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Abstract Luminescent carbon-based nanomaterials have

inspired tremendous research interests due to their tunable

optical properties as well as superior biocompatibility. In

this review, distinct light emission properties of carbon

dots (CDs) derived from different synthesis methods are

summarized. The optical properties of as-synthesized CDs

can be further controlled by element doping and surface

functionalization of CDs for tunable band gap. Due to their

low cytotoxicity and tunable optical behaviors, luminescent

CDs have been extensively studied for their potential

biomedical applications, such as analytical sensors, and

bioimaging devices. This review presents a comprehensive

overview of the emerging luminescent CDs and their

applications as biosensors and bioimaging agents. The

challenges and perspectives in the near future are also

discussed.

Introduction

Diverse carbon allotropes have attracted extensive interests

for their potential applications from electronic devices to

biosensors and bioimaging agents. Graphitic structural

materials like zero-dimensional spherical fullerene [1–5],

diamond nanocrystals (DNs) [6–9] and carbon dots (CDs)

[10–14], one-dimensional cylindrical carbon nanotubes

(CNTs) [15–18] and two-dimensional graphene quantum

dots (GQDs) [19, 20], and graphene [21–23] have been

widely investigated in the last decade.

Although CDs, DNs, and GQDs are three similar

quantum-confined fluorescent carbon materials that have

been widely employed as biosensors and bioimaging agents

[24], the different spatial arrangements of carbon atoms

result in distinctive physical and chemical properties [25].

Generally, DNs are mainly composed of a sp3-hybridized

core and a graphitic carbon shell. In comparison, both CDs

and GQDs are mainly composed of sp2 carbon, oxygen,

and nitrogen elements and other doped heteroatoms [26,

27]. Actually, the CDs do not have perfect crystal struc-

tures as GQDs [28–31]. In addition, the size of luminescent

CDs is usually below 10 nm [32–34], while luminescent

GQDs obtain a lateral dimension up to 100 nm [34, 35].

Due to their low cost, high quantum yield, abundant source,

low cytotoxicity, superior chemical and photo stability,

CDs are generally regarded as a potential candidate in bio-

sensing, bioimaging, and other biologically related appli-

cations [27, 36–39].

CDs were firstly discovered in the process of purifying

single-walled carbon nanotubes fabricated by arc discharge

methods by Scrivens in 2004 [40]. In the past few years,

various starting materials and synthetic methods have been

developed to obtain CDs, including electrochemical syn-

thesis [29, 41–43], supported routes [44–46], combustion/

heating [36, 47, 48], hydrothermal [49–56], acidic oxida-

tion [57–59], microwave/ultrasonic [60–67], arc discharge

[40], laser ablation [26, 68], and plasma treatment [13, 69].

These above approaches can be classified into two cate-

gories: top-down and bottom-up methods. The top-down

method refers to cleavage of larger carbonaceous materials,

such as CNTs [40, 70, 71], graphite [29, 41, 70, 72], NDs

[73], and commercial activated carbon [74]. The bottom-up

method generally involves supported route and carboniza-

tion [32]. The supported route means employing supports

to localize the growth of CDs by blocking nanoparticle
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agglomeration during high-temperature treatment [44].

Another bottom-up synthetic strategy is precursor car-

bonization, which is a facile and common way to achieve

CDs via various treatment methods like heating [36],

hydrothermal [49], and microwave [65]. Candle was often

used as a precursor to fabricate fluorescent CDs [30, 57].

After combustion, the collected candle soot is refluxed with

HNO3 to oxide particles. After cooling, as-synthesized CDs

are collected after centrifugation or dialysis. Similarly, the

natural gas is also used as a carbon source to achieve CDs

via combustion method [28]. Subsequently, different pre-

cursors including molecular compounds and natural sour-

ces have been widely explored to synthesize CDs.

Giannelis and co-workers employed the ammonium citrate

[75], octadecylammonium citrate [75], and sodium

11-aminoundecanoate [76] as molecular precursors to

achieve luminescent CDs. Small organic compounds, such

as citric acid [36, 49, 77], boric acid [78, 79], amino acid

[78], glycerol [45, 80], glucose [58, 81–83], ethylene gly-

col [84], N-acetylcysteine [85], diamine [86], and benzene

[69] have also been extensively used as precursors. In

addition, natural sources, such as orange juice [87], banana

juice [88], soy milk [89], meat [90], beverage [91], coffee

[92], beer [93], egg [94], potato [54], punica granatum fruit

[48], bombyxmori silk [50], sugar [95], bread [95], jiggery

[95], lysozyme [96], sucrose [58, 97], starch [58], and grass

[98] have been studied to fabricate CDs. Generally, these

CDs are rich in surface functional groups including car-

boxyl, amino, hydroxyl, and other groups, which facilitate

further modifications to tune optical properties. The syn-

thetic methods of CDs have been systematically discussed

in several published reviews [32, 99, 100].

In this review, tunable optical properties and cytotoxi-

city of CDs are addressed. Recent advances in CDs

including biosensors and bioimaging agents are presented.

Current challenges and perspectives for the future devel-

opment of CDs are also discussed.

Advances in bioapplications

Absorbance and photoluminescence

Although tremendous efforts have been devoted to inves-

tigate the origin of photoluminescence (PL), the mecha-

nism is still unclear. Quantum effect and defect emission

are currently regarded as the main emissive mechanism of

CDs [101].

In general, CDs display strong optical absorption in the

UV region, with a tail extending out into the visible range

(as shown in Fig. 1a). Most of the one-step prepared CDs

exhibit absorbance in the range 280–360 nm [26, 49, 102,

103]. The absorption band could be regulated via various

surface passivation or modification (as shown in Fig. 1a)

[25, 58].

CDs usually show the excitation-dependent emission

properties in wavelength and intensity (as shown in Fig. 1b)

[104]. Liu et al. reported that the polyethyleneimine (PEI)

passivated CDs exhibited colorful luminescence. The blue,

green, or red luminescence were excited under ultraviolet

(330–385 nm), blue (460–495 nm), or green (530–550 nm),

respectively [38]. The PL intensity decreased extraordinarily

under longer wavelength excitation. This phenomenon may

result from the size and surface state non-uniformity of PEI

passivated CDs. In contrast, the excitation-independent CDs

were also reported [29, 49]. The CDs co-doped with nitrogen

and sulfur (N, S-CDs) indicated excitation-independent

emission, since the PL properties of the N, S-CDs depended

on surface states rather than morphology, and the surface

states of the N, S-CDs were uniform [49]. In our previous

study, the similar results of N, S-CDs were also achieved

[77]. Recently, Hu and Trinchi reported a new type of CDs

whose peak fluorescence emission wavelengths were tunable

across the entire visible spectrum via adjustment of the

reagents and synthesis conditions [47]. In this report, various

synthesized types of CDs achieved an optimal emission

peak, however, in some cases (at longer wavelengths) a small

shift in emission with varying excitation was observed,

which indicated that the excitation-dependent or -indepen-

dent behavior mainly result from surface state of CDs.

Although CDs are generally regarded as zero-dimen-

sional (0D) nanoparticles with a small size range below

10 nm, the size effect is a key factor that can attribute to

the PL properties of CDs. Kang and Lee reported that UV

light emission, bright visible light emission, and near-in-

frared emission were illuminated from small-sized

(1.2 nm), medium-sized (1.5–3 nm), and large-sized

(3.8 nm) CDs under UV light, respectively [105]. Pang

et al. reported that the CDs prepared by electrochemical

oxidation method exhibited obvious size-dependent PL in

Fig. 1 a UV–Vis absorption and normalized photoluminescence

spectra of the CDs and t-CDs. Inset: photograph of the CD (left) and

t-CD (right) aqueous solutions under visible light and 365 nm UV

light, respectively. b Emission spectra of the CDs with excitation at

different wavelengths. Reproduced from Ref. [54] with permission

from the Centre National de la Recherche Scientifique (CNRS) and

The Royal Society of Chemistry
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two fractions (19 ± 0.3 and 3.2 ± 0.5 nm) [29]. In our

previous research, the charge-dependent emission was

discovered in CDs derived from stacked graphene nanofi-

bers [53]. Figure 2 shows different emissions from various

surface-charged CDs under 365 nm UV lamp.

In addition, pH value also has a significant impact on the

PL intensity of CDs. Pan et al. found that the PL intensity

of CDs gradually enhanced with pH value increasing from

1 to 13 while reduced with pH value decreasing from 13 to

1 [106].

Up-conversion PL is a strong benefit for luminescent

nanomaterials so that their applications can be expended to

biosensor and bioimaging agents. Recently, Kang and his

co-workers developed ultrasonic synthesized CDs that

exhibited strong emission upon two-photon excitation in

the near-infrared region [105]. Recently, a novel and facile

approach was reported to fabricate three types of CDs that

could emit bright and stable red, green, or blue (RGB)

colors under a single ultraviolet-light excitation. Interest-

ingly, up-conversion PL was also found in these CDs [107].

Quantum yield (QY)

Brightness and photostability are two major points that

should be taken into account in the application of lumi-

nescent CDs. Generally, the theory that CDs achieve high

resistance to photobleaching is widely acknowledged

[100]. In our previous study, excellent photostability was

observed in pristine CDs, thermally reduced CDs, and N,

S-CDs [54, 77]. This superior optical property attracts

researchers to concentrate on developing CDs with higher

QY. QY is an essential parameter for luminescent nano-

material. In early studies, CDs prepared from candle soot,

citric acid, stacked graphene nanofiber, or graphite pos-

sessed low QY, which was usually below 10 % [26, 53, 54,

57]. To enhance the QY of CDs, diverse designs have been

developed including surface passivation or modification,

element doping, and inorganic salt doping.

Surface passivation or modification is the common way

to improve the QY of CDs due to its facile processibility

and high efficiency. Sun et al. reported the PEG1500N (di-

amine-terminated poly(ethylene glycol)) could endow the

non-luminescent CDs with bright luminescence. The most

luminescent CDs with a high QY of 60 % were achieved

via rigorous separation by an aqueous gel column [108].

Chi and his co-workers synthesized polyamine-function-

alized CDs with high QY (42.5 %) via a one-step method

combining low-temperature carbonizated CDs and bran-

ched polyethylenimine (BPEI) [102]. In our previous study,

the QY of CDs was improved via thermal reduction with

less carboxyl groups on its surface, the scheme is shown in

Fig. 3 [54].

Recently, element doping has been utilized to increase the

QY of CDs [59, 67, 109]. Nitrogen is widely used as a doping

element to synthesize nitrogen-doped CDs with a high QY

using various nitrogenous compounds [77, 110–112]. Jiang

et al. [113] employed amino acids as the raw materials to

prepare CDs with high QY (44.9 %) via a microwave

method. Since some nitrogenous compounds can serve as

both surface passivator and nitrogen source, it should be

noted that the element doping and surface passivation of

nitrogenous reagents are hard to discriminate. For instance,

Li and Yu et al. prepared nitrogen and sulfur co-doped CDs

via hydrothermal method with extremely high QY (73 %)

[49]. In this method, L-cysteine was used as both surface

passivator and element-doped source. To our knowledge, the

QY of N, S-CDs is highest ([70 %) among all the lumi-

nescent CDs by introducing both nitrogen and sulfur ele-

ments. In addition, Xu et al. synthesized sulfur-doped CDs

with significant fluorescence QY (67 %) via a hydrothermal

method, which indicated that the sulfur doping achieved an

efficient QY improvement [53]. In addition to nitrogen and

sulfur, boron is another doping element to enhance the QY of

CDs. Bourlinos and Zboril et al. reported a green and simple

route to improve QY of CDs via boron doping, and the boron-

doped CDs achieved significantly enhanced non-linear

optical properties [67]. Phosphorus was also doped into CDs

to improve the QY via microwave pyrolysis of polyol in the

presence of inorganic ions [65]. Recently, Yang et al.

reported a facile and economical one-step approach for

synthesizing CDs with a high QY (around 80.3 %). In this

approach, citric acid and glutathione were employed as

precursors [114].

Fig. 2 The photograph under 365 nm UV lamp of charge-separated

CD fractions. Reprinted with permission from [53]. Copyright �
1999–2015 John Wiley & Sons, Inc. All Rights Reserved

Fig. 3 a Thermal reduction process from CDs to t-CDs and

b fluorescence resonance energy transfer process from t-CDs to

vitamin B12. Reproduced from Ref. [54] with permission from the

Centre National de la Recherche Scientifique (CNRS) and The Royal

Society of Chemistry
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Moreover, some other methods have been developed to

improve the QY of CDs. For example, Sun and his co-

workers developed CDs doped with inorganic salt to

achieve high QY [115]. The QY of the CDs doped with

ZnS was around 45 % while that of the CDs doped with

ZnO was enhanced to more than 50 %. Interestingly, the

brighter CDs (QY = 78 %) were achieved via a similar

method with little modification [116]. In addition, highly

luminescent oil-soluble CDs were synthesized by Liu et al.

[117]. In their study, the 1-hexadecylamine (HDA) was

used as the surface passivation agent. After that, the N-(b-

aminoethyl)-c-aminopropyl methyldimethoxy silane

(AEAPMS) was also used as the surface passivation agent

to fabricate oil-soluble CDs with a high QY [118].

Recently, Tong and Liu et al. synthesized amorphous

CDs with high two-photon fluorescence via a hydrothermal

approach. In this method, citric acid and hyperbranched

poly(amino amine) were used as the carbon source and

surface passivation agent, respectively. Although the QY of

CDs in aqueous solution was only 17.1 %, the CDs emitted

bright fluorescence in the solid state with a QY of 16.3 %,

which is the highest solid-state fluorescence value obtained

for carbon-based nanomaterials [55].

Cytotoxicity

In order to be considered in bioapplications, the prerequi-

site condition for luminescent nanomaterials is low cyto-

toxicity. So far, the cytotoxicity of luminescent CDs

in vitro has been comprehensively investigated [37, 38, 73,

107, 119–122], while the studies of the cytotoxicity of CDs

in vivo are still rare. Therefore, more and more studies

have been done to explore the properties and potential

applications of CDs in vivo [27, 70, 121, 123–125]. The

previous studies reported that CDs are generally non-toxic

in in vitro experiments [32, 104].

Sun’s group devoted lots of efforts to study the bio-

compatibility and cytotoxicity of surface-passivated CDs

and the surface passivation agents in vitro and in vivo [27,

121, 123]. They first investigated the cytotoxicity of the

PEG1500N-passivated CDs and PEG1500N both in vitro and

in vivo. The human breast cancer MCF-7 and human col-

orectal adenocarcinoma HT-29 cells were incubated by

PEG1500N-passivated CDs and PEG1500N. Figure 4 clearly

shows that the effects of CDs on the proliferation, mor-

tality, and viability of the cells were as weak as PEG1500N.

In addition, in vivo biodistribution and cytotoxicity of CDs

were investigated via intravenous injection in mice. No

obvious toxic effects of CDs were observed in mice at the

concentration required for PL bioimaging. Although some

CDs were found in some essential organs including liver,

spleen, and kidney, the levels of accumulation were

extremely low that no significant toxicity was observed. In

addition, CDs were cleared via renal excretion within about

24 h in mice and no clinical symptoms were observed after

28 days. Furthermore, four different polymers were used as

surface passivation agents to prepare CDs and it was found

that the cytotoxicity of CDs was derived from the passi-

vation molecules. Therefore, surface passivation agents

with low cytotoxicity are more suitable to develop CDs

with high compatibility in order to be applied in bioap-

plications as biosensors and bioimaging agents.

Similar conclusions were achieved by other researchers’

studies. Tao et al. performed an in vivo cytotoxicity

investigation in mice for over three months, which exhib-

ited no death and even a significant body weight drop in

treated mice [70]. In addition, no apparent toxic effects

were observed in treated mice with the injection dosage of

CDs (20 mg/kg). Subsequently, blood tests and histological

analyses of treated mice showed no obvious toxic effects of

CDs in in vivo biodistribution.

Bioapplications

Biosensors

In addition to their superior biocompatibility, CDs possess

the ability to serve as either excellent electron donors or

electron acceptor. Therefore, CDs can be used for

Fig. 4 Results from cytotoxicity evaluations of C-Dots (black) and

PEG1500N (white). Data presented as mean ± SD (n = 4). Reprinted

with permission from [121]. Copyright � 2009, American Chemical

Society
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intracellular detection of ions, biological pH value, protein

and enzymes, vitamins, and nucleic acid, etc.

Although CDs derived from various raw materials were

used to detect different ions, including Cu2?, Hg2?, Ag2?,

Cr3?, Fe3?, K?, Cl-, and H? [14, 43, 53, 67, 98, 102, 126–

133], the ion detection mechanisms are similar. The surface

functional groups on CDs indicate distinctive affinities to

different target ions, which results in the quench of PL

intensity through an electron or energy transfer process and

high selectivity to other ions. For instance, Qu et al. used

dopamine as the raw material to develop CDs, which could

be used as a Fe3? sensor with an excellent detection limit

of 0.32 lM [127]. The fundamental mechanism is simply

depicted in Fig. 5. The interaction between CDs and Hg2?

or other ions results in the quench of PL intensity. The PL

is recovered when the interaction is broken via external

force. Recently, the fluorescent turn-on system was also

designed. Yang et al. fabricated a novel oligodeoxyri-

bonucleotide (ODN)-CDs and graphene oxide optical

sensor to detect Hg2? [134]. In detail, fluorescence of

ODN-CDs was efficiently quenched by graphene oxide via

fluorescence resonance energy transfer (FRET). With the

addition of Hg2?, the luminescence was recovered by

releasing ODN-CDs from GO due to the formation of

T-Hg2?-T duplex. An ultrasensitive CDs-based sensor was

achieved via a one-step hydrothermal treatment of potatoes

to detect phosphate [54].

In addition, CDs are also used to determine the physi-

ological pH value in living cells and tissues. Tian’s group

synthesized aminomethylphenylterpyridine (AE-TPY) CDs

to probe the pH value changes in physiological conditions

[135]. This PL sensor could be employed to monitor pH

value gradients in a range of 6.0–8.5 with high sensitivity

and selectivity. In addition, this sensitive sensor was also

successfully applied in living cells and tumor tissues of

mice, which demonstrated that the CDs-based pH sensors

could be further used in vitro and in vivo. Recently, the

CDs were employed inside living pathogenic fungal cells

to detect the intracellular pH value [134].

Most recently, CDs-based sensors have been developed

to detect nucleic acid. For instance, Li et al. designed a

CDs-based strategy for DNA sensing that CDs were

labeled with single-stranded DNA (ssDNA) which quen-

ched the PL of CDs [136]. Until the combination of the

target DNA and the labeled ssDNA to form double-stran-

ded DNA (dsDNA), the PL was recovered when the

labeled ssDNA disconnected from CDs.

On the other side, the DNA-labeled CDs have also been

developed to detect protein and enzymes [137]. For

instance, a novel CDs-dsDNA sensor was synthesized to

detect histone [138]. In this sensor, the PL was quenched in

the presence of dsDNA, while with the addition of histone,

the luminescence was turned on through unwinding

dsDNA from CDs due to the strong affinity between his-

tone and dsDNA. With the binding affinity between DNA

and proteins, the quantitative detection of protein could be

calculated from fluorescence restoration.

CDs-based sensors have received extensive interests to

detect bio-molecules including vitamins and amino acids.

In our previous studies, riboflavin and vitamin B12 were

detected by surface-functionalized CDs to target molecules

[54, 77]. The ratio-metric sensing protocol is widely

accepted due to the influence of temperature variation and

local probe concentration variation could be eliminated

successfully. It is mainly because the ratio of two inter-

connected PL signals is considered as a detection index

[139–142]. In our previous study, the riboflavin was

effectively detected by CDs-based ratio-metric sensor with

high sensitivity (1.9 nM) [77]. Recently, a novel turn-on

CDs-based sensor was fabricated to detect cysteine with

excellent selectivity and sensitivity [143]. In addition, Liu

and Zhang et al. designed a nanosensor composed of CDs

and gold nanoparticles to detect cysteine with multiple

signals [144].

Furthermore, Yu’s group developed naphthalimide azide

derivatives anchored CDs to detect H2S with a detection

limit of 10 nM, which is the lowest among the fluorescent

H2S sensors [139]. In this method, the highly sensitive

sensor could be employed to detect H2S not only in

aqueous media and serum, but even inside living cells,

which further broadened the applications of CDs in

biomedical area.

Recently, Dong et al. reported a type of nitrogen-rich

CDs via a microwave-assisted pyrolysis approach, which

Fig. 5 Scheme of CDs to detect Hg2? in aqueous solution. Reprinted

with permission from [128]. Copyright � 2012 American Chemical

Society
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could be applied as a dual sensing platform for both the

fluorescent and electrochemical detection of 2,4,6-trini-

trotoluene (TNT). In this report, the fluorescence sensor

was developed based on the TNT-amino interaction, which

could efficiently quench the luminescence of amino-func-

tionalized CDs via charge transfer [63]. Algarra and co-

workers investigated potential applications of CDs as an

analyzer of four heterocyclic aromatic amines [66]. In

addition, CDs-based fluorescent sensor was used to deter-

mine the concentration of hydroquinone in waste water.

[145] Furthermore, CDs were also employed as a fluo-

rophotometric sensor to determinate the critical micelle

concentration (CMC) of ionic and non-ionic surfactants via

Stokes shift [146].

Bioimaging

Although semiconducting quantum dots (QDs) such as

CdSe and other related core–shell nanoparticles have been

investigated in bioimaging in vitro and in vivo, serious

health problems and environmental concerns limit their

bioapplications due to the existence of heavy metals. CDs

with superior photostability and low cytotoxicity have been

widely studied in optical imaging applications as an

alternative to QDs. Both in vitro and in vivo evaluations

indicated that CDs are excellent candidates in bioapplica-

tions due to their visible excitation and emission wave-

lengths, high brightness at the individual dot level.

A lot of studies were performed via fluorescence from

diverse CDs in cell imaging of various cell lines, including

Caco-2 cells [147], Ehrlich ascites carcinoma cells [30],

HEK293 [148], pig kidney cell line [149], B16F11 [148],

murine P19 progenitor cells [44], BGC823 cells [118],

HeLa cells [54], Escherichia coli cells [150], etc. [38, 50,

77, 87, 114, 151, 152]. For instance, Sun et al. reported the

PEG1500N-passivated and PPEI-EI-passivated CDs were

used to label cells for bioimaging [26, 150]. Liu et al.

developed CDs via one-step microwave-assisted pyrolysis

of glycerol in the presence of TTDDA, which exhibited

strong PL and multicolor emissions. These CDs existed in

cells could be observed via multicolor PL under a confocal

microscope [153]. Hahn et al. developed PEG diamine-

capped CDs to label B16F1 and HEK293 cells. The con-

focal laser scanning microscopic images of B16F1 and

HEK293 cells after incubation with CDs are depicted in

Fig. 6 [148]. Recently, Wang and Leung et al. widely

investigated the effect of nitrogen doping ratios in CDs for

in vitro and in vivo bioimaging [154].

In addition, the bioimaging application of CDs was

further developed by Hahn [148]. In this report, the CDs

could be employed for real-time bioimaging of target-

specific delivery of hyaluronic acid (HA) derivatives. HA/

CDs hybrids were fabricated by amidation reaction

between amino groups on the surface of CDs and car-

boxylic groups of HA. According to in vivo real-time

bioimaging, the HA/CDs hybrids revealed the target-

specific delivery to liver. Sun’s group comprehensively

investigated the effect of PEG1500N-CZNS-dots in the mice

body with various injection methods [27]. The results

demonstrated that CDs injected in various ways into mice

maintained strong fluorescence in vivo (as shown in

Fig. 7). Due to their high biocompatibility and low cyto-

toxicity, CDs are very promising for bioimaging and other

related bioapplications.

Compared to down-conversion fluorescence, up-con-

version fluorescence has a lot of advantages including

noninvasive and deep penetration of NIR radiation in

bioapplications. Various CDs can achieve obvious up-

conversion PL properties, which have been widely inves-

tigated and reported [81, 105, 155, 156]. For instance,

Salinas-Castillo et al. reported that PEI-CDs exhibited

excellent up-conversion PL properties with the emissions

located in the range of 308–550 nm by long-wavelength

light excitation [130]. These up-conversion CDs have been

effectively employed for in vitro bioimaging with two-

photon excitation [26, 55, 115, 150]. As depicted in Fig. 8,

CDs show a strong emission with either the 458 nm exci-

tation or 800 nm two-photon excitation. In addition,

in vivo NIR fluorescence imaging was also investigated by

Zhang, Kang, and Liu et al. [70].

Fig. 6 Confocal laser scanning microscopic images of a B16F1 and

b HEK293 cells after incubation at 37 �C for 24 h with C-dots and

HA–C-dot conjugates in the absence and presence of 100-fold molar

excess HA. Scale bar indicates 30 lm. Reprinted with permission

from [148]. Copyright � 2012 American Chemical Society
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Recently, Kailasa et al. [48] employed CDs synthesized

from punica granatum fruit as an imaging agent for bac-

terial and fungal cells, which demonstrated that CDs were

non-toxic and did not inhibit the growth of B. subtilis.

Therefore, the CDs can be applied as fluorescent probes for

imaging of both animal and plant cells.

Summary and perspectives

In this review, an overview of CDs has been summarized to

introduce the recent advances in bioapplications. Firstly,

the physical and chemical properties including photolu-

minescence and cytotoxicity that attributes to bioapplica-

tions have been reviewed. Then, the bioapplications, such

as biosensors and bioimaging agents, have been systemat-

ically introduced.

As an emerging luminescent material, tremendous

efforts have been devoted to synthesis, performance,

mechanism, and applications of CDs. With the high pho-

tostability and chemical stability, low cytotoxicity, and

high quantum yield, CDs are employed as non-toxic

alternatives to replace traditional heavy metal-based QDs.

However, two major problems still exist and impede the

further bioapplications of CDs: (a) CDs prepared from

diverse methods exhibit large size distribution and photo-

luminescence non-uniformity, and the complex and time-

consuming separation and purification severely limit their

further applications; (b) The mechanism of photolumines-

cence is still unclear. Therefore, more efforts on CDs might

be concentrated on the following fields. (1) Effective

synthesis with a high yield should be developed to fabricate

CDs with a high quantum yield in a small size distribution;

(2) A physic understanding of CDs’ photoluminescence

phenomenon, especially their bright multiphoton emission,

should be explored, which can facilitate their in vivo

applications.

Acknowledgements This study was funded by National Science

Foundation (NSF) (Grant #1228127).

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict

of interest.

References

1. Guldi DM, Illescas BM, Atienza CM, Wielopolskia M, Martin N

(2009) Fullerene for organic electronics. Chem Soc Rev

38:1587–1597

2. Liu J, Rinzler AG, Dai H et al (1998) Fullerene pipes. Science

280:1253–1256

3. Barbot A, Di Bin C, Lucas B, Ratier B, Aldissi M (2013) N-type

doping and thermoelectric properties of co-sublimed cesium-

carbonate-doped fullerene. J Mater Sci 48:2785–2789. doi:10.

1007/s10853-012-6824-1

4. Sall M, Monnet I, Moisy F et al (2015) Track formation in III-N

semiconductors irradiated by swift heavy ions and fullerene and

re-evaluation of the inelastic thermal spike model. J Mater Sci

50:5214–5227. doi:10.1007/s10853-015-9069-y

5. Malgas GF, Motaung DE, Arendse CJ (2012) Temperature-de-

pendence on the optical properties and the phase separation of

polymer–fullerene thin films. J Mater Sci 47:4282–4289. doi:10.

1007/s10853-012-6278-5

6. Laraoui A, Meriles CA (2013) Approach to dark spin cooling in

a diamond nanocrystal. ACS Nano 7:3403–3410

7. Laraoui A, Hodges JS, Meriles CA (2012) Nitrogen-vacancy-

assisted magnetometry of paramagnetic centers in an individual

diamond nanocrystal. Nano Lett 12:3477–3482

8. Yu M, George C, Cao Y, Wootton D, Zhou J (2014)

Microstructure, corrosion, and mechanical properties of com-

pression-molded zinc-nanodiamond composites. J Mater Sci

49:3629–3641. doi:10.1007/s10853-014-8066-x
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