocations along

the grain boundaries respectively [18]. g is the aver-

age linear density of GBD, which is the number of

dislocations per unit length of the grain boundary,

see Eq. (11) below. L is the length of the pile up,

which can be taken as the subgrain size dsub. The

subgrain size can be related to

dsub ¼
Klb
r

; ð9Þ

where l is the shear modulus, b is the Burgers’ vector,

r is the applied stress, K is a constant and for auste-

nitic stainless steels K & 20, which will be shown in

the later part. By integrating the dislocation density

6676 J Mater Sci (2016) 51:6674–6685



function, one can get the total number of dislocations

NGBD in the pile up.

NGBD ¼ r
dsub

0

W xð Þdx: ð10Þ

Lim [1] developed an expression for the constant g,

where he described that the value of g can be

obtained from a reference state for the linear density

of GBDs. Sandström et al. [18] refined this results,

where the constant g can be expressed as

g ¼ Cg
rT
l

log
XL3

b3sinh

_e T; rð Þ
4dDGB

� �

þ DGv

kBT

� �

; ð11Þ

where Cg is a constant which is about 2 9 106 (mK)-1,

h is the orientation of the dislocations in the pile up

relative to the grain boundary, kB is the Boltzmann

constant, X is the atomic volume, dDGB is the grain

boundary diffusion coefficient and DGv is the for-

mation energy of vacancies. In the next subsection,

the results of the energy changes by forming cavities

will be shown.

Results for cavity formation energies

With Eqs. (4)–(11), one can get the Gibbs energy

change DG when forming the cavities. If DG is neg-

ative, energy is gained by forming a cavity, so cavity

nucleation is feasible. The constants used to calculate

the energy changes DG are listed in Table 2. Figure 1

shows the results for DG of TP347H austenitic stain-

less steels at temperatures of 550 and 750 �C.

Gain in Gibbs energy by forming a cavity indicates

that the formation of cavities is thermodynamically

feasible. The absolute value of DG increases with

increasing cavity radius and applied stress, which

indicates that the cavity formation occurs more

readily at higher applied stress. Similar results have

been obtained for other types of austenitic stainless

steels, like TP304, TP321 and TP316 in our analysis.

There is a threshold stress value below which cavities

will not be formed. It can also be obtained from the

models described above. The minimum cavitation

stress corresponds to the value DG = 0. As shown in

Fig. 1b at conditions of 50 MPa and 750 �C, the

DG = 0 value shows increasing trend and close to 0,

which means that it is close to the minimum cavita-

tion stress. The results for the minimum cavitation

stress are shown in Figs. 2 and 3 as a function of

temperature. The minimum cavitation stress is

modelled based on obtaining the DG value near a

small cavity radius, which is about 100 b (where b is

the magnitude of the Burgers’ vector). As suggested

by Lim [1], initially the cavity attains a size of about

100 b, which is rather precisely the minimum radius

of a cavity nucleus. The experimental conditions

considered in this work for the modelling of cavity

nucleation at subboundaries are listed in Table 1. The

minimum cavitation stress decreases with increasing

of temperature. In Fig. 2, the modelled minimum

cavitation stress is compared with observed cavita-

tion [6, 9, 16, 19] which are listed in Table 1. It can be

(a) 

(b) 
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Figure 1 Change of Gibbs energy when a cavity is formed versus

cavity radius for TP347H austenitic stainless steels at different

stresses, a at 550 �C, b at 750 �C.

J Mater Sci (2016) 51:6674–6685 6677



easily seen that the modelled minimum cavitation

stress is well below the applied stress in the experi-

mental conditions where cavities have been

observed. The modelled minimum cavitation stress

for other austenitic stainless steels TP304H, TP321H

and TP316H, show almost identical results. By com-

paring to the minimum cavitation stress, it can be

seen that it is always thermodynamically feasible for

cavities to nucleate at subboundaries in the current

covered experimental cases since the experimental

applied stress is well above the minimum cavitation

stress required for cavity formation.

For comparison with a typical design stress, the

stress giving rupture in 10,000 h (a little more than a

year) is given. As shown in Fig. 3, the minimum

cavitation stress is in general well below a typical

design stress; in this case, the cavitation stress is in

the range 35–50 MPa for temperatures between 500

and 750 �C.

Number of creep cavities formed
at subboundaries

Model for nucleation frequency

Sandström and Wu [3] developed a double ledge

model that gives a relation of the type in Eq. (3) and

can predict the cavity nucleation behaviour quanti-

tatively. They proposed the mechanism that cavities

nucleate at subboundary intersections due to GBS.

Here a detailed derivation of the model will be given.

In the previous section, it was shown that it is ther-

modynamically feasible for cavity nucleation at sub-

boundaries. Here the double ledge model will be

used to quantify the cavity nucleation at subbound-

aries due to GBS. Figure 4a shows the intersection of

subboundaries with subboundary corners on a slid-

ing grain boundary with an area of Lx 9 Ly, and

sliding velocity of vsd. When the particles or

500 550 600 650 700 750
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80
90
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200

300

400

Temperature, °C

S
tr

es
s,

  M
P

a

Exp. from Table 1
TP347H Minimum cavitation stress

Figure 2 Minimum cavitation stress versus temperature for

TP347H austenitic stainless steels. Experimental data from

Table 1 are used for comparison.

Temperature, °C
500 550 600 650 700 750

S
tr

es
s,

  M
P

a

20

50

100

200

ECCC TP304H 10000 h rupture stress
ECCC TP316 10000 h rupture stress
ECCC TP321H 10000 h rupture stress
ECCC TP347 10000 h rupture stress
TP347H Minimum cavitation stress

Figure 3 Minimum cavitation stress versus temperature for

TP347H austenitic stainless steels. TP304H, TP316, TP321H

and TP347 ruptured after 10,000 h from ECCC [21] are used for

comparison.

Table 1 Temperature and

stress conditions for observed

creep cavitation

Material Temperature (�C) Stress (MPa) Test time (h) Reference

TP304XX 750 78 460–5100 [19]

TP347XX 750 78 460–5100 [6]

TP304 727 100 250 [9]

TP347 550 277–338 154–1660 [16]

TP347 650 123–184 160–2170 [16]

TP304 700 63.1 150 [20]
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subboundary corners meet the subboundaries on the

other side of a sliding grain boundary, cavities will be

formed. It is assumed that only the steep angle

(formed by the grain boundary intersect with the

sliding direction) will be effective for cavity nucle-

ation. The number of subboundary corners per unit

grain boundary area can be expressed as

ncor ¼
1

d2
sub

; ð12Þ

where dsub is the subgrain size. The sliding area of

subboundary corners during GBS in time dt is

dA ¼ Ly
Lx
dsub

vsddt: ð13Þ

In the model, it is assumed that cavity nucleation

takes place when the subboundary on one side of a

sliding grain boundary meets the subboundary cor-

ners on the other side of the grain boundary. The

number of subboundary/subboundary corners meet

Ns can be expressed as

Ns ¼ dAncor: ð14Þ

This is the number of nucleation sites for cavities.

Then one can obtain the number of cavities per unit

area as

ncav ¼
Ns

LxLy
¼ vsddt

d3
sub

: ð15Þ

By combining Eqs. (1) and (15), one finds the cavity

nucleation rate at intersections of subbound-

ary/subboundary corners:

dn

dt
¼ Cs

d3
sub

_ecr; ð16Þ

where Cs can be obtained from the GBS model in

‘‘Grain boundary sliding model’’ Section.

For cavity nucleation at subboundary/particles

intersections, there is a similar assumption that cav-

ities can be generated when the subboundary on one

side of a sliding grain boundary meets particles on

the other side of the sliding grain boundary, as

illustrated in Fig. 4b. In this case, a similar derivation

can be made by replacing the subboundary corners

with particles. Then one can get the cavity nucleation

rate at subboundary/particles intersections:

dn

dt
¼ Cs

dsubk
2
_ecr; ð17Þ

where k is the particle spacing.

For austenitic stainless steels, both particles and

substructures can be expected to play an important

role for cavity nucleation. Then by adding Eqs. (16)

and (17), one can get the final result for cavity

nucleation rate. The angle between the two sub-

boundary nets lies in range of up to 45� since only

steep angles are considered. By averaging over the

angle range, it can be shown that a factor of 0.9

should be added (the details are not given here). So

the final results for cavity nucleation rate are

dn

dt
¼ 0:9Cs

dsub

1

k2
þ 1

d2
sub

� �

_ecr ¼ B _ecr: ð18Þ

When compared with Eq. (3), the final result Eq. (18)

has the same form as the experimental observations

namely that the cavity nucleation rate is proportional

to the creep rate.

Figure 4 a Intersections of subboundaries with subboundary

corners on the opposite side of a sliding grain boundary,

b Intersections of subboundaries with particles on a sliding grain

boundary.
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Constants used in the model

The constants used in this work are shown in Table 2.

The temperature dependence of the shear modulus

l for austenitic stainless steels is shown in Fig. 5. The

linear fit (Equation listed in Table 2) of the shear

modulus for austenitic stainless steels gives a good

representation of the experimental values.

According to Eq. (9), the subgrain size is related to

the applied stress. Equation (9) is compared to

experimental data in Fig. 6. For austenitic stainless

steels K & 20 fits well to the experimental data.

Comparison to experimental data

For formation of creep cavities, both subboundary

corners and particles are taken into account, Eq. (18),

which is related to the GBS parameter Cs, subgrain

size dsub, and particle spacing k. The parameter Cs can

be obtained from the GBS model as described above.

The subgrain size is found from Eq. (9) and Fig. 6. The

average value of particle spacing was derived in [4].

For the particles with radii in the range of 0.2–1 lm in

the experimental results, the ratio of particle spac-

ing/particle radius was approximately 7 [4].

Figure 7 shows the comparison of the experimental

and modelling number of cavities per unit grain

boundary area as a function of creep strain. The

experimental conditions are listed in Table 1. More

detailed information can be found in references [6, 9,

16, 19]. Four sets of results are shown: TP347 at 550

and 650 �C [16], TP304 at 727 �C [9] and TP304XX at

750 �C [6, 19]. The model results corresponding to

two of the sets (TP347 at 650 �C and TP304 at 727 �C)

are in good agreement with the observation showing

a maximum deviation of a factor of three. The data

set (TP304XX at 750 �C) shows a lot of scatter.

Although the model values lie inside the range of the

Table 2 Constants used in computations for austenitic stainless steels

Parameter description Parameter Value References

Grain boundary diffusion coefficient dDGB 10�9:87e
�2:187e5
RgasT [22]

Shear modulus l (78 - 0.036 9 (T - 273)) 9 103 MPa [23]

Atomic volume X 1.21 9 10-29 m3 [24]

Boltzmann constant kB 1.381 9 10-23 J K-1

Creep exponent n 5 [25]

Burger’s vector b 2.58 9 10-10 m

Constant in expression for the subgrain size K 20 This work Fig. 6

Surface energy per unit area cs 2.8 J m-2 [26]

Absolute temperature T K

Poisson’s ratio m 0.3 [27]

GBD core radius r0 1.3 b [28]

GBD cut-off radius Rcut 103 b [29]

Tip angle of lenticular shaped cavity a 20� [1]

Grain boundary energy per unit area cGB 0.8 J m-2 [30]

Constant in the expression for g Cg 2 9 106 (mK)-1 [18]

Formation energy of vacancies DGv 2.47 9 10-19 J atom-1 [31]

Orientation of dislocations in the grain boundary h p/4 [1]
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Figure 5 Experimental and linear fit shear modulus versus temper-

ature for austenitic stainless steels. Experimental data from [23].
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observations, a precise comparison is difficult to

make.

For TP347 at 550 �C, it has to be taken into account

that many cavities are quite small at this temperature

and only the larger ones are recorded in the experi-

ments. This is analysed in the discussion. If this is

considered the modified results in Fig. 8 are

obtained. The model values for the other data sets in

Fig. 8 are also modified in the same way, but this has

only a small effect. With the modified results, also the

model values for TP347 at 550 �C are well centred in

relation to the experimental findings.

To further analyse the comparison between the

model and the experiments, the data sets in Fig. 8

have been restricted to commercial steels. Steels with

special additions are not considered. The number of

cavities versus creep strain is given. Three of the data

sets TP347 at 550 and 650 �C and TP304 at 727 �C are

represented in quite a reasonable way by the model.

For the fourth data set (TP304XX at 750 �C), the

deviation between model and experiment is consid-

erably smaller than in Fig. 7 although not satisfac-

tory. The reason for the deviation for this data set is

not known.

Discussion

Effect of cavity size distribution

The observation of the number of cavities per unit

area is influenced by the cavity size distribution.

Measured size distributions have been found in the
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Figure 6 Subgrain size as a function of the normalised stress r/
(lb). Experimental data from Challenger and Moteff [32] for

TP316 steel, Cuddy [33] for TP304 steel, Michel et al. [34] for

TP316 steel and Ryan and McQueen [35] for TP317 steel.
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Figure 8 Modelling and experimental number of cavities per unit

grain boundary area as a function of creep strain. Experimental

data from, Hong and Nam [9] for TP304 steel, Laha et al. [19] for

3 different types of austenitic stainless steels, Needham and

Gladman [16] for TP347 steel. The experimental conditions are

listed in Table 1.
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references [9, 20, 36]. Cumulative size distributions

from [20] are shown in Fig. 9. It is apparent that the

distributions are approximately exponential. This can

also be shown to be the case for the distributions in

[9, 36]. The cumulative distribution functions can be

expressed as

gðr; tÞ ¼ Aexpð�krÞ ð19Þ

where g(r, t) is the number of cavities at time t with

radius larger than r. A is the total number of cavities

independent of size that should be compared with

the cavity nucleation models described above,

Eq. (18). k is the slope of the distribution function. k is

the inverse of the mean cavity radius rm, k = 1/rm.

The mean cavity radius rm can be obtained from

cavity growth models [37, 38]. The authors will

analyse and give details for the growth models in a

forthcoming paper [39]. Figure 9 shows the compar-

ison of the modelling and experimental cumulative

cavity number density as a function of the cavity

radius. The total number of cavities is predicted with

Eq. (18) and the cavity radius with established

growth models without involving any fitting

parameters.

In Fig. 9, the distributions deviate from straight

lines when the cavity radius is below 1 lm. This is an

indication that all cavities are no longer recorded due

to limitation in the instrumental resolution. Similar

behaviour is found for the distributions from [9, 36].

This means that the contribution from smaller cavi-

ties is not fully accounted for. For TP347 at 550 �C,

the corresponding full resolution limit was 0.5 lm.

The number of cavities larger than 0.5 lm is only

15 % of the total number of cavities. This has been

taken into account in the modification of the mod-

elling results in Fig. 8. The smaller corrections for the

other data sets have also been made. The reduction

factors were 0.8 for TP347 at 550 �C and TP304 at

727 �C and 0.9 for 304XX at 750 �C.

Comparison of different models for cavity
formation

Using the classical theory of nucleation, cavities are

formed at grain boundaries by clustering of vacan-

cies. As proposed by Smith and Barnby [40], a high

stress concentration is necessary for the cavity

nucleation. The high stress concentration can be

developed at grain boundary ledges, grain boundary

triple points and particles. It is suggested that the

mechanisms for cavity nucleation at particles can be

decohesion of particles from the matrix or particle

fracture, where high stress concentrations are

required. In most available models, a threshold stress

and an incubation time have been considered as the

critical conditions for cavity nucleation to occur [41,

42]. However, it has been found that the estimated

threshold stress is orders of magnitude higher than

the applied stress, and the required incubation time is

longer than the time for stress concentrations to be

relaxed. On the other hand, it is also suggested that

cavities may be nucleated by breaking the local

atomic bonds by the high stress concentration.

However, it has been proved that the local stresses

can never reach this level during creep conditions

[43].

Unlike the classical theory for cavity nucleation,

the model described here involves the pile up of

GBDs, which is a steady state phenomenon of the

secondary creep processing, so there is no incubation

time concerned. Furthermore, the model describes

the energy changes when forming a cavity from a

thermodynamical point, where cavities will obtain

energy by consuming part of the energy of GBDs. The

modelling results of Figs. 1, 2, and 3 clearly show that

it is thermodynamically feasible for cavity formation

at subboundaries. The minimum cavitation stress

here is well below the experimental applied stress

and in general below the typical designed rupture
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Figure 9 Comparison of modelling and experimental cavity size

distribution for TP304 austenitic stainless steels. Experimental

data from [20]; the test conditions are listed in Table 1.
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stress in 10,000 h from ECCC [21]. At higher tem-

peratures, the minimum cavitation stress is close to

the typical design rupture stress. The reason might be

that it is more difficult to form cavities at the larger

subgrains at low stresses and high temperatures.

Needleman and Rice [44] introduced a diffusion

length over which stress concentrations are relaxed

rapidly, and it is taken as a critical particle radius

above which particles will nucleate cavities [45, 46].

In Jiang et al. review [46], they analysed a number of

models about cavity nucleation at particles including

improved models for the diffusion length. All the

models proposed gave a critical radius of 10–20 lm

for particles, which is much higher than in the

experimental observations [4–9]. In the present work,

for cavity formation at intersections of subboundaries

and particles, the particle radii are based on the

experimental observations.

The presented double ledge model gives a number

of cavities that are proportional to the creep strain in

good accordance with a number of published exper-

imental investigations, for example in [3, 16]. A

detailed comparison between modelling and experi-

mental results is given in Figs. 7 and 8. For three of

the four investigated data set a satisfactory agree-

ment was obtained.

Conclusions

1. By calculating the energy change when forming a

cavity, it has been shown that it is thermody-

namically feasible for cavity nucleation at sub-

boundaries without an incubation time involved.

A threshold stress exists below which cavities

will not form, which is lower than the applied

stress in the current investigated experimental

cases.

2. A model referred to as the double ledge model

has been combined with a model for grain

boundary sliding to describe the nucleation fre-

quency of cavities at subboundaries. It is

assumed that cavities are formed when sub-

boundary corners or particles on one side of a

sliding grain boundary meet subboundaries on

the opposite side of the sliding grain boundary.

This model is in the similar form of the experi-

mental observations that the cavity nucleation

rate is proportional to the creep strain rate. The

model can predict the number of cavities formed

in austenitic stainless steels in a reasonable way.
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